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Abstract 
Zero-inflated distributions are common in statistical problems where there is interest in testing 
homogeneity of two or more independent groups. Often, the underlying distribution that has an 
inflated number of zero-valued observations is asymmetric, and its functional form may not be 
known or easily characterized. In this case, comparisons of the groups in terms of their respective 
percentiles may be appropriate as these estimates are nonparametric and more robust to outliers 
and other irregularities. The median test is often used to compare distributions with similar but 
asymmetric shapes but may be uninformative when there are excess zeros or dissimilar shapes. 
For zero-inflated distributions, it is useful to compare the distributions with respect to their pro-
portion of zeros, coupled with the comparison of percentile profiles for the observed non-zero 
values. A simple chi-square test for simultaneous testing of these two components is proposed, 
applicable to both continuous and discrete data. Results of simulation studies are reported to 
summarize empirical power under several scenarios. We give recommendations for the minimum 
sample size which is necessary to achieve suitable test performance in specific examples. 
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1. Introduction 
Zero-inflated distributions—a mixture of a point distribution and some other non-zero distribution (s)—are 
common in biomedical studies. Typically, there is interest in making comparisons between such groups, as in 
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testing the homogeneity of distributions across treatment groups or other populations of interest. In addition to 
excess zeros, analysis is made more difficult by the distribution of the non-zero data, which is most likely 
asymmetric or multimodal. Zhang et al. [1] studied the properties of six tests for equality of zero-inflated conti-
nuous distributions, finding some of them inaccurate when the parametric distribution was not specified cor-
rectly. Typically, zero-valued observations are relevant in a way that results from some important characteristics 
or behavior. Thus, the ideal statistical test for comparing zero-inflated distributions would simultaneously test 
for equality of both 1) the proportion of zero values and 2) the non-zero distribution, and do so with little to no 
assumptions regarding the data. The proposed test, an extension/special application of the percentile test devel-
oped by Johnson et al. [2], can be used to test the equality of both components of zero-inflated distributions with 
respect to the distributions’ percentiles (quantiles). We use the term percentile profile to denote a set of percen-
tiles that we use collectively as a metric to compare groups.    

Zero-inflated distributions arise under a variety of circumstances. For example, some laboratory procedures 
may be unable to detect values below a certain threshold and, by default, are recorded as zero, the lowest detec-
tion level, or some other value. Another scenario may be that subjects from a portion of the population do not 
exhibit symptoms (their responses are recorded as zero since their response cannot be measured) while others do 
have symptoms and some measurements are taken. Data may be categorized and categories may be combined to 
simplify the analysis. For instance, subjects below a certain age may be coded with a single number which 
would censor the observed data at a point and create a point distribution at this value. Count data with excess 
zeros are one of the most prevalent examples of zero-inflated distributions with zero-inflated Poisson and nega-
tive binomial models used extensively in a variety of fields [3]-[5]. Despite the prevalence of zero-inflated dis-
tributions, there are very few explicit tests for homogeneity, especially nonparametric tests that are appropriate 
for either continuous or discrete data. 

Lachenbruch [6] [7] proposed two-part models to test for equality of distributions with respect to probabilities 
of zeros and location parameters in continuous distributions for the non-zero data. A test statistic incorporating a 
binomial test and either the t-test, Kolmogorov-Smirnov test, or Wilcoxon test was created to test equality of 
two zero-inflated distributions. Because excess zeros are typical of count data, several tests for zero-inflated 
Poisson distributions have been developed using likelihood ratio methods [8] [9] and exact tests [10], but these 
assume the data follow a Poisson distribution, a tenet that may be problematic. If a parametric distribution is as-
sumed as in [1], standard tests such as the likelihood ratio and Wald tests do not perform well if the precise 
functional form of the distribution is unknown or mis-specified due to inflation of Type I errors. To correct for 
this, Wu et al. [11] used a permutation test to adjust Type I errors in the likelihood ratio and Wald tests. Also, 
Hallstrom [12] used a truncated Wilcoxon test where the zero observations were removed.  

As an extension of the procedure outlined in [2], the proposed test possesses good large-sample properties. 
Not only is the test especially useful when dealing with asymmetric data or in cases where the distribution can-
not be assumed, it can be used with either continuous or discrete data. The test is also flexible because profiles 
of any size can be simultaneously compared for two or more populations. Unlike a single parameter test for 
equality of location, such as the median test, it is more informative to summarize the characteristics of the re-
spective shapes across the entire range of the distributions. By recognizing that the proportion of zeros within a 
sample may be treated as another percentile, we incorporate this into the same procedure of testing equality of 
percentiles, thereby simultaneously testing the equality of the proportion of zeros as well as the specified per-
centile profile with respect to the non-zero distribution.  

The proposed general strategy for comparing percentile profiles [2] can be used in a wide class of applications 
where the primary outcome has a zero-inflated distribution. Section 2 describes the procedure for invoking the 
general percentile test and details needed to compare zero-inflated distributions. Results of selected simulation 
studies performed to investigate empirical power are presented in Section 3 followed by two illustrative exam-
ples in Section 4. 

2. Test Procedure 
2.1. General Test for Homogeneity of Percentile Profiles 
Let ( )1 2, , ,h h h hpQ Q Q Q=  , denote a profile of percentiles in population h, where 1, ,h K=  . Suppose ran-
dom samples are available from each of the K populations and we wish to test the null hypothesis that the pro-
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files are identical for all K populations; that is, we wish to test H0: 21 KQ Q Q= = =  against the alternative, 
H1: one or more inequalities exist such that Qhj ≠ Qij for at least one h ≠ i where , 1, 2, ,h i K=   and at least one 

1,2, ,j p=  . Thus, the test is a simultaneous test of equality of the profiles across the K populations. The fol-
lowing procedure is the general percentile test described in [2]: 
1) Combine the K samples and calculate the combined sample percentile estimate of ( )1 2, , , pQ Q Q Q=  . 

Denote the combined sample percentile profile estimate as ( )1 2, , , pq q q q=  . 
2) For each of the K samples, sort the observations into categories or bins with cutoffs based on the combined 

sample percentile estimates, q , to create p + 1 bins of data. For example: bin1 = {all observations ≤ 1q }, 
bin2 = { 1q  < all observations ≤ 2q }, ∙∙∙, binp = { 1pq −  < all observations ≤ pq }, binp+1 = {all observations > 

pq }.  
3) Arrange the categorized data from Step (2) in a K × (p + 1) contingency table where each row, respectively, 

consists of p + 1 sorted sets of observations for one of the samples.  
4) Perform the test of homogeneity of the percentile profiles in terms of Pearson’s chi-square statistic with p(K – 1) 

degrees of freedom. 
To illustrate, suppose we are given three samples and we wish to test H0: Q1 = Q2 = Q3 where the percentile 

profile Qh = (25, 50, 75), h = 1, 2, 3. Further, suppose estimates of these percentiles were found to be q1 = (4.6, 
6.4, 10.4), q2 = (6.2, 8.3, 12.3), and q3 = (4.8, 7.9, 10.6), respectively, in samples from the three distributions. 
The combined sample estimates of these percentiles are 1 5.1q = , 2 7.7q =  and 3 11.1q = , respectively, with 
the resulting 3 × 4 contingency table from step 2 as shown in Table 1. For the data in Table 1, the chi-square 
value is about 14.1 with six degrees of freedom (p-value = 0.029). Therefore we would reject H0 and conclude 
that the percentile profiles are not homogeneous across the three distributions.    

2.2. Comparing Zero-Inflated Distributions 
Let D be a zero-inflated distribution; ( )1D g fπ π= + − , where π is the probability of an observation being in 
the point distribution of zeros, g, and f is the non-zero distribution (g is not necessarily located at 0, but could be 
any value at the minimum or maximum in the domain). Suppose we are given zero-inflated sample data from K 
independent populations and we wish to test the null hypothesis that the underlying distributions are all identical. 
Let ( )1 ; 1, ,i i i iD g f i Kπ π= + − = 

, and consider H0: 1 2 KD D D= = = . It is assumed that g is equal in all 
populations because it is a parameter of a specific process that produces D, such as limits on a measurement de-
vice. In order for the null hypothesis (all Di are identical) to be false, at least one of πi or fi must be unequal for at 
least one pair of distributions. Note that D could also contain two point distributions, one at the minimum value 
and one at the maximum in the domain. In this case, ( )1 2 1 21i i L i U i i iD g g fπ π π π= + + − − , where gL is the point 
distribution at the minimum value and gU is the point distribution at the maximum value, with probability πi1 and 
πi2, respectively. The focus of this paper is on point distributions at the minimum of the domain although the 
procedure for point distributions at the maximum is identical.  

Consider, for example, testing the equality of groups, such as race/gender cohorts, with respect to their degree 
of tobacco smoke exposure assessed in terms of the tobacco biomarker, cotinine (details later). Within the groups, 
there may be some people with undetectable or nonexistent levels of cotinine; we will consider these non- 
smokers who have not been exposed to measurable amounts of secondary smoke. Mixed with this unexposed 
population (within the groups) are those who either currently smoke, or have a history of smoking or being ex-
posed to measurable amounts of second-hand smoke and thus have cotinine levels above the detection limit. We 
will consider these people to be exposed to smoking either directly or through people around them smoking. It is  
 
Table 1. Example of contingency table for testing homogeneity of a three percentile profile.                                       

Sample Bin 1 Bin 2 Bin 3 Bin 4 Total 

1 66 59 48 47 220 

2 35 50 49 62 196 

3 55 47 59 47 208 

Total 156 156 156 156 624 
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informative to test the equality of groups comprised of mixtures of exposed and unexposed populations-the 
proportion unexposed and the percentile profiles that reflect the severity of exposure in each group.  

The general percentile test outlined in the previous section can be used to simultaneously test the equality of 
proportions of zeros (non-smokers) in addition to the equality of the percentile profiles (distributions of smokers) 
across populations. Let Xi denote the observed cotinine assessment for a person who is randomly selected from 
the ith population, and let πi (i = 1, ⋅⋅⋅, K) be the proportion of zeros in the ith population. P[Xi ≤ 0] = πi and the 
value of any percentile less than 100 × πi is 0. 

Thus, 0 could be considered another percentile estimate-the sample estimate of the 100 × πi
th percentile. Since 

any percentile less than 100 × πi is equal to 0, we can select an arbitrary percentile such that each population’s 
estimate is 0. However, because we use the combined sample percentile estimate to create bins for the contin-
gency table, we must select a percentile less than the combined sample proportion of zeros, denoted π . Essen-
tially, the purpose is to create a bin in the contingency table (from step 3, Section 2.1) where all values equal to 
0 are placed.  

Suppose we wish to test the equality of a percentile profile Q across K populations with the proportion of ze-
ros in the combined population equal to π . Adding an arbitrary small number 100zQ π≤ ×  to Q and pro-
ceeding through the steps from Section 2.1 will test the equality of the proportion of zeros as well as the original 
percentile profile of interest. Denote the combined sample percentile estimates as ( )1, , , pg q q  where g is the 
value of the point distribution (0) and ( )1, , pq q  are the estimates of Q for the combined samples. For each 
sample, all observations equal to 0 will be placed into the first bin, all observations in the interval ( ]10, q  will 
be placed into the second bin, and so on. For zero-inflated distributions, the percentiles of interest in Q must be 
selected with care. If 100Q π≤ ×  is chosen, there will be multiple percentile estimates in q  equal to 0 and 
redundant percentile estimates will lead to empty bins (all observations ≤ 0 will be placed into the first bin by 
default). To avoid this, only percentiles greater than the combined proportion of zeros should be selected. Fur-
thermore, there should be adequate space between π  and Q1, the first non-zero percentile, to ensure sufficient 
expected frequencies (under the null hypothesis) used to calculate the chi-square test (typically at least five in 
each cell of the contingency table).  

For example, suppose the data used to create Table 1 had a large number of zeros mixed with some non-zero 
distribution where the proportion of zeros in populations 1 - 3 (denoted π1, π2, and π3) are used to provide sample 
estimates equal to 100 × 15/220 = 6.8, 100 × 28/196 = 14.3, and 100 × 42/208 = 20.2, respectively. The combined 
sample estimate of the proportion of zeros π  in the combined population is equal to 100 × 85/624, or 13.6. 
We wish to test H0: Q1 = Q2 = Q3 where Q = (25, 50, 75) and simultaneously test the equality of π1, π2, and π3. 
We simply add another bin to the contingency table for observations equal to zero—“Bin 1” in Table 2 (com-
bining bins one and two in Table 2 would be equivalent to Table 1). To do this, we add a percentile 100zQ π≤ ×  
to Q, so that we now use Q = (1, 25, 50, 75) to proceed through the steps. For the data in Table 2, the chi-square 
statistic is about 64.1 with eight degrees of freedom (p-value < 0.0001). We would reject H0 and conclude that the 
percentile profiles of the 1st, 25th, 50th and 75th percentiles are not homogeneous between the three distributions. 
Thus it is a simultaneous test of the equality of the proportion of zeros as well as the percentile profile.  

As previously mentioned the point distribution of interest is not restricted to 0 but can be any value that is the 
minimum of the data. Also, this procedure is applicable to point distributions at the maximum value. Instead of 
adding a percentile near 0 to Q, an arbitrary percentile close to 100 can be chosen, such as 99. If π  is the 
combined population proportion of observations equal to u, the point distribution of the maximum value, we 
would add a 100zQ π≥ ×  to Q while ensuring that 100pQ π< ×  (with adequate spacing). As in the case of 
having a minimum-value point distribution, we avoid redundant percentile estimates of the combined samples. 
Suppose we were given data with point distributions at both the minimum and maximum value. In this case, we  

 
Table 2. Example of contingency table for testing homogeneity of a three percentile profile with added bin for zeros.                   

Sample Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Total 

1 15 51 59 48 47 220 

2 28 7 50 49 62 196 

3 42 13 47 59 47 208 

Total 85 71 156 156 156 624 
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could test homogeneity of proportions of both point distributions as well as the percentile profile with Q = (1, Q1, 
⋅⋅⋅, Qp, 99). 

3. Power Simulations 
Some asymptotic properties of the percentile test with zero inflated distributions were investigated for both con-
tinuous and discrete data. Power simulations were conducted for several scenarios by varying the proportion of 
zeros and/or the properties of the non-zero distributions. For this paper, point distributions at zero mixed with 
non-zero gamma distributions were considered for the continuous case (Table 3). Poisson distributions were 
used to illustrate the discrete case (Table 4). The subscripts for the parameters in the tables refer to the respec-
tive samples with sample “2” having constant values for the non-zero distribution. For the continuous case, 
sample “2” has shape parameter that is held at α2 = 2, and the scale parameter held at β2 = 2. For the discrete 
case, the parameter of sample “2” is held constant at λ2 = 5. Although parametric distributions were used to gen-
erate data, there are no assumptions or requirements for the distribution of the data. Gamma and Poisson distri-
butions were used as convenient tools for generating skewed distributions for the non-zero component. The 
procedure works equally well for distributions with mixtures of several non-zero distributions.   
 
Table 3. Power simulations for testing Q = (1, 50, 75, 90) with zero-inflated gamma distributions.                                   

Sample 
Size 

(n = m) 
π1 π2 

Gamma Distribution Parameters 

α1 = 2 
β1 = 2 

α1 = 2.2 
β1 = 2.2 

α1 = 2.3 
β1 = 2.3 

α1 = 2.4 
β1 = 2.4 

50 0.1 

0.1 0.0467 0.1301 0.2536 0.4214 

0.2 0.1605 0.2575 0.3918 0.5512 

0.3 0.4914 0.5865 0.6786 0.7845 

100 0.1 

0.1 0.0511 0.2349 0.4961 0.7627 

0.2 0.3089 0.5310 0.7169 0.8843 

0.3 0.8419 0.9103 0.9582 0.9832 

200 0.1 

0.1 0.0500 0.4684 0.8387 0.9785 

0.2 0.5975 0.8551 0.9672 0.9969 

0.3 0.9938 0.9982 0.9998 1.0000 

500 0.1 

0.1 0.0527 0.8954 0.9987 1.0000 

0.2 0.9619 0.9994 1.0000 1.0000 

0.3 1.0000 1.0000 1.0000 1.0000 

50 0.2 

0.2 0.0476 0.1212 0.2326 0.3845 

0.3 0.1211 0.2033 0.3123 0.4592 

0.4 0.3719 0.4598 0.5620 0.6719 

100 0.2 

0.2 0.0493 0.2140 0.4599 0.7229 

0.3 0.2178 0.4140 0.6173 0.8144 

0.4 0.7015 0.8032 0.8920 0.9539 

200 0.2 

0.2 0.0508 0.4294 0.7991 0.9691 

0.3 0.4218 0.7373 0.9243 0.9893 

0.4 0.9585 0.9878 0.9967 0.9997 

500 0.2 

0.2 0.0503 0.8592 0.9971 1.0000 

0.3 0.8459 0.9932 1.0000 1.0000 

0.4 1.0000 1.0000 1.0000 1.0000 
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Table 4. Power simulations for testing Q = (1, 50, 75, 90) with zero-inflated Poisson distributions.                                 

Sample 
Size 

(n = m) 
π1 π2 

Poisson Distribution Parameters 

λ1 = 5 
λ2 = 5 

λ1 = 5.5 
λ2 = 5 

λ1 = 6 
λ2 = 5 

λ1 = 6.5 
λ2 = 5 

50 0.1 

0.1 0.0465 0.0876 0.2476 0.5205 

0.2 0.1561 0.2080 0.3850 0.6307 

0.3 0.4850 0.5472 0.6791 0.8342 

100 0.1 

0.1 0.0510 0.1489 0.5009 0.8671 

0.2 0.2944 0.4472 0.7256 0.9458 

0.3 0.8241 0.8839 0.9578 0.9937 

200 0.1 

0.1 0.0520 0.2588 0.8443 0.9960 

0.2 0.5757 0.7803 0.9692 0.9995 

0.3 0.9911 0.9974 0.9996 1.0000 

500 0.1 

0.1 0.0476 0.6354 0.9986 1.0000 

0.2 0.9549 0.9954 1.0000 1.0000 

0.3 1.0000 1.0000 1.0000 1.0000 

50 0.2 

0.2 0.0496 0.0867 0.2345 0.4736 

0.3 0.1187 0.1755 0.3174 0.5459 

0.4 0.3757 0.4284 0.5616 0.7326 

100 0.2 

0.2 0.0504 0.1426 0.4624 0.8281 

0.3 0.2111 0.3362 0.6256 0.8935 

0.4 0.6941 0.7737 0.8940 0.9763 

200 0.2 

0.2 0.0502 0.2526 0.7978 0.9910 

0.3 0.4098 0.6332 0.9326 0.9972 

0.4 0.9596 0.9771 0.9978 1.0000 

500 0.2 

0.2 0.0501 0.6168 0.9978 1.0000 

0.3 0.8422 0.9719 1.0000 1.0000 

0.4 1.0000 1.0000 1.0000 1.0000 

 
As a multivariate problem, finding an exact probability of the test or expressing some measure of difference 

between distributions is a challenge. The power of the test is a complex function of the difference in probability 
of observing a zero, combined with the probabilities of the non-zero values being placed in the particular bins 
given the probability of a certain proportion of zeros. Furthermore, the choice of percentiles affects the power of 
the test as the relative proportions of bins affects the chi-square test. However, we attempt to relate the power of 
the test with certain characteristics of the data and choice of percentiles in situations that may be common in ap-
plications. All power estimates are based on 10,000 replicate samples and all procedures were programmed and 
carried out with R 3.1.2.  

The results of the simulations using data generated from a mixture of a gamma distribution with zeros and 
testing the profile Q = (1, 50, 75, 90) are presented in Table 3. Although limited in scope, the results highlight 
some important features of the test. Empirical alpha (first column of power results in boldface) is adequate by 
sample size 50 and converges to 0.05 in sample sizes somewhere between 50 and 100. The power of the test is 
determined by interaction between the difference in the true ratio between rows in the contingency table (deter-
mined by the difference in the distributions and probability of zeros) and the relative proportion of each bin as 
well as sample size. In general, power is maximized when the relative proportion of bins corresponds with the 
difference in the row profiles. The size of the bin is determined by the percentile profile to be tested, Q, with the 
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ratio of observations from each row within the bin determined by the characteristics of the underlying distribu-
tion. 

For example, for any sample size and π1 = π2, α1 ≠ α2, and β1 ≠ β2, power is greater when the overall propor-
tion of zeros is lower. In these cases, the first bin which contains all the zero observations has equal probability 
for both samples but the remaining bins profiles are unequal. Thus scenarios with larger bins corresponding to 
unequal profiles have the greatest power. Simulations where π1 = π2 = 0.1 always have greater power than π1 = 
π2 = 0.2 because the bins with unequal profiles have larger relative proportions within the contingency table. 
Similarly, for any sample size and π1 = 1/2π2, α1 = α2, and β1 = β2 (the ratio of zeros is constant as well as 
non-zero distribution), power is greater when the overall proportion of zeros is greater. In cases where and π1 ≠ 
π2, α1 ≠ α2, and β1 ≠ β2, the relationship remains but is complicated by differences in the row profiles corres-
ponding to each bin. If we examine situations where the ratio of π1 and π2 are equal (π1 = 1/2π2) with unequal 
non-zero profiles, we still observe greater power with greater π  for the parameters in Table 3. Essentially, the 
difference in the profiles of the bin of zeros is greater than the differences in the non-zero bins.    

The results of simulations with zero-inflated Poisson distributions (Table 4) for testing Q = (1, 25, 50, 75) 
show the same characteristics as when gamma distributions are used. The procedure is unchanged as we are 
dealing with percentiles. However, some distributions with some non-unique values (such as Poisson with small 
means) may cause some irregularities in the contingency table resulting in irregular jumps in the cumulative dis-
tribution. For truly continuous data, such as the simulated gamma samples, each value is unique and the bins 
within the contingency table will be proportional to the spacing of the percentiles in Q. For discrete data, the 
observations cannot be individually separated because there are several observations with the same value. This 
does not pose a problem when performing the chi-square test on the contingency table data, but may cause un-
expected bin sizes.  

4. Illustrative Examples 
4.1. Urinary Triclosan 
Urinary triclosan data from the 2011-2012 National Health and Nutrition Examination Surveys (NHANES) were 
used to illustrate the use of the percentile test with zero inflated distributions. Specifically, we examined the 
measurements of adult, non-Hispanic white and black participants between the ages of 18 and 79. Triclosan is a 
broad-spectrum phenolic biocide used in toothpastes, cleaning supplies, and personal-care products. Its use in 
consumer products has recently been investigated due to potential safety concerns. In experimental animal models, 
triclosan has been reported to alter hormones [13] [14], although evidence for adverse effects in humans is limited 
[15]. However, Lankester et al. [16] found that urinary triclosan was associated with elevated body mass index.  

The lower detection limit (LDL) of urinary triclosan for this laboratory method is 2.3 nanograms per milliliter 
(ng/ml). Per NHANES procedures, any measurement less than the LDL is replaced with an imputed value of the 
LDL divided by the square root of two. For urinary triclosan this results in a point distribution at 1.63 mixed 
with continuous values above the detectable limit. Suppose one was interested in examining differences in the 
distribution of urinary triclosan between independent populations. The difference in proportion of non-detecta- 
ble measurements coupled with differences in the detectable measurements would be of interest. For illustrative 
purposes, consider testing the homogeneity of percentile profiles of independent groups: 1) black females and 
white females and 2) black males and white males. To test the homogeneity of the percentile profiles, one must 
follow the steps in Section 2 with the added percentile to account for “zeros”, which in this case is 1.63. Since 
triclosan is a potentially harmful substance, we are particularly interested in percentiles close to 100. We chose 
to test for homogeneity of the 1st, 50th, 60th, 70th, 80th, and 90th percentiles (with the 1st percentile used to test 
proportion of observations below detection). The combined samples have roughly 25% undetectable measure-
ments so any percentile less than the 25th is adequate for Qz.  

The contingency tables for comparing races with respect to gender-specific triclosan differences are shown in 
Table 5 and Table 6, respectively. There is a significant difference in the profiles between black and white fe-
males (χ2 = 13.3, df = 6, p = 0.039) as well as black and white males (χ2 = 13.2, df = 6, p = 0.040). We can con-
clude that there is no difference between races in the proportion of observations with undetectable amounts of 
triclosan (bin 1) for both males and females; all observed counts are not significantly different than the expected 
value under H0. 

If one compares the observed values with the expected (in parentheses), the differences between the groups  



W. D. Johnson et al. 
   

 
490 

Table 5. Contingency table for testing homogeneity of Q = (1, 50, 60, 70, 80, 90) of urinary triclosan for females.                     

Females 
Bin 

1 
≤1.6 

2 
(1.6, 7.2] 

3 
(7.2, 13.6] 

4 
(3.6, 23.9] 

5 
(23.9, 84.3] 

6 
(84.3, 258] 

7 
>258 

Black 
Females 

58 
(63.3) 

58 
(46.2) 

23 
(21.4) 

17 
(21.8) 

21 
(21.8) 

15 
(21.8) 

26 
(21.8) 

White 
Females 

90 
(84.7) 

50 
(61.8) 

27 
(28.6) 

34 
(29.2) 

30 
(29.2) 

36 
(29.2) 

25 
(29.2) 

 
Table 6. Contingency table for testing homogeneity of Q = (1, 50, 60, 70, 80, 90) of urinary triclosan for males.                     

Males 

Bin 

1 
≤1.6 

2 
(1.6, 5.9] 

3 
(5.9, ≤9.5] 

4 
(9.5, 19.9] 

5 
(19.9, 53.4] 

6 
(53.4, 173] 

7 
>173 

Black 
Males 

68 
(68.5) 

52 
(53.6) 

24 
(22.5) 

24 
(24.3) 

33 
(23.9) 

25 
(23.9) 

15 
(24.3) 

White 
Males 

84 
(83.5) 

67 
(65.4) 

26 
(27.5) 

30 
(29.7) 

20 
(29.1) 

28 
(29.1) 

39 
(29.7) 

 
are not as straightforward as a shift in the distribution. When dealing with large populations with diverse partic-
ipants and behaviors, such as NHANES, multimodal distributions are expected; other tests may not detect the 
subtleties that such data often contain. With this method, the analyst can test for differences between groups 
with greater control and detect differences in specific regions of the distribution. 

4.2. Serum Cotinine 
Serum cotinine data from the 2011-2012 NHANES were used as a second example to illustrate the procedure. 
Cotinine is the primary metabolite of nicotine and is currently regarded as the best biomarker of tobacco smoke 
exposure, for both active smoking as well as “passive smoking” [17]. The imputed value for serum cotinine be-
low the LDL for NHANES data is 0.011. Thus we have a point distribution at 0.011 mixed with values greater 
than 0.011. As with triclosan, we restrict our analysis to adult, non-Hispanic white and black participants be-
tween the ages of 18 and 79. The same percentile profile consisting of the 1st, 50th, 60th, 70th, 80th, and 90th per-
centiles were tested for homogeneity between: 1) black females and white females and 2) black males and white 
males.  

Results of the percentile test indicate significant differences between percentile profiles for both within gend-
er comparisons. The profiles of black females and white females are significantly different (χ2 = 75.9, df = 6, p < 
0.0001) with the proportion of black females below the detection limit lower than expected and the proportion of 
white females higher than expected (Table 7). The profiles of black males and white males are also significantly 
different (χ2 = 61.7, df = 6, p < 0.0001) with the proportion of black males below the detection limit lower than 
expected and the proportion of white males higher than expected (Table 8). A separate analysis removing values 
equal to 0.011 also indicated significant differences when testing Q = (50, 60, 70, 80, 90). The non-zero distri-
bution of females (χ2 = 33.7, df = 5) and males (χ2 = 15.8, df = 5) were found to be nonhomogeneous between 
black and white.    

The cumulative distribution of log (serum cotinine) for black and white males is plotted in Figure 1. The 
points on each line are the respective 50th, 60th, 70th, 80th, and 90th percentiles for the two groups with short-da- 
shed line representing black males and solid line for white males. The vertical long-dash lines are placed at the 
value of the combined sample percentile estimates and are the cutoff points for the contingency table. We see 
that both groups start at the respective proportion of values equal to 0.011, with considerable difference between 
the two. Although the sample sizes are unequal between the groups, they are scaled equally between 0 and 1 as 
would any cumulative distribution. By placing horizontal lines (dashed for black males and solid for white males) 
between two of the cutoff points, we see a graphical representation of the contingency table and the test in gen-
eral. The number of observations in a bin is the number of observations between two combined sample percen-
tile estimates. 
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Table 7. Contingency table for testing homogeneity of Q = (1, 50, 60, 70, 80, 90) of serum cotinine for females.                     

Females 
Bin 

1 
≤0.011 

2 
(0.011, 0.04] 

3 
(0.04, 0.09] 

4 
(0.09, 0.57] 

5 
(0.57, 68.9] 

6 
(68.9, 234] 

7 
>234 

Black 
Females 

134 
(192) 

158 
(152) 

86 
(68) 

93 
(69) 

93 
(69) 

58 
(69) 

64 
(69) 

White 
Females 

291 
(233) 

179 
(185) 

65 
(83) 

59 
(83) 

59 
(83) 

94 
(83) 

88 
(83) 

 
Table 8. Contingency table for testing homogeneity of Q = (1, 50, 60, 70, 80, 90) of serum cotinine for males.                        

Males 
Bin 

1 
≤0.011 

2 
(0.011, 0.16] 

3 
(0.16, 1.93] 

4 
(1.93, 84.5] 

5 
(84.5, 202] 

6 
(202, 313] 

7 
>313 

Black 
Males 

78 
(123) 

201 
(188) 

80 
(62) 

81 
(62) 

77 
(62) 

47 
(63) 

59 
(62) 

White 
Males 

217 
(172) 

249 
(262) 

69 
(87) 

68 
(87) 

72 
(87) 

104 
(88) 

88 
(86) 

 

 
Figure 1. Cumulative distribution functions of log (serum cotinine) for black and white males, including dots for the respec-
tive 50th, 60th, 70th, 80th, and 90th sample percentiles. Vertical lines indicate location of combined sample percentiles.                 

 
Equivalently, it is the proportion of the cumulative distribution between these two values multiplied by the 

sample size. The width is the proportion of the sample between the vertical lines. Essentially, we are testing the 
equality of widths (the change in the cumulative distribution) between a set of combined sample percentile esti-
mates. 

5. Concluding Remarks 
When dealing with zero-inflated data it is useful to compare both the proportion of zero values and the shape of 
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the non-zero values, as measured by a percentile profile. Zero-inflated distributions are frequently encountered 
in biomedical studies which typically require some hypothesis testing of the equality of the distributions or 
equality of specific parameters, such as the median. With the proposed procedure, the analyst is able to simulta-
neously test for differences in the proportion of zeros, along with differences in any number of percentiles se-
lected by the analyst. This flexibility allows the analyst to select the percentiles that best characterize the data 
and is especially useful for comparing asymmetric or multimodal distributions mixed with one or more point 
distributions. We find this procedure to be straightforward and easily implemented. It is also appropriate to use 
when the distributions have unusual shapes.  

The proposed procedure has several other advantages when compared to other tests for homogeneity of zero- 
inflated distributions: 1) the test is nonparametric and can be used for any unimodal or multimodal continuous or 
discrete distribution; 2) the test allows for multiple point distributions of any value, not necessarily zero exclu-
sively; and 3) it can be used to test for homogeneity of more than two groups simultaneously. As seen in the il-
lustrative examples, the method can distinguish important differences between distributions of populations. For 
applications with large sample sizes, such as NHANES data, the procedure is particularly useful in testing 
equality of many percentiles simultaneously.   

A limitation is that the test relies on large sample theory and further study is needed to evaluate the severity of 
this restriction. Simulations show that empirical alpha is adequate by sample size 50 for comparisons of three 
percentiles in addition to the proportion of zeros; however, the minimum sample size required to achieve the de-
sired alpha is dependent upon the number and choice of percentiles. It is important to remember that there are 
more powerful tests to test overall equality of distributions (Wilcoxon, KS test) or specific changes in parame-
ters (t-test, ANOVA), However, none of these tests are appropriate for identifying specific segments of distribu-
tions that are significantly different. Further research could be done on deriving a closed-form solution for the 
power of the percentile test for a given percentile profile based on the features of the samples, such as the prob-
ability of zeros, the sample size, and the underlying distributions. 
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