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Abstract 
Nowadays, microalgae are particularly used to assess the environmental impact of contaminants 
in aquatic systems. Naturally present in some algal species, bioluminescence is highly used in ap-
plication fields related to environmental monitoring. Bioluminescent dinoflagellates have played 
a pivotal role in this domain. When exposed to heavy metals or toxic organic compounds, biolu-
minescent dinoflagellates have the capacity to decrease light emission. In addition, new molecular 
tools allow the possibility to produce genetically modified microorganisms which are able to per-
form luminescence. Combined with the luciferase reporter gene, two main genetic constructions 
can be employed. Activation of a specific inducible promoter induces the luminescence gene tran-
scription and this signal increases over time. Constitutive promoters result in a high basal expres-
sion level of the reporter gene. During exposure to a potential toxic pollutant, the basal expression 
level will decrease due to the toxic effect. Toxicity bioassays based on engineered luminescent 
Chlorophyta microalgae are among the most sensitive tests and are an invaluable complement to 
classical toxicity assays.  
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1. Introduction 
Persistent organic and inorganic environmental pollutants can be toxic and accumulate in numbers of aquatic 
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species. To predict the effect of environmental stressors on populations, communities and ecosystems, ecotoxi-
cological tests using microorganisms are particularly efficient. Marine microalgae are a major constituent of the 
aquatic food chain and play an important role in coastal ecosystems [1]. These unicellular cells tend to be more 
sensitive than animal species to a wide variety of both organic and inorganic pollutants [2]. They are particularly 
used for the development of new toxicity bioassays and to assess the environmental impact of contaminants in 
aquatic systems [3]. The use of flow cytometry is an important step in the development of growth inhibition tests. 
It offers the possibility to perform multiparameter analysis on a wide range of cell properties (algal cell densities, 
cell size and shape or granularity) [4]. In addition, compared to traditional tests, a high growth rate and good 
level of biomass are reached in a short time. Microalgae are widely used in ecotoxicological tests to evaluate the 
toxicity effects of diverse pollutants: dichloromethane and dichloroethane on Chlorella vulgaris [5], nanoparti-
cles on freshwater (Chlorococcum sp. and Scenedesmus rubescens) and marine species (Dunaliella tertiolecta 
and Tetraselmis suesica) [6]; pentachlorophenol on co-cultures of freshwater phytoplankton species (the cyano-
bacterium Microcystis aeruginosa and the microalgae Chlorella vulgaris) [7]. Nowadays, new microalgae mod-
els continue to emerge like Phaeocystis antarctica, a species isolated from Antarctic coastal marine environ-
ments, which will be suitable to bring information on the sensitivity of Antarctic microalgae to metal contami-
nation [8]. 

Bioluminescent microalgae are often responsible for large-scale phenomena known as the “shining seas” in 
marine waters. Basically, the reaction of bioluminescence requires an enzyme, the luciferase, to catalyze an 
oxidation reaction. The natural capacity to produce bioluminescence by different species of microalgae appears 
as an interesting asset. Dinoflagellate and bacteria are the main bioluminescent microorganisms in marine envi-
ronment (for a review see [9]) and ecological aspects and molecular mechanisms that regulate bioluminescence 
phenomenon are well known in these microorganisms. Nowadays, naturally produced luminescence can be used 
to monitor environmental quality: some bioluminescent dinoflagellates have a unique capacity of decreasing 
light emission when are exposed to heavy metals or toxic organic compounds. In addition, new molecular tools 
allow the possibility to produce genetically modified microorganisms which are able to perform luminescence. 
Although an exhaustive description of all applications of bioluminescence is outside the scope of this review, we 
will present here how the bioluminescence has inspired scientists in the field of ecotoxicological tests.  

2. Bioluminescent Microalgae in Ecotoxicity 
2.1. Bioluminescent Genes Used as a Detection Tool 
Detection of harmful and innocuous bioluminescent microorganisms in environmental sea water can be done 
using various molecular techniques. Direct search in global environmental databases is sometimes difficult be-
cause the majority of libraries are collections of 18S rDNA sequences. To overcome this problem, the develop-
ment of species-specific probes (targeting the LuxA gene of the lux operon in bacteria) has helped to identify 
luminescent bacteria in both laboratory cultures [10] and seawater samples [11]. In the same way, molecular 
methods helped to characterize bioluminescent microalgae species [12]. A particular attention was given to the 
dinoflagellates luciferase gene. “Universal” primers were designed for the development of PCR-oriented ap-
proaches to specifically detect bioluminescent dinoflagellates in environmental waters samples [13]-[15]. The 
development of PCR primers targeting a longer gene sequence helped to assess bioluminescent potential in mul-
tiple strains of one selected species [15]. The authors found that out of 34 tested dinoflagellate strains, 23 pos-
sessed the luciferase gene while only 18 were able to produce light in laboratory culture conditions [15]. Several 
transcriptomics’ studies also suggested other sequences that could serve as indicators of bioluminescent species 
possessing luciferin binding protein as this protein is highly expressed in Lingulodinium polyedrum [16] [17] 
and in Alexandrium tamarense [18], and is the most highly expressed protein in Alexandrium catenella [19] [20]. 
Highly localized bioluminescence in marine environmement is sometimes considered as an early indicator of 
algal bloom development [21]. A large number of harmful dinoflagellate taxa luminesce [22] and in the future, 
bioluminescence detection will be probably a useful tool to localize them and prevent vulnerability of human 
populations. 

2.2. Bioluminescent Dinoflagellates in Ecotoxicological Tests 
Bioluminescent microorganisms can be used as natural whole-cell biosensors to sense environmental signals 
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because of their natural capacity of decreasing light emission when exposed to toxic conditions (“natural lumi-
nescence”, Figure 1). Historically, biossays using bioluminescent bacteria were firstly developed. The Microtox 
bioassay [23] is available since 1990. It proposes the detection of over 2000 toxic chemicals thanks to the reduc-
tion of light emission from the bioluminescent marine bacteria Vibrio fischeri as a means for measuring toxicity. 
For this purpose, the toxicity of different chemicals is compared by classifying them according to the half 
maximal effective concentration (EC50) parameter. This EC50 parameter represents the concentration of a com-
pound which causes 50% of its maximal effect (for example, a 50% decrease of luminescence). In other words, 
for a given compound, the lowest is the concentration, the most toxic is the compound. The Microtox bioassay 
has become the commonly accepted method in ecotoxicity assessments [24] and is currently used in a wide 
range of applications. This 15-min test allows the detection of products as diverse as cadmium chloride (CdCI2) 
(EC50 = 56.8 mg∙L−1 ± 8.46 mg∙L−1) or mercury chloride (HgCl2) (EC50 = 0.060 or 0.093 mg∙L−1 depending on 
studies) [25] [26]. Another bioluminescent bacteria, Photobacterium phosphoreum, was proposed for detecting 
and signalling the presence of toxicants in water systems [27]. Microalgae are also attractive systems for the de-
velopment of new toxicity bioassays. Some bioluminescent dinoflagellates (Lingulodinium polyedrum, Pyrocys-
tis lunula...) show reduced light emission when exposed to heavy metals or toxic organic compounds (“natural 
bioluminescence”, Figure 1). When exposed to lead (EC50 = 321 ppb) and copper (EC50 = 23 ppb), Lingulodin-
ium polyedrum bioluminescence was affected by the metals in a dose-dependent manner [28] and yielded accu-
rate and more sensitive results when compared to traditional test like the crustacean Mysidopsis survival test 
(LC50 = 3130 ppb and LC50 = 120 - 140 ppb respectively) [28] [29]. In the Lumitox bioassay that uses a Pyrocys- 
tis lunula monospecific culture, recovery of luminescence is sometimes achieved by decreasing pH depending 
on the toxicants used [30]. The ASTM-approved QwikLite bioassay, developed with Pyrocystis lunula and Lin-
gulodinium polyedrum, utilizes only 300 cells per experimental condition. Four other microalgae species (Cera-
tocorys horrida, Pyrocystis noctiluca, P. fusiformis and Pyrophacus steinii) can be used in these bioassays. Cells 
are separately maintained in a Laboratory Plankton Test Chamber (LPTC) [29] and evaluated following a 24 h 
exposure period. Whatever the test used, assays generally result in similar toxicity rankings for the metal tested. 
However, comparison between QwikLite and Microtox tests revealed that QwikLite assay was generally one to 
two orders of magnitude more sensitive than the Microtox test. For example, after exposure to copper, L. poly-
dreum EC50 was only 0.090 ± 0.012 mg∙L−1 while V. fischeri EC50 was 0.397 ± 0.030 mg∙L−1 and after exposure 
to lead, L. polydreum EC50 was only 0.747 ± 0.088 mg∙L−1 while V. fischeri EC50 reached 34.6 ± 11.7 mg∙L−1  
 

 
Figure 1. Natural and engineered luminescence used for environmental and 
fundamental research themes. “WT”: Wild-Type; “Induc. prom.”: Inducible 
promoter; “Const. prom.”: Constitutive promoter; “BRET”: Bioluminescence 
Resonance Energy Transfer. 
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[26]. In the same way, QwikLite is much more sensitive to total ammonia (10 ± 1.1 mg∙L−1) than Microtox, in 
which the 15 min EC50 for inhibition of bioluminescence is reported to be higher than 900 mg∙L−1 [31] [32]. In 
contrast, although QwikLite generally shows better precision than classical algal growth rate bioassays, it can be 
insensitive to other compounds like diuron [32]. 

3. Engineered Luminescent Microalgae in Ecotoxicity 
3.1. Genetic Engineering with Non-Naturally Luminescent Organisms 
Genes responsible for bioluminescence can be transferred and expressed in several microorganisms. Lumines-
cent reporter genes are popular tools for the real-time monitoring of gene expression in living cells. Utilization 
of luminescence has become an important component of biomedical research [33] [34]. Biological processes can 
be monitored in vivo. Pathogens can be tracked over time. Our understanding of the effect of infections and host 
immune responses was substantially improved thanks to the production of recombinant virus and bacteria [35]- 
[39]. More recently, in food industry (for a review see [40]), luminescence tools permit to follow the survival of 
pathogenic microorganisms and the expression of bacterial toxins in foods. Interestingly, specific bacteriophages 
genetically transformed with the Lux genes allow the direct detection of food pathogens [41]. Genetically modi-
fied whole-cell bioreporters using luminescence detection are practical tools for the detection and monitoring of 
contaminants in environmental context. In vitro toxicity assays using recombinant Escherichia coli (encoding a 
luciferase from Photorhabdus luminescens) was used as an alternative to the Vibrio fischeri Microtox test [42].  

3.2. Genetic Transformation with a Luciferase Gene Reporter System 
Toxicity bioassays sometimes require utilization of genetic engineering with non luminescent organisms [43]. 
Different expression systems exist. Gene reporter systems using inducible or constitutive promoters are two 
ways currently used for the evaluation of sample toxicity. An inducible expression system is based on a specific 
inducible promoter. Inducible promoter activation depends on a substance of interest which induces promoter 
activity, expression of the reporter gene, and transcription of an adjacent resistance gene. Luciferase gene re-
porter gives the opportunity to follow the detection of the substance of interest by luminescent signal. This sig-
nal increases over time as a result of inducible promoter activity (“Induc. prom.”, Figure 1). Using this approach, 
20 genetically modified E. coli strains were designed and responded differently in the presence of diverse 
chemicals [44]. In the same way, whole-cell biosensor assays for arsenic detection have been proposed. Various 
indicator tests were developed for the detection of this compound in the environment [45]-[47]. On the opposite 
way, a constitutive expression system generally uses a gene promoter that is highly expressed under normal 
conditions. It results in a high basal expression level of the reporter gene (see the following section). During ex-
posure to a pollutant, the basal expression level and the emission of luminescence decrease due to the toxic ef-
fect (“Const. prom.”, Figure 1). This substrate-dependent reporter system sometimes requires luciferin addition 
when only luciferase is present in the genetic construction (Figure 1). The use of these technologies produces 
fast and economical high-throughput biosensor systems for detecting environmental pollution. 

3.3. Towards New Models 
As for bacteria, the integration of genetic material by injection or transformation can be performed in eukaryotic 
organisms. Recently, new genetically modified microorganisms have emerged. Discovered in a Mediterranean 
lagoon, the unicellular alga Ostreococcus tauri (Chlorophyta, Mamiellophyceae) is the smallest free-living eu-
karyotic cell known to date [48] [49] and its compact genome is entirely sequenced and published [50] [51]. Al-
though this photosynthetic green alga does not have the intrinsic ability to produce bioluminescence naturally, it 
can easily be cultivated and transformed in the laboratory thus allowing functional genomics approaches. In vi-
tro molecular constructions using luciferase gene reporter system can be integrated in the genome of O. tauri, 
enabling this eukaryote to emit light (“Const. prom.”, Figure 1). Expression of genes of interest can then be 
studied in vivo in the context of fundamental research. Cell division mechanisms [52] and circadian clock path-
ways [53] were thereby analysed. Very recently, recombinant O. tauri cells expressing firefly luciferase were 
used to monitor the impact of herbicides on this marine alga and may thus be valuable biosensors for environ-
mental monitoring [54]. More precisely, a luminescence assay using CDKA-luc biosensor (integration in O. 
tauri genome of CDKA gene fused with luciferase coding sequence) gave reasonable range of EC50 recorded for 
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two biocides, diuron (EC50 = 5.65 ± 0.44 µg∙L−1) and Irgarol 1051 (EC50 = 0.76 ± 0.10 µg∙L−1) after 48 hours [54] 
compared to standard growth inhibition assays using other phytoplankton strains. This assay, using CDKA-luc 
lines, detected lesser diuron concentrations to those using a QwikLite test using Pyrocystis lunula (19 ± 13 
mg∙L−1) [32]. These O. tauri CDKA-luc lines detected similar Irgarol 1051 concentrations compared to the 
growth inhibition assay using the marine chlorophyte Dunaliella tertiolecta [55] but was about ten-fold more 
sensitive than using growth inhibition with the freshwater species Raphidocelis subcapitata [56]. Moreover, for 
each of the two biocides, lower EC50 were obtained from the luminescent marker approach when compared to 
wild-type O. tauri growth experiments with the same 48 hours exposure time (five-fold lower EC50) [54], under-
lining the improved sensitivity of this biosensor. To our knowledge, the O. tauri luminescence assay is the most 
sensitive test of all whole cell luminescence biosensors for detecting diuron and Irgarol 1051. It was particularly 
sensitive to both biocides compared to the frequently used Vibrio fischeri Microtox luminescent test, with a dif-
ference of three to four orders of magnitude (Microtox gave EC50 = 58 and 51 mg∙L−1 for diuron and Irgarol 
1051 respectively) [54] [57] [58].  

4. Conclusions and Future Perspectives 
The use of microorganisms provides easiness of use, rapid response and cost effectiveness. They can be used in 
diverse applied fields notably in environmental monitoring. Knowledge acquired from natural bioluminescence 
allows the development of sophisticated molecular tools. Luminescent genetically modified microorganisms are 
easy to manipulate and allow rapid and reproducible experiments. They fulfil the major requirements of whole 
cell miniaturized reporters and constitute a new generation of biosensors. They are among the most sensitive 
tests and will probably be intensively used in emerging environmental issues. Recently, the transfer of metal 
oxide nanoparticles from microalgae (Cricosphaera elongata) to sea urchin larvae (Paracentrotus lividus) was 
shown [59]. Investigating the potential toxicity of such particles on aquatic organisms and their entry into the 
food chain has become an important issue. Microalgae like Ostreococcus tauri are thus good candidates to help 
to answer to these questions.  
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