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Abstract 
The Hamiltonian describing a composite fermion system is usually presented in a phenomenolog-
ical way. By using a classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic 
interaction of electrons, we show how to obtain the mean-field Hamiltonian describing composite 
fermions in 2 + 1 dimensions. In order to achieve this goal, the Dirac Hamiltonian formalism for 
constrained systems is used. Furthermore, we compare these results with the ones corresponding 
to the inclusion of a topological mass term for the electromagnetic field in the Lagrangian. 
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1. Introduction 
The study of low-dimensional electron systems is a topic of great current interest in condensed matter. Under 
certain conditions, three-dimensional solids can behave as pseudo two or one-dimensional quantum systems. 
Among other things, this is because these systems have special characteristics which lead to phenomena such as 
superconductivity of high critical temperature and some magnetic properties, with potential technological appli-
cations. 

Since a long time ago, the phenomenon of high-temperature superconductivity is being considered with in-
creasing interest. The current status of knowledge on this subject does not allow establishing on firm foundation 
this phenomenology. Different approaches are used to address this issue. A promising approach is based on 
models using composite particles [1] [2]. In Ref. [1], Jain and Anderson propose the existence of an underlying 
connection between the resonating valence bond theory for high-temperature superconductivity and the compo-
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site fermion theory for the fractional quantum Hall effect [3]-[5]. Besides, in Ref. [2], Lu, Das Sarma and Park 
relate the superconductivity with the quantum Hall effect through the formation of Cooper pairs of composite 
fermions. 

A manner of studying these systems is based on quantum field theory. Another manner is to use quantum 
many-body theory [6] [7], implemented by using analytical and computational techniques. 

In Refs. [8] [9], we have proposed models of composite particles and we have studied them by using the first 
mechanism cited in the previous paragraph. These models are generalizations of the models discussed by means 
of the second mechanism in Refs. [10]-[12]. 

To deal with models that consider the electromagnetic interaction of composite fermions, a phenomenological 
Hamiltonian is commonly used. In this paper, by using the standard methods of field theory, we show that the 
same Hamiltonian can be reached. 

In this context, our purpose is to relate the results of Refs. [8] [9] with the ones corresponding to Ref. [10], by 
using the usual techniques of field theory. In particular, we use the Dirac Hamiltonian formalism for constrained 
systems. In this way, we show that this procedure leads to the same results as the ones obtained by means of the 
phenomenological models of condensed matter. For example, the Coulombian interaction density which appears 
in the standard formulation [10] is deduced from the formalism. Moreover, from the constraint structure, we de-
termine the relation between the electron-density distribution and the magnetic flux quanta. 

Besides, we show that the inclusion of a topological mass term for the electromagnetic field in the Lagrangian 
density introduces interaction terms absent in the original canonical Hamiltonian. 

The paper is organized as follows. In Section 2, we show how to obtain the canonical Hamiltonian from the 
starting Lagrangian. Then, in Section 3, we see what happens when we add a topological mass term for the elec-
tromagnetic field in the Lagrangian. Finally, in Section 4, we display our conclusions. 

2. Formalism 
We consider a classical nonrelativistic field theory with U(1) × U(1) gauge symmetry in 2 + 1 dimensions for 
the electromagnetic interaction of electrons. This model uses a Chern-Simons (CS) U(1) gauge auxiliary field 
aµ . 

In order to describe this interaction, we propose the following singular Lagrangian density: 

† † 2
0

1
2 e

i
m

ψ ψ ψ ψ= + −   † 1 1 .
44π

a a F Fµνρ µν
µ ν ρ µνµψ ψ ε

φ
+ ∂ −



               (1) 

The Greek indices take the values , , 0,1, 2µ ν ρ = . We use natural units where 1c= = . The Minkowski 
metric is ( )diag 1, 1, 1gµν = − −  and 012 12 1ε ε= = . The covariant derivative involving both the CS field and the 
electromagnetic field is written as ia ieAµ µ µ µ= ∂ − − , and we design 2 2 2

1 2= +  . Furthermore, Fµν  is 
the electromagnetic field tensor. 

The matter field ψ  is a charged spinorial field which describes electrons with charge e−  and band mass 
em . The chemical potential of the electrons is µ . The constant φ  introduced in the Lagrangian density, will 

be determined later. 
The independent dynamical field variables are ( )†, , ,A a Aµ ν α βψ ψ= , and their corresponding canonically  

conjugate momenta, defined by P Aδ δ= 


 , are ( )†, , ,P p Pµ ν

α βπ π= . In these expressions, the Greek in-  

dices take the values , 1, 2α β = . 
The canonical Hamiltonian density, defined as † †

c a p A Pµ µ
µ µ ψπ ψ π= + + + −

   , reads 

( )

0 0 0

† † † 2
0 0

1 1 1
4 24π

1 ,
2

ij i ij i i
c i j i ij i i

e

a a a p F F A P P P

a eA
m

ε
φ

µψ ψ ψ ψ ψ ψ

= − ∂ + ∂ + + ∂ −

+ − + −






                     (2) 

where the Latin indices take the values , 1, 2i j = . 
As usual, the relations between the fields and the momenta not depending on the velocities lead to primary 

constraints. Thus, the momentum 0i iP F=  does not generate any constraints. By applying the consistency 
condition on the primary constraint, we found the secondary constraints. 
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Finally, classifying the total set of constraints, we find the first and second-class constraints. The first-class 
constraints are 

1 0,
4π

i i ij
i i i j

ee p P aε
φ

Σ = ∂ − ∂ + ∂ ≈


                       (3) 

† †
2 0,i

i
i P
e

ψ π ψπΣ = − − ∂ ≈                            (4) 

0
3 0,pΣ = ≈                                        (5) 

0
4 0,PΣ = ≈                                         (6) 

while the second-class ones are 

† † †1 0,
2

iα α α
τπ ψ+

Ω = + ≈                                (7) 

1 0,
2

iα α α
τπ ψ−

Ω = − ≈                                (8) 

0
2

1 0.
4π

i i ij
jp aε

φ
Φ = − ≈



                               (9) 

We choose the following gauge-fixing conditions, which are consistent with the equations of motion: 

1 0,i
iaΘ = ∂ ≈                                       (10) 

2 0,i
iAΘ = ∂ ≈                                      (11) 

3 0 0,aΘ = ≈                                        (12) 
2

4 0 0.i
iA PΘ = ∇ −∂ ≈                                 (13) 

The algebraic development corresponding to these results were performed in Ref. [8]. 
As it is well known, one can define the Dirac brackets from the Bose-Fermi ones, and then all the equations of 

the theory are formulated taking into account the former brackets, as it can be seen in Ref. [8]. Once we impose 
the Dirac brackets, the first and second-class constraints and the gauge-fixing conditions can be set strongly 
equal to zero. In this way, these equations become identities expressing some canonical variables in terms of the 
others, that is, 

0 0,a =                                            (14) 

( ) ( )2
0

1 d ,
4π

i
i P y

A x y
x y

∂
=

−∫                             (15) 

0 0,p =                                            (16) 

1 ,
4π

i ij
jp aε

φ
=



                                    (17) 

0 0,P =                                            (18) 

† †1 ,
2

iα α
τπ ψ+

= −                                    (19) 

1 .
2

iα α
τπ ψ−

=                                      (20) 

It is worth to mention that, in order to obtain Equation (15) from Equation (13), we have substituted the loga-
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rithmic interaction [9], characteristic of a strict two dimensional space, by the standard Coulombian [13]. This is 
justified because the electrons are confined to move in two dimensions, but interact each other in a world of 
three dimensions. 

By replacing the momenta of Equations (19) and (20) in Equation (4), we get †i
i P eψ ψ∂ = − . In this way, the 

scalar potential of Equation (15) becomes 

( ) ( ) ( )†
2

0 d .
4π

y yeA x y
x y

ψ ψ
= −

−∫                                (21) 

The term †
0eAψ ψ  that appears in the original Lagrangian density (1), gives rise to the Coulombian interac-

tion density. In the standard formulation [10], this term is added ad hoc. 
Taking the spatial derivative of the momentum ip  given by Equation (17) and replacing it in Equation (3), 

we obtain the following identity: 

†1 .
2π

z ψ ψ
φ
∇× ⋅ = −


a                                    (22) 

In Ref. [10], this equation is considered as a constraint of the theory. In the Lagrangian density (1), this con-
straint appears multiplied by 0a , which plays the role of Lagrangian multiplier. 

The curl of the CS field is linked with a magnetic field in the form ∇× = a . From Equation (22), it can be 
seen that the distribution of the CS magnetic field coincides with that of the electron-density. Thus, the relation 
between the electron-density distribution and the magnetic flux quanta stayed determined. 

Therefore, the Lagrangian density (1) describes a composite fermion system, where φ  is the strength of the 
flux tube, in units of the flux quantum 2π  [13]. As a consequence, the composite fermions behave as free fer-
mions in an effective magnetic field * = −B B  , where = ×B A∇  is the physical magnetic field. In the mean 
field approximation, the field *B  is constant and uniform [13]. 

Replacing all previous results in Equation (2), we obtain 

† † 21 ,
2

em
c c

em
µψ ψ ψ ψ= + −                                 (23) 

where 
1 1 .
2 4

em i ij
c i ijPP F F= − +                                  (24) 

Since the field iA  verifies the Coulomb gauge (11), the vector potential becomes transversal, and then it can 
be proved that 

0
0

1 1 ,
2 2

i i
i Coul iP P A A− = − ∂ ∂                               (25) 

with 

( ) ( ) ( )21 d ,
2Coul y x V x y yρ ρ= −∫                            (26) 

where ( ) 2 4πV x y e x y− = −  and †ρ ψ ψ= . 
Besides, following Ref. [14], but taking into account that we are working in 2 + 1 dimensions, the electric 

field can be split in its transversal and longitudinal components in the plane of electron motion ⊥= + E E E , 
where 0

⊥ = −∂E A  and 0A= −E ∇ . Thus, 

( )20 2
0

1 1 1 ,
2 4 2

i ij
i ijA A F F ⊥ − ∂ ∂ + = +  

E B                         (27) 

where B is perpendicular to the motion plane. 
Finally, we can write 

( )2 21
2c Coul

⊥ = + +  
  E B † † 21 .

2 em
µψ ψ ψ ψ+ −                        (28) 
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Usually, when only an external uniform magnetic field is considered, the canonical Hamiltonian reduces to 

† † 21 .
2c Coul

em
µψ ψ ψ ψ= + −                                (29) 

3. Addition of a Topological Mass Term for the Electromagnetic Field 
As it is well known, the addition of the CS term to the Maxwell action leads to the topologically massive (2 + 
1)-dimensional electrodynamics [15]. In this theory, a modified Gauss law appears. As a result, any charged par-
ticle carries a magnetic flux proportional to its charge. 

In this section, we analyze the differences that appear with respect to the original model when a topological 
mass term for the electromagnetic field is added to the Lagrangian density   given by Equation (1) 

1 ,
2tm A Aµνρ

µ ν ρε
σ

= + ∂                                   (30) 

where 2π σ  is the topological mass and 2πeσ  is the magnetic flux attached to the electrons. 
In this case, the canonical Hamiltonian density becomes 

02

1 1 1 ,
2 28

tm ij i ij
c c i j i i jA P A A A Aε ε

σ σσ
= − − − ∂                         (31) 

where c  is given by Equation (2), and now ( )0 1 2i i ij
jP F Aσ ε= + . 

The only first-class constrains that change with respect to the previous ones are 

1 1
1 0,

2
tm ij

i jAε
σ

Σ = Σ − ∂ ≈                                  (32) 

2 2 0.
2

tm ij
i j

i A
e
ε

σ
Σ = Σ − ∂ ≈                                 (33) 

In the same way, the only gauge-fixing condition that changes is 

4 4
1 0.

2
tm ij

i jAε
σ

Θ = Θ + ∂ ≈                                 (34) 

These results have been formally demonstrated in Ref. [9]. 
Following the same steps like in the previous section, it can be proved that the constraint (22) remains valid. 
In contrast to Equation (15), 0A  is now determined by 

( )
( ) ( ) ( )†

0

1
1 d .

4π

ij
i je y y A y

A x
ψ ψ ε

σ
+ ∂

= −
−∫ y

x y
                        (35) 

Finally, the topological massive canonical Hamiltonian density is 

( )2† † † 2 2
0 0

1 1 1 1 .
2 2 2 2

tm ij
c i j

e

eA A A E B
m

ψ ψ ε µψ ψ ψ ψ
σ

⊥ = − − ∂ + − + +  
               (36) 

By replacing 0A  of Equation (35) in Equation (36), we can related this Hamiltonian density with the corres-
ponding one of the previous section 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

† †

2

d d
8π 8π

1 d ,
8π

ij ij
i j i jtm

c c

ij kl
i j k l

A y x x A x y ye e

A x A y

ε ψ ψ ε ψ ψ
σ σ

ε ε
σ

∂ ∂
= + +

− −

∂ ∂
+

−

∫ ∫

∫

  y y
x y x y

y
x y

          (37) 

where c  is given in Equation (28). 
Once we integrate Equation (37), the first two terms give the same contributions to the Hamiltonian. By con-
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sidering the constraint (22), these terms can be associated to the interaction between the external and CS mag-
netic fields mediated by the distance. In the limit of infinite topological mass, this interaction vanishes. This is 
consistent with the fact that in the usual formulation, where the external magnetic field is uniform, this interac-
tion is not present. The last term in Equation (37) represents the self interaction of the external magnetic field in 
a higher order in the topological mass. 

4. Conclusions 
By means of a classical nonrelativistic U(1) × U(1) gauge field model for the electromagnetic interaction of 
electrons, we have shown how to find the mean-field Hamiltonian describing composite fermions in 2 + 1 di-
mensions. For this purpose, the Dirac Hamiltonian formalism for constrained systems was considered. 

Furthermore, in Section 2, we showed how the Coulomb interaction naturally appears while in the usual for-
mulation it is introduced ad hoc. In the usual formulation, Equation (22) is taken as a constraint of the theory. In 
this paper, we derived its validity from the constraint structure. 

Finally, in Section 3, we saw that the inclusion of a topological mass term for the electromagnetic field in the 
Lagrangian density introduces interaction terms absent in the canonical Hamiltonian (29). 
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