
Journal of Software Engineering and Applications, 2015, 8, 499-519
Published Online September 2015 in SciRes. http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.89048

How to cite this paper: Rӧsch, S., Ulewicz, S., Provost, J. and Vogel-Heuser, B. (2015) Review of Model-Based Testing Ap-
proaches in Production Automation and Adjacent Domains—Current Challenges and Research Gaps. Journal of Software
Engineering and Applications, 8, 499-519. http://dx.doi.org/10.4236/jsea.2015.89048

Review of Model-Based Testing Approaches
in Production Automation and Adjacent
Domains—Current Challenges and
Research Gaps
Susanne Rӧsch1, Sebastian Ulewicz1, Julien Provost2, Birgit Vogel-Heuser1
1Institute of Automation and Information Systems, Technische Universität München, München, Germany
2Assistant Professorship for Safe Embedded Systems, Technische Universität München, München, Germany
Email: roesch@ais.mw.tum.de, ulewicz@ais.mw.tum.de, vogel-heuser@ais.mw.tum.de,
provost@ses.mw.tum.de

Received 18 August 2015; accepted 27 September 2015; published 30 September 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
As production automation systems have been and are becoming more and more complex, the task
of quality assurance is increasingly challenging. Model-based testing is a research field addressing
this challenge and many approaches have been suggested for different applications. The goal of
this paper is to review these approaches regarding their suitability for the domain of production
automation in order to identify current trends and research gaps. The different approaches are
classified and clustered according to their main focus which is either testing and test case genera-
tion from some form of model automatons, test case generation from models used within the de-
velopment process of production automation systems, test case generation from fault models or
test case selection and regression testing.

Keywords
Model-Based Testing, Automated Production Systems, Conformance Testing, Regression Testing,
Fault Injection, Survey

1. Introduction
Testing is the “activity in which a system or component is executed under specified conditions, the results are
observed or recorded, and an evaluation is made of some aspect of the system or component” [1]. As systems in

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.89048
http://dx.doi.org/10.4236/jsea.2015.89048
http://www.scirp.org
mailto:roesch@ais.mw.tum.de
mailto:ulewicz@ais.mw.tum.de
mailto:vogel-heuser@ais.mw.tum.de
mailto:provost@ses.mw.tum.de
http://creativecommons.org/licenses/by/4.0/

S. Rӧsch et al.

500

industrial automation are becoming more complex [2], the challenge of validation has also gained significance.
The high standards regarding non-functional requirements such as quality, timing and safety aspects [3] of au-
tomated production systems or conformance test of critical controllers as advocated by certification bodies and
standards [4] [5] further increase the challenge. In [6], it is shown that in currently established tools for the de-
velopment of industrial control software, testing activities are rarely automated and have to be conducted ma-
nually. Furthermore, “the process of deriving tests tends to be unstructured, not reproducible, not documented,
lacking detailed rationales for the test design, and dependent on the ingenuity of single engineers” [7]. Conse-
quently, many works have been conducted in research on the key challenges of improving and automating the
testing process in various domains of software engineering including Programmable Logic controller (PLC)
software engineering in production automation. Model-based testing is a possible solution to automate the gen-
eration of tests.

“Model-based testing (MBT) is a variant of testing that relies on explicit behaviour models that encode the
intended behaviours of an SUT and/or the behaviour of its environment. Test cases are generated from one of
these models or their combination, and then executed on the SUT.” [7]. Methods aiming towards this goal can
be part of model-based and model-driven development processes, which are increasingly established [8] [9].

The limiting factor of model-based testing, the same as in code generation, is of course that faulty models,
which may be due to false requirements, result in faulty test cases. This emphasizes the importance of research
on proving the correctness of models [10], which is not focused on in this paper. In [2], today’s challenges of
software engineering in automation are presented. In this paper, the challenges are considered in the context of
model-based testing.
• The first challenges that are mentioned regard usability considering the different stakeholders in automation.

It is stated that software applications are mainly built and implemented by mechanical and electrical engi-
neers using mainly IEC 61131-3. Therefore, the research question 1) in this paper is the development of ap-
proaches that are suited for generating test cases which may be executed against IEC 61131-3 applications.

• The challenge of changeability during runtime and life-cycle management, which includes many software
changes during runtime, leads to the research question 2) of adequate support during regression testing in
automation.

• Research question 3) is derived from the challenge that “additional system aspects have to be considered in
the design of automation software, e.g. the causal and temporal associations, resulting from the automa-
tion-affected technical process and physical structure of the technical system” [2]. Therefore, testing ap-
proaches must take testing of faults and failures that may occur from the technical process and technical
system, such as hardware effects, into account and provide methods of testing them.

• Another important aspect that must be considered in automation are 4) real-time constraints which must be
handled by the automation platforms. When testing, hardware-in-the-loop testing approaches address this
topic, as they are executed on the actual automation architecture.

• Last but not least, the challenge of 5) adequate models including the different disciplines is mentioned. When
regarding the field of model-based testing exactly the same research question applies.

The complementary techniques to testing, which are based on the validation that the implementation behaves
equivalently to its specification, are formal verification, model-checking and theorem-proving, which prove
“that the internal semantics of a model is consistent, independently from the modeled system” [11]. However, as
stated in [10], verification is rarely established within the industry in contrast to testing in computer science [10],
which is also true for production automation. Consequently, this field of research is not in the focus of the sur-
vey, but a comprehensive overview on formalization of models for verification purposes may be found in [12]
and [13] for the interested reader.

The goal of this paper is to review current model-based testing approaches in production automation and close
adjacent domains. On the one hand, adjacent domains related to disciplines are considered, which are also part
of production automation, namely software engineering and computer science, electrical/electronical and me-
chanical engineering. On the other hand, domains also including these three disciplines, such as embedded sys-
tems were considered. Adjacent domains were looked into, in order to identify promising approaches which
might be adopted, put current trends into context and define current challenges and research gaps. This paper
focuses on validation of functional and non-functional requirements concerning the PLC application software
rather than structural analysis, stress testing or performance analysis [14]. Also, the systems’ software behavior
is regarded as deterministic, excluding stochastic testing.

S. Rӧsch et al.

501

The remainder of this paper is structured as follows. In the following section, the research methodology on
how this survey was conducted is explained. Further on, classification criteria are established in order to distin-
guish and structure current research approaches. In the subsequent sections, the different research fields are dis-
cussed, structured based on the classification criteria concerning the testing goal and the models used as a basis
for test case generation. In Section 4, testing of discrete event system models and test generation from discrete
event system models, targeting the research Questions 1 and 4, are described. Then, test case generation from
models used in the development processes, including approaches which target research Questions 1, 4 and 5, is
explained in Section 5. Test generation based on technical system and technical process fault models (research
Questions 1 and 3-5) is explained in Section 6. Change impact analysis of specification or code models for re-
gression testing (Section 7) (research Question 2) completes the discussion of the different research fields. Sub-
sequently, research gaps in model-based testing in production automation are identified and a conclusion is giv-
en.

2. Research Methodology, Design and Classification
The primary goal of this work was to find approaches, where model-based testing approaches have been intro-
duced in the production automation domain, respectively testing of PLC control software, and the research ques-
tions introduced in the introduction have been addressed. This has especially been done for the topics of genera-
tion of tests from models used in automation, particularly taking models specified in [15], such as the UML, into
account. However, if little work could be found on the specific research questions in the domain of production
automation, as was the case for test generation from models focusing on faults from the technical process (re-
search Question 3) and regression testing (research Question 2), adjacent domains have been investigated in or-
der to find promising approaches that may be adapted and applied to the production automation domain. The
main databases which have been searched include “IEEE Xplore/Electronic Library Online (IEL)”, “ScienceDi-
rect” and “SpringerLink”. The main search terms included “model-based testing”, “conformance testing”, “re-
gression testing” and “fault injection” in combination with domain specific terms such as “production automa-
tion”, “PLC”, “factory automation”, “manufacturing automation” and “machine and plant automation”. The pa-
pers have then been classified according to the methodology described in Section 3. The survey is not exhaus-
tive, having not classified every paper that was found by the search described above, but rather aims at giving an
overview on the current state of the art and open research issues.

3. Methodology, Classification and Definitions
Recently model-based testing and related terms and definitions such as test case, test selection criteria and test
case specification have been updated and defined in [7]. In general model-based testing uses explicit behavior
models that specify the intended behavior against an SUT. Test cases are generated from one of these models or
their combination, and then executed on the SUT. The classification criteria for model-based testing approaches
proposed in this paper use these and other definitions from [16] and [1] related to testing and put them into con-
text regarding the key research questions in the field of production automation. An overview of the classification
criteria (C1-C5) may be found in Figure 1.

3.1. Model/Specification—Classification Criterion C1
To validate automation systems, different measures are taken regarding the testing goal which differs according
to the type and information included in the specification (C1b) also called model paradigm (C1a). If only the
expected behavior (C1a-i) is specified, the functional compliance may serve as the testing goal. If fault models
do exist, the reliability of the system, which is determined by the reaction to faults, can be tested and research
Question 3 is targeted. This can be done for example by using fault injection [17] (see Section 6). Another re-
search field is concerned with defining and analyzing change models and therefore focuses on regression testing
tackling research Question 2 (see Section 7).

Furthermore, the different works can be distinguished by the kind of specification (C1b) model that is used.
Many approaches require discrete event system specifications to generate test cases (see Section 4) while others
focus on providing more user friendly modeling languages for system engineers in order to specify the system
(research Question 5, see Section 5). The latter often include a process to formalize the modeling languages fur-
ther to be able to generate test cases.

S. Rӧsch et al.

502

Figure 1. Overview model-based testing and classification based on [7].

3.2. Test Selection Criteria—C2
The test cases are generated based on the specification, i.e. models, and on test selection criteria which “define
[...] the facilities that are used to control the generation of tests” [7]. As an example, when a state machine is
used as model/specification (C1a-i, C1b-i), several test cases may be created using a coverage criterion (C2a)
such as transition coverage. For black-box testing, a typical criterion would be data coverage. Further test selec-
tion criteria may be found in [7].

3.3. Test Cases—C3
Besides test case generation based on a predefined model and static test selection criteria, sometimes test cases
are generated “on-the-fly” by comparing the outputs emitted by the system under test (SUT) during a test run to
the expected ones according to the specification and adapting the test cases depending on the local test verdict
(pass or fail). This type of test generation and execution is called online test generation (C3a-ii). On the opposite
side, offline test generation (C3a-i) refers to the separation of the generation and execution. If the test case also
manipulates the input from other test components, such as the injection of faults, this is called feedback mani-
pulation (C3b).

3.4. Test Bed—C4
The execution of test cases against the SUT is made possible by the test bed which is the “environment contain-
ing the hardware, instrumentation, simulators, software tools, and other support elements needed to conduct a
test” [1] (research Questions 1 and 4). One determining factor of the test bed is the kind of environment feed-
back it includes. Common test cases usually simply consist of predefined inputs and the SUT’s outputs which
are compared to the expected ones. The input and expected output signals are static, i.e. they are not influenced
by the SUT’s behavior, and are specified using implicit knowledge or assumptions about the SUT’s environ-
ment’s behavior. In contrast to this, the SUT’s output signals can be dynamically fed back into its inputs through
a function representing the SUT’s environment’s behavior, e.g. a plant’s behavior represented by a model (C4-i),
i.e. simulation. On the one hand, test sequences for including complex environment behavior are simplified,
shortened and can be based on physical correlations, rather than implicit knowledge. On the other hand, exten-
sive effort has to be invested into the model’s definition and verification.

Other test beds include a setup with a connection to the real (C4-ii) plant (hardware), or some parts of it, in
order to include the actual feedback in the test execution.

S. Rӧsch et al.

503

3.5. System under Test (SUT)—C5
The setup of the SUT with the test bed determines which type (C5a) of test is conducted.

Some approaches do only test models of the implementation (Model in the Loop—MiL (C5a-i)) while other
tests are done using the implemented software (Software in the Loop—SiL (C5a-ii)) using static sequences or a
simulation.

In [18], two major forms of simulation in industrial automation are identified: System simulation and Hard-
ware in the Loop—HiL (C5a-iii) simulation. In system simulation, both the control software, i.e. the SUT, and
simulation are running on the same system—usually a standard computer. In this case, the control software is
running on a Soft-PLC, which can either implement the simulation or can be connected to an external simulation
(SiL). In [19], this type of simulation and its verification are investigated. The second major form is HiL simula-
tion/testing. A “typical HiL setup would include a controller with loaded control code connected to a testing en-
vironment” [20]. For automated production systems this means that the control software is executed on the tar-
get hardware, i.e. a real PLC, and connected to the simulation system via a field bus. The field of HiL has be-
come broader as in “past years [...] HiL has expanded to encompass component testing as well” [20].

The automatic execution of test cases is also a field where little work may be found in the context of produc-
tion automation. As mentioned in [6], full support of current tools for PLC platforms is still missing. Approach-
es that integrate the automatic execution in available tools or new tools targeted at PLC platforms are scarcely
available.

While MiL approaches do help to root out faults in the early design phases and SiL approaches root out faults
during the implementation phase [17], only HiL approaches enable the validation of the integrated system and
the inclusion of hardware related effects (research Question 3), as every model is some form of abstraction and
only the system itself is completely accurate.

The SUT also determines the testing level (C5b), which ranges between unit/module/component test (C5b-i),
integration testing (C5b-ii) and system testing (C5b-iii). Testing approaches are needed for all stages of the de-
velopment process.

Furthermore, the observability of the implementation must be considered (C5c): White-Box testing is “a type
of testing in which you examine the internal structure of a program” [21] and therefore the implemented code is
used as a basis for test case generation. Black-Box testing is an approach where the “internal structure is ignored.
Test data are derived solely from the application’s specification” [21].

In this paper, approaches are furthermore distinguished by their applicability in the field of production auto-
mation. Some approaches are developed for testing implementations (C5d) of languages which are designed for
use in production automation systems such as the IEC 61131-3, which is established within industry right now
[22], or the IEC 61499 which has been advocated by many researchers [23]. Other approaches have been devel-
oped in different domains and therefore for different languages but may be applicable in the field of production
automation.

The different validation techniques aim at detecting faults in an SUT before the system is commissioned for
operation. Fault, error, and failure are defined in [24]. A failure refers to “an event that occurs when the deli-
vered service deviates from correct service”, which was originally specified or expected. The failure is caused
by a deviation from the expected system state. This “deviation is called an error” and “the adjudged or hypothe-
sized cause of an error is called a fault”.

3.6. Test Verdict
After the execution of a test sequence (once a final state has been reached), the test verdict is reported and do-
cumented which can either be:
• pass: the equivalence relation between the specification and the implementation model is fulfilled: the im-

plementation conforms to its specification
• fail: the equivalence relation is not fulfilled and counter-examples (or traces) can be given: the implementa-

tion does not conform to its specification
• inconclusive: the execution on the test has not permitted to assess the equivalence of the two models neither

to give counter-examples. This case corresponds to test execution where the observed behavior of the im-
plementation does not lead to a fail state (no counter example can be found), but where a part of the behavior
to be tested could not be observed. For more details about this verdict in the context of on-the-fly test case

S. Rӧsch et al.

504

generation see [25].
In order to avoid false positive and false negative verdicts, a conformance test must be:

• valid (or exhaustive): “the test suite comprises all combinations of input values and preconditions” [16],
therefore every implementation which does not conform to its specification must be detected and rejected;

• non-biased (or sound): no implementation which conforms to its specification should be rejected.

4. Testing and Test Sequence Generation of and from Discrete Event System
Specifications

4.1. Testing of Discrete Event System Models
A promising solution to develop testing techniques is to benefit from the results of the researches of the Com-
puter Science and Discrete Event Systems communities in the domain of conformance test of formal models. In
these works, the specification is given in the form of a formal model such as a finite state machine [26], a transi-
tion system [27]-[29], a timed automaton [30] or a Petri net [31]. The implementation is supposed to behave ac-
cording to the same formalism, e.g. if the specification is defined by a Moore machine, the implementation
should also behave like a Moore machine and not like, for instance, a Mealy machine. The interested readers are
referred to the above-mentioned paper to get more details about these formal languages. The goal of these test-
ing techniques is then to validate the inclusion or equivalence relations between the two models. The equiva-
lence between a specification model and an implementation model are usually tested according to their observa-
ble behavior and their trace equivalence. Below are some examples of conformance relations between an im-
plementation i and its specification s, for formal definitions and details about these relations the interested read-
ers are referred to [27] [28]:
• tri s≤ : i conforms to s wrt. the relation tr≤ if and only if for all test sequences composed of the input al-

phabet of the models, the traces of observable actions of i are included in the traces of observable actions of
s. This relation does not consider inputs and outputs but observable actions.

• i ioconf s: i conforms to s wrt. the relation ioconf if and only if for all test sequences generated from the
traces of s, the set of observable outputs of i is included in the set of observable outputs of s. This relation
allows partial specifications because the test sequences are generated only from the traces of the (partial)
specifications.

• i ioco s: i conforms to s wrt. The relation ioco if and only if for all test sequences generated from the suspen-
sion traces of s (traces that also represent the absence of emitted output: specified quiescence, or missing
output actions), the sequence of emitted outputs of i is included in the sequence of emitted outputs of s.

In the context of model-based testing of automated production systems, the use of conformance relations de-
fined over the observable input/output relations is more appropriate because the internal behavior of the control-
ler cannot always be observed (black-box testing). Recently, [32] proposed a new conformance relation for
model-based testing of PLCs.

As mentioned earlier a test sequence can either be generated offline or online. In the first case, the test se-
quence is a straight sequence of input/output couples. In the second case, the continuation of the test execution
depends on the observed outputs from the previous test step. Both cases can be modeled as state-machine or la-
beled transition systems where each final state defines the test verdict.

Since the verdict of a test is based on the observation of the behaviors of two models (specification and im-
plementation), an important issue is to be able to ensure the state synchronization and the state identification of
those models. A review of the usual state identification and synchronization techniques is presented in [26]
[33]-[35]. Even though the basic techniques are well established, several research activities are still conducted
on the improvement of those techniques [36] [37] and their application to others formal models [38].

Conformance of an implementation to its specification requires that a test objective or test selection criteria
be first defined. A classical test objective, when critical systems are considered, is to cross at least once each
edge of the directed graph that represents the structure of the formal model; this permits to check every state
change from each state of the formal model. Then, the test sequence can be constructed from this model. How-
ever, depending on the scale of the system, the security level and the assumptions made on the implementation,
different test objectives can be defined. Table 1 lists different techniques that can be applied depending on the
assumptions made on the implementation. A more complete overview of the main testing challenges and the
different testing techniques developed to improve the test coverage and the reliability of the test results is given

S. Rӧsch et al.

505

Table 1. Assumptions on formal models.

Assumptions Proposed solutions References

The implementation can have extra states Bounded number of extra states [40]

Time Test boundaries (maximum duration of a timer) [41]

Variables within a range Domain testing and/or boundary testing [42]

Variables within a range Symbolic approaches [43]-[45]

Partial specifications Verifying partial inclusion: Impl. Spec1 Impl. Spec2⊆ ∧ ⊆ ∧ [46]

Partial specifications Inferring partial models [47]

in [39]. It is also of importance to note that most of these works have been developed using event-based formal-
ism (vs. signal-based formalism).

As testing is based on the validation of the equivalence (or inclusion relation) of two behaviors (an imple-
mentation and its specification), testing can be seen as an exploration process, which permits to explore the be-
havior of an implementation and compare it to its specification, and requires the execution of the implementa-
tion. In contrast to testing, model-checking is based on the verification of properties that should hold for a beha-
vior. Model checking can be seen as a confirmation process, it is used to confirm that a property holds or not for
the whole behavior. Symbolic approaches are used to handle the scalability of verification techniques. Even
though symbolic approaches cannot be applied during the execution phase of testing (during the execution, for
each test step, the implementation is solicited with a set of fixed values, not with a set of value ranges), mod-
el-checking techniques can be used during the first phase to generate test sequences [48]-[52].

4.2. Model Transformation
In order to apply the fruitful theoretical results on specification and implementation used in the automation in-
dustry there is a need to transform industrial models into more formal models. Several works have considered
the issue of model transformation from industrial (or standardized) models into (semi-)formal models in order to
apply existing formal techniques and tools. Table 2 gives an overview of existing works on such model trans-
formations.

Many of the transformations presented in Table 2 have been developed in the context of verification. Some of
the existing methods only consider the source code of the input language while some others also consider a
model of the PLC operation. When only the source code is considered (i.e. without a model of the controller ex-
ecution), the input model can be considered as an infinitely reactive model (i.e. the response time delay equals
zero). Thus, the transformation to another formal model can be facilitated by the use of their meta-model. For
instance, model-to-model transformations can be obtained using the model transformation tool ATL [78].

The transformation into formal models also permits the combination of the model of the software, with a
model of the execution of the controller—if not already done—and also with a model of the plant that is to be
controlled. The more information the composed model contains, the more reliable the simulation and the results
of the verification and validation methods is [79].

5. Test Sequence Generation from Models Used within Development Processes
Specification notations such as timed automatons, etc. are up to now rarely used within industry. Mostly partial
models or specifications, and informal requirements specifications are used. To bridge this gap and to support
system and test engineers in creating models for testing, modeling languages and notations used within the de-
velopment process are further developed and formalized to receive a basis for test case generation (see Table 3).
Furthermore, model-based approaches are increasingly applied and developed in production automation. Using
similar models for test case generation is the logical next step to further support and improve the development
process.

The Unified Modeling Language (UML) was the language designed for usage in the development process
[80], where most approaches (and papers) in the context of MBT in production automation could be found. In
[81] and [82], useful diagrams for modeling and deriving test cases from the UML are identified for the field of

S. Rӧsch et al.

506

Table 2. Model transformation from industrial or standardized languages into formal models.

Input language Output formal model Source Remarks

IL (IEC 61131-3),
ST (IEC 61131-3)

Timed Net Condition/
Event System,
Petri Net, Timed automaton,
SIGNAL equations,
Model-checker language (SMV)

[53]-[58]

Most of the transformations are performed for verification
purposes. The selected references consider the cyclic behavior
of industrial controllers such as PLC for the execution of IL
programs.

LD (IEC 61131-3)
Time Petri Net, Model-checker
language (UPPAAL
automata)

[59]-[61]

Most of the transformations are performed for verification
purposes. The selected references consider the cyclic behavior
of industrial controllers such as PLC. [61] even considers
multitask systems.

FBD (IEC 61131-3),
CFC, IEC 61499

SIGNAL equations, Esterel,
Interface automata,
Model-checker language
(UPPAAL automata, SMV)

[50] [57]
[62]-[66]

Most of the transformations are performed for verification
purposes. The selected references consider the cyclic behavior
of industrial controllers such as PLC. [66] presents a
modeling of each block by an interface automaton, the focus
is placed on the IO relations: this approach could be adapted
to testing of sub-components where only the IOs can be
observed (black-box testing).

SFC (IEC 61131-3) Timed automata, Model-checker
language (SMV) [67]-[70]

SFC (61131-3) is a graphical language with hierarchical
relations used to represent mainly sequential behaviors. The
semantics defined in the standard contain ambiguity. An
improved semantics is proposed in [70].

GRAFCET
(IEC 60848)

Monolithic automaton,
Mealy machine, Petri Net [71]-[75]

Grafcet (60848) and SFC (61131-3) share similarities: SFC
has been defined from Grafcet. The main difficulty with
Grafcet is the stability research. The method presented in
[71]-[73] is dedicated to black-box testing and stresses on
logic input/output relations.

Matlab Stateflow
Structural operational
semantics, Continuous-
Time Markov Chains

[76] [77]

The main issue with Matlab State flow models is the
interpretation of junction symbols. Depending on the guards
before and after a junction symbol, some transitions can be
partially fired and their associated actions be executed; if no
destination state can be reached after a junction, previous
transitions are then backtracked to return to the previous
active state without undoing the associated actions.

Table 3. Test generation from models used within the development process.

Source Domain C1) Specification
C2) Test
Selection
Criteria

C3) Execution
and Feedback
Manipulation

C4) Feedback
integration

C5) Test type,
Implementation,

Observability
and Level

[81]-[83] Production
automation

UML (structure:
system

and context;
interaction,
mainly state

charts: generation
of specific test

cases)

Depending on
diagram, extraction
of sequences from

interaction diagrams
(transition parameter

variation, path
coverage)

Offline As spec. IEC 61499

[84] Production
automation

UML state
charts

Model
transformation, path

unfolding, path
coverage

Offline As spec. n.a.

[85] Production
automation

UML sequence
diagram

Only the specified
scenario Offline Both SiL and

HiL possible
IEC 61131-3,

unit

S. Rӧsch et al.

507

automation software development and especially for IEC 61499 implementations. Structure diagrams such as
component diagrams are used to model the context and the interfaces of the SUT. Interaction diagrams are rec-
ommended for the extraction of test sequences. In [82], the extraction of test sequences from state charts using
round-trip path coverage is shown. A first application of the recommended test case generation process using
state chart diagrams especially for IEC 61499 applications is shown in [83].

In [84], an approach to automatically generate test cases from the UML state charts by first transforming them
into a formal model (extended safe place/transition nets) is introduced. In order to make the transformation
possible, some restrictions on the used model elements are done. Given the formal model, the test case genera-
tion is easily made possible using methods such as unfolding the nets.

Making UML models, and in this work especially sequence diagrams, executable is another focus of using
UML diagrams in the testing process. In [85], the semantics of sequence diagrams are adapted in order to make
direct IEC 61131-3 code generation possible. In this way the modeled test scenarios can be executed directly.

As UML models are already a wide-spread notation also for testing, organizations have started to standardize
the language in the context of testing using the profiling mechanism of the UML. The UML Testing Profile
(U2TP) has standardized the way to specify the SUT, its context and the specific test cases. The test case scena-
rios are modeled using the UML sequence diagrams. To make these test cases executable, a transformation from
the U2TP to the Testing and Test Control Notation (TTCN-3) has been proposed by [86], which has been estab-
lished especially in the field of communication. However, up to now, no approaches could be found that have
evaluated the applicability of the U2TP in the field of production automation software. In [87], UML test case
generation approaches from state charts are combined with the aim of making them executable by mapping them
to the TTCN-3. The evaluation of the approach is done using a simple communication protocol but the extension
of the approach in order to test PLC control software applications is planned as well.

In recent years the Systems Modeling Language (SysML) is increasingly established for supporting the de-
velopment process of real-time systems [88].

However, investigations on the possibilities to derive test cases from these models or adapting these models
are still missing. Another interesting development that the testing community could benefit from is the im-
provement of the communication between tools. MATLAB/Simulink models is also increasingly applied in the
production automation domain (e.g. [89]). Up to now, the models are mainly used for simulation and code gen-
eration [90]. In the automotive domain MBT approaches have been introduced [91] [92]. The applicability in
production automation needs to be analyzed.

In [93], an approach to automatically consolidate different domain models from the field of production auto-
mation to receive a correct model using AutomationML and MathML is presented. The generation of test cases
from such models is still an open topic though.

6. Test Generation from Fault Models—Testing of Unintended Behavior
An important topic that must be addressed when testing and validating automated production systems besides
the intended behavior is the reaction to faults that may occur without the system, i.e. stemming from the tech-
nical system and the technical process, as this also determines the reliability. The faults that must be regarded
are causes of failures of automation systems such as the failure of hardware or influences of the environment.
These faults must be handled by the software of automation systems by error handling routines. To prove the
validity and correctness of systems, fault injection (FI) is a method that has been established in order to measure
the dependability. Fault injection is used as a means to evaluate error handling mechanisms concerning fault de-
tection and error handling. FI approaches can be divided into hardware-implemented FI (HWIFI), where faults
are for example injected by forcing pins, software-implemented FI (SWIFI), where faults of the system are
emulated by the software, and model-implemented FI (MIFI) also called simulation-based FI [94]. While
HWIFI and SWIFI are mostly used on prototypes or for system testing, MIFI is rather used in earlier conceptual
and design phases to give early feedback to engineers [17]. It is possible that the approach implements one kind
of fault injection (e.g. MIFI) but still is another kind of test (e.g. SiL), because the fault might be injected by the
test case through the test bed (e.g. fault is injected in the simulation model but the SUT is the implemented
software not running on the final system). FI is determined by the faults (F) that are injected, a set of activations
(A), defining the triggers for the injection, the readouts (R), i.e. the logging of the system reaction or the outputs,
and the actions or measures (M) that are derived from the analysis of F, A and R, as defined in [95].

S. Rӧsch et al.

508

A fault model defines the types of possible faults of a system in respect to several different criteria such as the
phase of creation (design, implementation, etc.), the dimension (hardware faults, software faults), the system
boundary (introduced from within or without the system, etc.) [24]. The type of faults F commonly injected by
FI, are mostly hardware faults in contrast to software faults, human made faults, etc. (for classification of faults
see [24]). Another aspect considered by many approaches is the timing behavior of the fault which is either
permanent, which means that it occurs and is permanent from this point on, or if it occurs only at certain time
intervals or at random. The activation A is differentiated whether the fault is injected before runtime or during
operation. By injecting faults during operation the opportunity to activate the fault by time-triggered or event-
triggered conditions is created, making it possible to realize more complex fault scenarios. The three different
approaches—HWIFI, MIFI and SWIFI are further explained in the following subsections. An overview is
shown in Table 4.

6.1. Hardware-Implemented Fault Injection (HWIFI)
Many tools and methods for testing the reaction to faults from integrated circuits and especially microprocessors
have been established. The methods vary between FI with contact such as the injection of faults on pin level and
FI without contact such as heavy-ion-radiation or electromagnetic interference [97]. A third means of introduc-
ing faults is the use of built-in logic especially designed for the SUT [96]. The specification is based on faults F
which typically occur within (micro-) processors such as bridging faults, stuck-at faults, bit flips or power surges
[17]. In the field of electrical engineering the fault models are still being updated and further developed [105].
For methods that are controllable and reproducible such as pin-level fault injection the activation A is possible to
be time-triggered or event-triggered. An overview and more detailed descriptions of the different tools and me-
thods may be found in [17] and [97].

Hardware-in-the-loop test benches have been developed for more complex systems such as PLCs, where the
PLC is for example connected with a simulation environment [106]. However, no special attention has been
given on FI techniques in this field and studies illustrating which faults and fault models would be useful to in-
ject in such systems and the benefits that might be gained from such testing techniques are not available.

6.2. Model-Implemented Fault Injection (MIFI)
In respect to MIFI a distinction can be made whether faults are injected into hardware models or into software
models. Hardware models in the domain of electrical engineering are usually modeled using the Very High
Speed Integrated Circuit Hardware Description Language (VHDL) and therefore targeted at integrated circuits.
The faults that are to be injected are also based on faults which may occur within microprocessors as mentioned
in the previous section. These faults are specified and integrated into the model or at the interfaces of the model
to simulate faults [98]. In the automotive domain several MIFI approaches have been suggested [94]. These ap-
proaches make use of the fact, that MATLAB/Simulink models are commonly used for modeling automotive
systems. In [94] it is not only aimed at testing only on simulation level. The result of the test runs against simu-
lation are used for test case generation for the real systems. In the field of production automation an executable
UML state chart simulation model is used for FI in [102]. As the approach focuses on testing the application, the
program is sliced to extract all possible execution paths leading to a defective component in order to reach full
path coverage. The MIFI approaches mostly only have an offline activation A, as the faults F are predefined
within the model.

6.3. Software-Implemented Fault Injection (SWIFI)
As for MIFI and HWIFI, tools for injecting faults in integrated circuits have been evaluated and are available for
use [107]. As interfaces and additional functions are standardized for testing and have been introduced in this
field, it is additionally made easier to access different locations to inject faults [108]. In [101], a FI approach for
embedded system’s is introduced in order to validate specified safety functions. The approach targets specific
functions which must hold during all circumstances. Specific fault scenarios or the definition of user-friendly
notations are not the main focus of the approach. Next to FI during co-simulation, [99] also proposes to use
model-based approaches in the automotive domain to introduce faults into the code during code-generation out
of Matlab/Simulink models. The components that will be tested as failing are selected in the model, then code is

S. Rӧsch et al.

509

Table 4. Fault injection in automated production systems and embedded systems.

Source Domain C1) Specification
C2) Test
Selection
Criteria

C3) Execution
and Feedback
Manipulation

C4) Feedback
Integration

C5) Type,
Implementation,

Observability and
Level

[17]
[96]
[97]

Integrated
circuits

Stuck-at, open,
complex

logical faults, ...

As spec.
contact

or contactless,
time triggered

Offline

HWIFI (pin-level
or insertion,

heavy-ion radiation,
electromagnetic)

Real system,
microprocessors/

integrated circuits,
system

[98] Integrated
circuits

Fault model
(saboteurs,

mutants), some
mutants

generated
automatically

As spec. Offline MIFI VHDHL model,
integration/system

[94] Automotive

Fault models, failure
mode function
(mutants and
saboteurs),

requirements
(Simulink assertion

blocks), time window

As spec.
minimal cut

sets
Offline MIFI Matlab/Simulink,

unit

[99]
[100] Automotive

Selection of
component/

fault nodes in
simulation model

As spec. Offline
MIFI/SWIFI
(injection in

generated code)

C (generated out of
SCADE), unit

[101] Embedded
systems

Mathematical
description

of functions and
safety properties

Mutation
operators

(insertion of an
additional
request,

reordering
of a pair of
requests)

Offline SWIFI MiL

[102] Production
automation Fault operators

Path coverage,
possible

inputs, code
splicing,
possible

paths leading
tocomponent

Offline,simulat
ion: UML SC

for PLC
MIFI SiL, IEC 61131-3,

unit

[103] Production
automation

Timing sequence
diagram

Fault operators
(missing
signal)

 SWIFI real system, IEC
61131-3, system

[104] Production
automation

Target variable chosen
manually, mutant

created
accordingly, every
path checked with

every
mutant

5 mutation
operators

according to
target

 SWIFI C, FBD, integration

generated where this fault will occur during execution. In [100], a similar approach is suggested using SCADE
models. In [104], a method to inject faults during runtime is presented suggesting kernel-based FI on different
architectural levels of embedded systems. It is analyzed how and where different faults may be injected in order
to test the integration between application, operating system and hardware. The integration of application and
operating system is tested by manipulating the communication protocols in between them. The integration test-
ing between operating system and hardware is done using three further mutation operands. If possible the global

S. Rӧsch et al.

510

variables are manipulated such as communication device errors. If the addresses of the hardware are read-only
variables, different mutants (changes to the SUT) are proposed such as disconnecting the hardware or changing
the voltage supply for I/O device errors and power-supply. The method seems a viable way to test the integra-
tion of the components within embedded systems such as a PLC as proposed in this paper. The test of the con-
trol software in respect to hardware faults is not focused on in the paper. [103] suggests a SWIFI approach,
where test cases are generated from timing sequence diagrams for the field of production automation. In a pre-
ceding survey [103] evaluates timing sequence diagrams as a notation which is commonly used in the domain of
production automation. It is assumed that the diagram depicts the expected behavior and any kind of deviation
should be handled by the software. Accordingly, test cases with a deviation from the timing sequence diagram
(fault operator) are generated. The test execution is done using a setup with the real automation system while
injecting the fault directly into the software. The approach is shown to work for processes with discrete behavior.
The approach focuses on deviations from the process behavior (F: process faults) as sensor values are used for
analyzing the behavior. The activation A is done during the execution of the system. Communication faults or
human made faults are not especially in the focus of this work.

7. Test Selection from Change Models—Regression Testing
During development and operation of automated production systems, the system’s software has to be changed
and adapted regularly. The changes are categorized in [109] as adaptive, corrective and perfective. Adaptive
changes are due to changing environments or requirements, such as changes in hardware or new needed func-
tions. Corrective changes are introduced whenever faults within the software are discovered and fixed. Perfec-
tive changes are made during optimization processes, e.g. to shorten production cycle times. Whenever the
software is changed, an investigation whether faults are introduced into the software and its compliance to the
specification has to be conducted. This process is known as regression testing.

The main challenge in regression testing in production automation is to test a changed software system tho-
roughly, while minimizing the effort to do so. However, if done manually, regression testing is tedious and
prone to be incomplete, as dependencies within programs can be intricate. Scenarios leading to errors might be
missed and testing efforts are high and have to be repeated with every change. Nevertheless, this type of testing
is still dominant in this engineering domain. Model-based testing methods, as described in the previous sections,
can help in this regard, by offering ways to automate the test generation. Based on a set of available test cases,
regression testing can be conducted by selecting suitable test cases for retesting [110] depending on identified
changes, which is done within a Software Change Impact Analysis (CIA). The goal of this analysis is to select
the test cases that are most likely to find new errors introduced by the changes, but keeping the time of retesting
lower than a simple "retest-all" approach, where all tests are re-executed [111]. Therefore, the time needed for
the analysis plus the execution of the selected test cases is supposed to be lower than executing all test cases.
This selection is done under the assumption that program execution is deterministic and nothing but the code or
the specification changes.

CIA can be based on dependencies between software entities, such as functions, classes or statements or on
traceable dependencies between the software and other software related artifacts, such as function specifications
or interlocking definitions. The former is known as dependency based change impact analysis, while the latter is
called traceability based change impact analysis [112]. An overview of CIA approaches is shown in Table 5.

7.1. Traceability Based CIA
This type of CIA is based on the program’s specification rather than the changed code itself. The term traceabil-
ity refers to the ability to trace changes from the specification to its corresponding code through appropriate de-
finitions within the specification. There are different approaches for identifying changes in available specifica-
tions and deriving possible influences on test cases for regression testing. As structural models are common in
computer science as an artifact for program design, many works take these models to gather information for re-
gression testing regarding integration tests. For selection of integration tests, information about object interde-
pendencies and changes are gathered, which is then used to identify the parts of the program affected by the
changes. These entities are then scheduled for regression tests.

A suitable model for this process is the UML Class Diagram, which includes information about the program
structure, interfaces and interdependencies between objects. Several works use this model for selecting regression

S. Rӧsch et al.

511

Table 5. Methods for software change impact analysis.

Source Domain C1) Specification C2) Test Selection
Criteria C3) Generation

C5) Test type,
Implementation,

Observability

[114]
[115] Computer science Structure, semiformal

(uml class diagram)
Change of

specification None
Integration tests,

object-oriented, allows
black box

[116] Automotive,
embedded systems

Structure and behavior,
component dependency
model, uml sequence

diagram and directed graph

Change of
specification None Integration tests, allows

black box

[117] Computer science
Structure and behavior,
specification description

language

Change of
specification None

Integration tests,
object-oriented, allows

black box

[113] Computer science
Structure and behavior, uml

sequence diagram, class
diagram

Change of
specification None Integration tests, allows

black box

[118] Computer science Behavior, extended finite
state machine

Change of
specification None Integration tests

[119] Computer science Behavior, call graph Change of code None
Integration test, system

test, object-oriented,
white box

[120] Computer science Behavior, program
dependency graph Change of code None Integration test,

procedural, white box

[121] Computer science Behavior, dynamic call
graph Change of code Previous

execution

Integration test, system
test, object-oriented,

white box

[122] Computer science Behavior, dynamic program
slice Change of code Previous

execution

Integration test, system
test, object-oriented,

white box

[123] Computer science Behavior, dynamic control
ow graph Change of code Previous

execution
Unit test, system test,
procedural, white box

[124] Computer science Behavior, dynamic data ow
graph Change of code Previous

execution

Unit test, integration test,
system test, procedural or

object-oriented, white
box

integration tests [113]-[115]. Other works do not rely on this notation, but create their own formalized model
from it, such as the Component Dependency Model [116], or directly specify needed dependencies within a
formal description language, such as the Specification Description Language (SDL) [117]. These models focus
on relevant dependencies and allow automatic analysis, e.g. graph and dependency analyses, to find relevant
changes and assess their impact on testing. In most of the mentioned approaches, certain change classes are de-
fined, which are linked to an influence on test cases. This information is then used to select the test cases.

For regression testing of single units, other specification models are needed, as no information about behavior
is stored within class diagrams or other structural models. Several works identify suitable models for defining
behavior, such as the UML Sequence Diagram [116], [113], Extended Finite State Machines (EFSM) [118] or
the SDL [117]. Again, identification of influences of changes is conducted using change classes, which define
whether a test case is influenced or not. Changed entities are identified by comparing the sets of sub-elements of
the respective models.

Traceability based CIA is especially interesting, if certain parts of the program code are not accessible (“black
box”), e.g. in compiled libraries, as all approaches in the dependency based CIA create a model directly from the

S. Rӧsch et al.

512

code. This is a common occurrence in production automation, increasing the applicability of the approaches. Yet,
the uncommon use of formalized models for software design in production automation hinders an application in
this domain. While advantages in later phases can be seen, this domain is still hesitant introducing modeling on
a level that can be used for the presented approaches (close enough to the code).

7.2. Dependency Based CIA
This type of CIA can be used for regression testing without relying on models describing structure or behavior
of the software. The models needed for analyzing affected entities are directly generated from the code. This can
be either done statically, meaning before test execution or dynamically, based on information about previous test
execution1. Common static dependency analysis methods include building call graphs [119], analyzing which
entities call other entities, or program dependence graphs [120], adding information about data dependencies.
The resulting graphs include all possible object interconnections, which can be problematic as changes can lead
to assumptions about their influence including a lot of false positives, i.e. parts of the code which seem to be in-
fluenced, but are not.

For dynamic methods, execution traces are recorded during test case execution, giving a clearer image on
what is actually affected by the test case. Dynamic call graphs [121], dynamic program slices [122] or control
flow graphs [123] and data flow graphs [124] can be extracted from this information. While false positives are
reduced, the found information is only valid for the executed scenarios. Also, in many cases code instrumenta-
tion is needed for recording the test execution to gather all needed information, which can alter the system’s be-
havior as additional code is executed.

In contrast to traceability based CIA, dependency based CIA does not need additional manual modeling
which facilitates applicability in production automation. Nevertheless, these approaches mostly developed in the
domain of computer science have not been adapted in production automation. Only recently, first advances to-
wards applying similar approaches in this domain were made [125].

The reason for the hesitant adaption are most likely rooted in the dominant programming standard IEC
61131-3. Even though there are many similarities between programming in the domains of computer science
and production automation, most of the presented concepts are not directly applicable to automated production
systems’ program code: The IEC 61131-3 consists of different graphical as well as textual programming lan-
guages and exhibits differences regarding structure and behavior that make an adaptation complicated. Ad-
vances towards object-orientation are being made, yet the structure of IEC 61131-3 programs is neither com-
pletely object-oriented (e.g. many global accesses), nor procedural (e.g. class like function blocks). All of the
analyzed approaches are directly aimed at one of these paradigms. Regarding behavior, cyclic execution of the
code significantly influences the programming paradigm, and thus hinders a direct application of the approaches
which usually assume a single execution of the program per test case. The test cases used in the publications are
designed accordingly: single input vector test cases that do not allow adequate testing of state machines, which
are common in automated production systems.

8. Discussion and Research Gaps
Reflecting the presented work in this paper, many promising approaches in the field of model-based testing in
production automation have emerged.

Research Question 1: The automatic execution of test cases for testing IEC 61131-3 and PLC software appli-
cations is a field where a lot of work remains to be done. As mentioned in [6], full support of current tools for
PLC platforms is still missing. Approaches that integrate automatic execution in available tools or new tools
targeted at PLC platforms have scarcely been found.

Research Question 2: The same is true for change impact analysis and regression testing approaches which
have mainly been researched in the field of computer science so far, as summarized in Table 5. Regarding tra-
ceability based CIA, the rare use of formalized models for functional specification definition in production au-
tomation hinders these approaches. Reasons for this can most likely be attributed to the uncertain relation of in-
vestment (software tools, personnel training, additional effort during the specification phase, etc.) and return
(increased efficiency and software quality, etc.), yet detailed analyses are needed to find and approach the lead

1The expressions static and dynamic model generation are not to be confused with static and dynamic feedback inclusion in test cases.

S. Rӧsch et al.

513

causes for this situation. In dependency based CIA, adoption of the numerous approaches from computer science
seems to be hindered by the programming standard IEC 61131-3, its programming languages, structure and
properties regarding execution (cyclic, real time). A detailed investigation on the applicability and benefit of
these methods in the field of production automation remains an open issue.

Research Question 3: Defining appropriate fault models and generating test cases to test the reaction to faults
is still an emerging field in production automation, where mainly other domains have been conducting research
until now. The use of FI to test hardware faults is widely spread to validate the dependability of integrated cir-
cuits. In this field all HWIFI, MIFI and SWIFI approaches have been tested and evaluated. The automotive and
aerospace domains make use of the models available during the development process and introduce faults on
model level. The execution is done using simulation or code-generation adopting the MIFI or SWIFI approach.
In domains where models are scarcely available such as production automation, FI techniques on application
level have not been exploited very much so far even though it is a field where reliability and dependability are of
huge interest.

Research Question 4: Throughout the paper several HiL approaches in adjacent domain of production auto-
mation have been found. However, HiL approaches focusing on production automation remain scarce and have
rarely been found.

Research Question 5: The usage of modeling languages that are applied in the engineering process—espe-
cially based on the UML—as a basis for test case generation and methods to derive test cases from these models
have been investigated. However, comprehensive surveys and case studies on the acceptance and usability of
these models or test case generation from SysML models in production automation still remain an open chal-
lenge. There are a number of approaches for transformation of established modeling languages into formal mod-
els for test case generation, as well as algorithms and test selection criteria. To find industrial relevance of the
approaches, a thorough industrial evaluation could help assessing the relevance for the domain of production
automation. A special focus should be given to approaches that include not only the source code but also at least
the execution model of the implementation of the plant model.

9. Conclusion
In this paper, model-based testing approaches have been reviewed in context of the current challenges within the
field of production automation. These challenges have been identified based on [2] as the generation of test cas-
es applicable for PLC software, the minimization of testing efforts during regression testing, the inclusion of
hardware effects and the generation of test-cases out of models which are accepted and applied within industry.
Furthermore, the classification criteria in order to classify the different analyzed approaches are introduced, or-
dered by requirements and models as a basis for testing, test selection criteria, executable test cases, test bed,
system under test and test verdict. In conclusion it has been found that, especially regarding the generation out
of user-friendly notations as a basis for test case generation, testing of system’s reaction to faults and regression
testing, more work remains to be done. For the latter two, promising approaches have been introduced in elec-
trical engineering and computer science which may be interesting for the field of production automation when
adapted to the domain-specific requirements.

References
[1] (2010) ISO/IEC/IEEE 24765:2010(E), Systems and Software Engineering—Vocabulary.
[2] Vogel-Heuser, B., Diedrich, C., Fay, A., Jeschke, S., Kowalewski, S., Wollschlaeger, M. and Göhner, P. (2014) Chal-

lenges for Software Engineering in Automation. Journal of Software Engineering and Applications, 7, 440-451.
http://dx.doi.org/10.4236/jsea.2014.75041

[3] Wehrmeister, M.A., Pereira, C.E. and Rammig, F.J. (2013) Aspect-Oriented Model-Driven Engineering for Embedded
Systems Applied to Automation Systems. IEEE Transactions on Industrial Informatics, 9, 2373-2386.
http://dx.doi.org/10.1109/TII.2013.2240308

[4] IEC 60880 (2006) Nuclear Power Plants—Instrumentation and Control Systems Important to Safety—Software As-
pects for Computer-Based Systems Performing Category A Functions. International Electrotechnical Commission, 2nd
Edition.

[5] IEC 61850-10 (2005) Communications Networks and Systems in Substations—Part 10: Conformance Testing. Interna-
tional Electrotechnical Commission, 2nd Edition.

http://dx.doi.org/10.4236/jsea.2014.75041
http://dx.doi.org/10.1109/TII.2013.2240308

S. Rӧsch et al.

514

[6] Dubey, A. (2011) Evaluating Software Engineering Methods in the Context of Automation Applications. 2011 9th
IEEE International Conference on Industrial Informatics (INDIN), Caparica, 26-29 July 2011, 585-590.
http://dx.doi.org/10.1109/INDIN.2011.6034944

[7] Utting, M., Pretschner, A. and Legeard, B. (2012) A Taxonomy of Model-Based Testing Approaches. Software Testing,
Verification and Reliability, 22, 297-312. http://dx.doi.org/10.1002/stvr.456

[8] Vyatkin, V. (2013) Software Engineering in Industrial Automation: State-of-the-Art Review. IEEE Transactions on
Industrial Informatics, 9, 1234-1249. http://dx.doi.org/10.1109/TII.2013.2258165

[9] Thramboulidis, K. and Frey, G. (2011) Towards a Model-Driven IEC 61131-Based Development Process in Industrial
Automation. Journal of Software Engineering and Applications, 4, 217-226. http://dx.doi.org/10.4236/jsea.2011.44024

[10] Corriveau, J.-P. and Shi, W. (2013) Traceability in Acceptance Testing. Journal of Software Engineering and Applica-
tions, 6, 36-46. http://dx.doi.org/10.4236/jsea.2013.610A005

[11] Roussel, J.-M. and Lesage, J.-J. (1996) Validation and Verification of Grafcets Using Finite State Machine. Proceed-
ings of IMACS-IEEE, CESA’96, Lille, 9-12 July 1996, 1-6.

[12] Frey, G. and Litz, L. (2000) Formal Methods in PLC Programming. 2000 IEEE International Conference on Systems,
Man, and Cybernetics, 4, 2431-2436. http://dx.doi.org/10.1109/icsmc.2000.884356

[13] Younis, M.B. and Frey, G. (2003) Formalization of Existing PLC Programs: A Survey. Proceedings of IMACS-IEEE,
CESA’03, Lille, 9-11 July 2003, 234-239.

[14] Girbea, A., Suciu, C., Nechifor, S. and Sisak, F. (2014) Design and Implementation of a Service-Oriented Architecture
for the Optimization of Industrial Applications. IEEE Transactions on Industrial Informatics, 10, 185-196.
http://dx.doi.org/10.1109/TII.2013.2253112

[15] Verein Deutscher Ingenieure (2005) Classification and Evaluation of Description Methods in Automation and Control
Technology.

[16] Van Veenendaal, E. (2014) Standard Glossary of Terms Used in Software Testing. International Software Testing Qu-
alifications Board, Version 2.3, 1-53.

[17] Hsueh, M.-C., Tsai, T.K. and Iyer, R.K. (1997) Fault Injection Techniques and Tools. Computer, 30, 75-82.
http://dx.doi.org/10.1109/2.585157

[18] Barth, M. and Fay, A. (2013) Automated Generation of Simulation Models for Control Code Tests. Control Engineer-
ing Practice, 21, 218-230. http://dx.doi.org/10.1016/j.conengprac.2012.09.022

[19] Carlsson, H., Svensson, B., Danielsson, F. and Lennartson, B. (2012) Methods for Reliable Simulation-Based PLC
Code Verification. IEEE Transactions on Industrial Informatics, 8, 267-278.
http://dx.doi.org/10.1109/TII.2011.2182653

[20] Gu, F., Harrison, W.S., Tilbury, D.M. and Yuan, C. (2007) Hardware-in-the-Loop for Manufacturing Automation
Control: Current Status and Identified Needs. 2007 IEEE International Conference on Automation Science and Engi-
neering, CASE 2007, Scottsdale, 22-25 September 2007, 1105-1110. http://dx.doi.org/10.1109/COASE.2007.4341787

[21] Myers, G.J., Sandler, C., Badgett, T. and Thomas, T.M. (2004) The Art of Software Testing. Second Edition, John Wi-
ley & Sons, Hoboken.

[22] Thramboulidis, K. (2012) IEC 61499: Back to the Well Proven Practice of IEC 61131? 2012 IEEE 17th Conference on
Emerging Technologies & Factory Automation (ETFA), Krakow, 17-21 September 2012, 1-8.
http://dx.doi.org/10.1109/etfa.2012.6489672

[23] Zoitl, A. and Prähofer, H. (2013) Guidelines and Patterns for Building Hierarchical Automation Solutions in the IEC
61499 Modeling Language. IEEE Transactions on Industrial Informatics, 9, 2387-2396.
http://dx.doi.org/10.1109/TII.2012.2235449

[24] Avizienis, A., Laprie, J.-C., Randell, B. and Landwehr, C. (2004) Basic Concepts and Taxonomy of Dependable and
Secure Computing. IEEE Transactions on Dependable and Secure Computing, 1, 11-33.
http://dx.doi.org/10.1109/TDSC.2004.2

[25] Fernandez, J.-C., Jard, C., Jéron, T. and Viho, C. (1996) Using On-the-Fly Verification Techniques for the Generation
of Test Suites. In: Alur, R. and Henzinger, T.A., Eds., Computer Aided Verification, Springer, Berlin, 348-359.
http://dx.doi.org/10.1007/3-540-61474-5_82

[26] Lee, D. and Yannakakis, M. (1996) Principles and Methods of Testing Finite State Machines—A Survey. Proceedings
of the IEEE, 84, 1090-1123. http://dx.doi.org/10.1109/5.533956

[27] Tretmans, J. (1996) Test Generation with Inputs, Outputs and Repetitive Quiescence. Software, Concepts and Tools, 17,
103-120.

[28] Tretmans, J. (2008) Model Based Testing with Labelled Transition Systems. In: Hierons, R.M., Bowen, J.P. and Har-

http://dx.doi.org/10.1109/INDIN.2011.6034944
http://dx.doi.org/10.1002/stvr.456
http://dx.doi.org/10.1109/TII.2013.2258165
http://dx.doi.org/10.4236/jsea.2011.44024
http://dx.doi.org/10.4236/jsea.2013.610A005
http://dx.doi.org/10.1109/icsmc.2000.884356
http://dx.doi.org/10.1109/TII.2013.2253112
http://dx.doi.org/10.1109/2.585157
http://dx.doi.org/10.1016/j.conengprac.2012.09.022
http://dx.doi.org/10.1109/TII.2011.2182653
http://dx.doi.org/10.1109/COASE.2007.4341787
http://dx.doi.org/10.1109/etfa.2012.6489672
http://dx.doi.org/10.1109/TII.2012.2235449
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1007/3-540-61474-5_82
http://dx.doi.org/10.1109/5.533956

S. Rӧsch et al.

515

man, M., Eds., Formal Methods and Testing, Lecture Notes in Computer Science, Vol. 4949, Springer, Berlin, 1-38.
http://dx.doi.org/10.1007/978-3-540-78917-8_1

[29] Pickin, S., Jard, C., Jéron, T., Jézéquel, J.-M. and Le Traon, Y. (2007) Test Synthesis from UML Models of Distributed
Software. IEEE Transactions on Software Engineering, 33, 252-269. http://dx.doi.org/10.1109/TSE.2007.39

[30] Krichen, M. and Tripakis, S. (2009) Conformance Testing for Real-Time Systems. Formal Methods in System Design,
34, 238-304. http://dx.doi.org/10.1007/s10703-009-0065-1

[31] Pocci, M., Demongodin, I., Giambiasi, N. and Giua, A. (2014) Testing Experiments on Synchronized Petri Nets. IEEE
Transactions on Automation Science and Engineering, 11, 125-138. http://dx.doi.org/10.1109/TASE.2013.2290774

[32] Guignard, A. and Faure, J.-M. (2014) A Conformance Relation for Model-Based Testing of PLC. Proceedings of the
12th International Workshop on Discrete Event Systems-WODES 2014, Cachan, 14-16 May 2014, 412-419.

[33] Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M. and Ghedamsi, A. (1991) Test Selection Based on Finite
State Models. IEEE Transactions on Software Engineering, 17, 591-603. http://dx.doi.org/10.1109/32.87284

[34] Dorofeeva, R., El-Fakih, K., Maag, S., Cavalli, A.R. and Yevtushenko, N. (2010) FSM-Based Conformance Testing
Methods: A Survey Annotated with Experimental Evaluation. Information and Software Technology, 52, 1286-1297.
http://dx.doi.org/10.1016/j.infsof.2010.07.001

[35] Endo, A.T. and Simao, A. (2013) Evaluating Test Suite Characteristics, Cost, and Effectiveness of FSM-Based Testing
Methods. Information and Software Technology, 55, 1045-1062. http://dx.doi.org/10.1016/j.infsof.2013.01.001

[36] Petrenko, A., Simao, A. and Yevtushenko, N. (2012) Generating Checking Sequences for Nondeterministic Finite State
Machines. 2012 IEEE 5th International Conference on Software Testing, Verification and Validation (ICST), Montreal,
17-21 April 2012, 310-319. http://dx.doi.org/10.1109/ICST.2012.111

[37] Hierons, R.M. and Türker, U.C. (2014) Distinguishing Sequences for Partially Specified FSMs. In: Badger, J.M. and
Rozier, K.Y., Eds., NASA Formal Methods, Springer, Cham, 62-76. http://dx.doi.org/10.1007/978-3-319-06200-6_5

[38] Pocci, M., Demongodin, I., Giambiasi, N. and Giua, A. (2013) A New Algorithm to Compute Synchronizing Se-
quences for Synchronized Petri Nets. 2013 IEEE Region 10 Conference (31194), TENCON 2013, Xi’an, 22-25 Octo-
ber 2013, 1-6. http://dx.doi.org/10.1109/tencon.2013.6718970

[39] Kaner, C., Bach, J. and Pettichord, B. (2008) Lessons Learned in Software Testing. John Wiley & Sons, Hoboken.
[40] Simão, A., Petrenko, A. and Yevtushenko, N. (2009) Generating Reduced Tests for FSMs with Extra States. In: Núñez,

M., Baker, P. and Merayo, M.G., Eds., Testing of Software and Communication Systems, Springer, Berlin, 129-145.
http://dx.doi.org/10.1007/978-3-642-05031-2_9

[41] El-Fakih, K., Yevtushenko, N. and Fouchal, H. (2009) Testing Timed Finite State Machines with Guaranteed Fault
Coverage. In: Núñez, M., Baker, P. and Merayo, M.G., Eds., Testing of Software and Communication Systems, Sprin-
ger, Berlin, 66-80. http://dx.doi.org/10.1007/978-3-642-05031-2_5

[42] White, L.J. and Cohen, E.I. (1980) A Domain Strategy for Computer Program Testing. IEEE Transactions on Software
Engineering, SE-6, 247-257. http://dx.doi.org/10.1109/TSE.1980.234486

[43] Andrade, W.D.L., Machado, P.D., Jeron, T. and Marchand, H. (2011) Abstracting Time and Data for Conformance
Testing of Real-Time Systems. IEEE 4th International Conference on Software Testing, Verification and Validation
Workshops (ICSTW), Berlin, 21-25 March 2011, 9-17. http://dx.doi.org/10.1109/icstw.2011.82

[44] Andrade, W.D.L. and Machado, P.D. (2013) Generating Test Cases for Real-Time Systems Based on Symbolic Models.
IEEE Transactions on Software Engineering, 39, 1216-1229. http://dx.doi.org/10.1109/TSE.2013.13

[45] Cadar, C. and Sen, K. (2013) Symbolic Execution for Software Testing: Three Decades Later. Communications of the
ACM, 56, 82-90. http://dx.doi.org/10.1145/2408776.2408795

[46] Petrenko, A. and Yevtushenko, N. (2005) Testing from Partial Deterministic FSM Specifications. IEEE Transactions
on Computers, 54, 1154-1165. http://dx.doi.org/10.1109/TC.2005.152

[47] Shahbaz, M. and Groz, R. (2014) Analysis and Testing of Black-Box Component-Based Systems by Inferring Partial
Models. Software Testing, Verification and Reliability, 24, 253-288. http://dx.doi.org/10.1002/stvr.1491

[48] Constant, C., Jeron, T., Marchand, H. and Rusu, V. (2007) Integrating Formal Verification and Conformance Testing
for Reactive Systems. IEEE Transactions on Software Engineering, 33, 558-574.
http://dx.doi.org/10.1109/TSE.2007.70707

[49] Armando, A., Pellegrino, G., Carbone, R., Merlo, A. and Balzarotti, D. (2012) From Model-Checking to Automated
Testing of Security Protocols: Bridging the Gap. In: Brucker, A.D. and Julliand, J., Eds., Tests and Proofs, Springer,
Berlin, 3-18. http://dx.doi.org/10.1007/978-3-642-30473-6_3

[50] Enoiu, E.P., Sundmark, D. and Pettersson, P. (2013) Model-Based Test Suite Generation for Function Block Diagrams
Using the UPPAAL Model Checker. 2013 IEEE 6th International Conference on Software Testing, Verification and
Validation Workshops (ICSTW), Luxembourg, 18-22 March 2013, 158-167. http://dx.doi.org/10.1109/ICSTW.2013.27

http://dx.doi.org/10.1007/978-3-540-78917-8_1
http://dx.doi.org/10.1109/TSE.2007.39
http://dx.doi.org/10.1007/s10703-009-0065-1
http://dx.doi.org/10.1109/TASE.2013.2290774
http://dx.doi.org/10.1109/32.87284
http://dx.doi.org/10.1016/j.infsof.2010.07.001
http://dx.doi.org/10.1016/j.infsof.2013.01.001
http://dx.doi.org/10.1109/ICST.2012.111
http://dx.doi.org/10.1007/978-3-319-06200-6_5
http://dx.doi.org/10.1109/tencon.2013.6718970
http://dx.doi.org/10.1007/978-3-642-05031-2_9
http://dx.doi.org/10.1007/978-3-642-05031-2_5
http://dx.doi.org/10.1109/TSE.1980.234486
http://dx.doi.org/10.1109/icstw.2011.82
http://dx.doi.org/10.1109/TSE.2013.13
http://dx.doi.org/10.1145/2408776.2408795
http://dx.doi.org/10.1109/TC.2005.152
http://dx.doi.org/10.1002/stvr.1491
http://dx.doi.org/10.1109/TSE.2007.70707
http://dx.doi.org/10.1007/978-3-642-30473-6_3
http://dx.doi.org/10.1109/ICSTW.2013.27

S. Rӧsch et al.

516

[51] Gaudel, M.-C. (2011) Checking Models, Proving Programs, and Testing Systems. In: Gogolla, M. and Wolff, B., Eds.,
Tests and Proofs, Springer, Berlin, 1-13. http://dx.doi.org/10.1007/978-3-642-21768-5_1

[52] Gaudel, M.-C., Lassaigne, R., Magniez, F. and de Rougemont, M. (2013) Some Approximations in Model Checking
and Testing. arXiv: 1304.5199.

[53] Hanisch, H.-M., Thieme, J., Luder, A. and Wienhold, O. (1997) Modeling of PLC Behavior by Means of Timed Net
Condition/Event Systems. 1997 6th International Conference on Emerging Technologies and Factory Automation Pro-
ceedings, ETFA’97, Los Angeles, 9-12 September 1997, 391-396. http://dx.doi.org/10.1109/ETFA.1997.616302

[54] Heiner, M. and Menzel, T. (1998) A Petri Net Semantics for the PLC Language Instruction List. 4th Workshop on Dis-
crete Event Systems (WODES’98), Cagliari, 26-28 August 1998, 161-166.

[55] Mader, A. and Wupper, H. (1999) Timed Automaton Models for Simple Programmable Logic Controllers. Proceed-
ings of the 11th Euromicro Conference on Real-Time Systems, York, 9-11 June 1999, 106-113.
http://dx.doi.org/10.1109/emrts.1999.777456

[56] Canet, G., Couffin, S., Lesage, J.-J., Petit, A. and Schnoebelen, P. (2000) Towards the Automatic Verification of PLC
Programs Written in Instruction List. 2000 IEEE International Conference on Systems, Man, and Cybernetics, 4, 2449-
2454. http://dx.doi.org/10.1109/icsmc.2000.884359

[57] Jiménez-Fraustro, F. and Rutten, E. (2001) A Synchronous Model of IEC 61131 PLC Languages in SIGNAL. 13th
Euromicro Conference on Real-Time Systems, Delft, 13-15 June 2001, 135-142.
http://dx.doi.org/10.1109/EMRTS.2001.934016

[58] Gourcuff, V., De Smet, O. and Faure, J. (2006) Efficient Representation for Formal Verification of PLC Programs.
2006 8th International Workshop on Discrete Event Systems, Ann Arbor, 10-12 July 2006, 182-187.
http://dx.doi.org/10.1109/WODES.2006.1678428

[59] Zoubek, B., Roussel, J.-M. and Kwiatkowska, M. (2003) Towards Automatic Verification of Ladder Logic Programs.
Proceedings of IMACS-IEEE CESA’03: Computational Engineering in Systems Applications, Lille, 9-11 July 2003.

[60] Bender, D.F., Combemale, B., Crégut, X., Farines, J.M., Berthomieu, B. and Vernadat, F. (2008) Ladder Metamode-
ling and PLC Program Validation through Time Petri Nets. In: Schieferdecker, I. and Hartman, A., Eds., Model Driven
Architecture—Foundations and Applications, Springer, Berlin, 121-136.
http://dx.doi.org/10.1007/978-3-540-69100-6_9

[61] Bel Mokadem, H., Berard, B., Gourcu, V., De Smet, O. and Roussel, J.-M. (2010) Verification of a Timed Multitask
System with UPPAAL. IEEE Transactions on Automation Science and Engineering, 7, 921-932.
http://dx.doi.org/10.1109/TASE.2010.2050199

[62] Pavlovic, O. and Ehrich, H.-D. (2010) Model Checking PLC Software Written in Function Block Diagram. 2010 3rd
International Conference on Software Testing, Verification and Validation (ICST), Paris, 6-10 April 2010, 439-448.
http://dx.doi.org/10.1109/icst.2010.10

[63] Soliman, D., Thramboulidis, K. and Frey, G. (2012) Transformation of Function Block Diagrams to UPPAAL Timed
Automata for the Verification of Safety Applications. Annual Reviews in Control, 36, 338-345.
http://dx.doi.org/10.1016/j.arcontrol.2012.09.015

[64] Wardana, A., Folmer, J. and Vogel-Heuser, B. (2009) Automatic Program Verification of Continuous Function Chart
Based on Model Checking. 35th Annual Conference of IEEE Industrial Electronics, Porto, 3-5 November 2009, 2422-
2427. http://dx.doi.org/10.1109/iecon.2009.5415231

[65] Yoong, L.H., Roop, P.S., Vyatkin, V. and Salcic, Z. (2009) A Synchronous Approach for IEC 61499 Function Block
Implementation. IEEE Transactions on Computers, 58, 1599-1614. http://dx.doi.org/10.1109/TC.2009.128

[66] Prähofer, H. and Zoitl, A. (2013) Verification of Hierarchical IEC 61499 Component Systems with Behavioral Event
Contracts. 2013 11th IEEE International Conference on Industrial Informatics (INDIN), Bochum, 29-31 July 2013,
578-585. http://dx.doi.org/10.1109/INDIN.2013.6622948

[67] L’Her, D., Le Parc, P. and Marce, L. (1999) Proving Sequential Function Chart Programs Using Automata. In: Cham-
parnaud, J.-M., Ziadi, D. and Maurel, D., Eds., Automata Implementation, Springer, Berlin, 149-163.
http://dx.doi.org/10.1007/3-540-48057-9_13

[68] Remelhe, M., Lohmann, S., Stursberg, O., Engell, S. and Bauer, N. (2004) Algorithmic Verification of Logic Control-
lers Given as Sequential Function Charts. 2004 IEEE International Symposium on Computer Aided Control Systems
Design, Taipei, 4 September 2004, 53-58. http://dx.doi.org/10.1109/CACSD.2004.1393850

[69] Bauer, N., Engell, S., Huuck, R., Lohmann, S., Lukoschus, B., Remelhe, M. and Stursberg, O. (2004) Verification of
PLC Programs Given as Sequential Function Charts. In: Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W.,
Schnieder, E. and Westkämper, E., Eds., Integration of Software Specification Techniques for Applications in Engi-
neering, Lecture Notes in Computer Science, Vol. 3147, Part V: Verification, Springer, Berlin, 517-540.
http://dx.doi.org/10.1007/978-3-540-27863-4_28

http://dx.doi.org/10.1007/978-3-642-21768-5_1
http://dx.doi.org/10.1109/ETFA.1997.616302
http://dx.doi.org/10.1109/emrts.1999.777456
http://dx.doi.org/10.1109/icsmc.2000.884359
http://dx.doi.org/10.1109/EMRTS.2001.934016
http://dx.doi.org/10.1109/WODES.2006.1678428
http://dx.doi.org/10.1007/978-3-540-69100-6_9
http://dx.doi.org/10.1109/TASE.2010.2050199
http://dx.doi.org/10.1109/icst.2010.10
http://dx.doi.org/10.1016/j.arcontrol.2012.09.015
http://dx.doi.org/10.1109/iecon.2009.5415231
http://dx.doi.org/10.1109/TC.2009.128
http://dx.doi.org/10.1109/INDIN.2013.6622948
http://dx.doi.org/10.1007/3-540-48057-9_13
http://dx.doi.org/10.1109/CACSD.2004.1393850
http://dx.doi.org/10.1007/978-3-540-27863-4_28

S. Rӧsch et al.

517

[70] Bauer, N., Huuck, R., Lukoschus, B. and Engell, S. (2004) A Unifying Semantics for Sequential Function Charts. In:
Ehrig, H., Damm, W., Desel, J., Große-Rhode, M., Reif, W., Schnieder, E., Westkämper, E., Eds., Integration of Soft-
ware Specification Techniques for Applications in Engineering, Springer, Berlin, 400-418.
http://dx.doi.org/10.1007/978-3-540-27863-4_22

[71] Provost, J., Roussel, J.-M. and Faure, J.-M. (2011) Translating Grafcet Specifications into Mealy Machines for Con-
formance Test Purposes. Control Engineering Practice, 19, 947-957.
http://dx.doi.org/10.1016/j.conengprac.2010.10.001

[72] Provost, J., Roussel, J.-M. and Faure, J.-M. (2011) A Formal Semantics for Grafcet Specifications. Proceedings of the
IEEE 7th International Conference on Automation Science and Engineering (CASE 2011), Trieste, 24-27 August 2011,
488-494. http://dx.doi.org/10.1109/CASE.2011.6042457

[73] Provost, J., Roussel, J.-M. and Faure, J.-M. (2014) Generation of Single Input Change Test Sequences for Confor-
mance Test of Programmable Logic Controllers. IEEE Transactions on Industrial Informatics, 10, 1696-1704.
http://dx.doi.org/10.1109/TII.2014.2315972

[74] Schumacher, F., Schröck, S. and Fay, A. (2013) Transforming Hierarchical Concepts of GRAFCET into a Suitable Pe-
tri Net Formalism. Manufacturing Modelling, Management, and Control, 7, 295-300.

[75] Schumacher, F. and Fay, A. (2013) Transforming Time Constraints of a GRAFCET Graph into a Suitable Petri Net
Formalism. 2013 IEEE International Conference on Industrial Technology (ICIT), Cape Town, 25-28 February 2013,
210-218. http://dx.doi.org/10.1109/ICIT.2013.6505674

[76] Hamon, G. and Rushby, J. (2007) An Operational Semantics for Stateflow. International Journal on Software Tools for
Technology Transfer, 9, 447-456. http://dx.doi.org/10.1007/s10009-007-0049-7

[77] Beer, A., Georgiev, T., Leitner-Fischer, F. and Leue, S. (2013) Model-Based Quantitative Safety Analysis of Matlab
Simulink/Stateow Models. Tagungsband des Dagstuhl-Workshops, Dagstuhl, 24-26 April 2013.

[78] Jouault, F., Allilaire, F., Bezivin, J. and Kurtev, I. (2008) ATL: A Model Transformation Tool. Science of Computer
Programming, 72, 31-39. http://dx.doi.org/10.1016/j.scico.2007.08.002

[79] Schetinin, N., Moriz, N., Kumar, B., Maier, A., Faltinski, S. and Niggemann, O. (2013) Why Do Verification Approa-
ches in Automation Rarely Use HIL-Test? 2013 IEEE International Conference on Industrial Technology (ICIT), Cape
Town, 25-28 February 2013, 1428-1433. http://dx.doi.org/10.1109/ICIT.2013.6505881

[80] Obermeier, M., Braun, S. and Vogel-Heuser, B. (2014) A Model-Driven Approach on Object Oriented PLC Program-
ming for Manufacturing Systems with Regard to Usability. IEEE Transactions on Industrial Informatics, 11, 790-800.
http://dx.doi.org/10.1109/TII.2014.2346133

[81] Hametner, R., Winkler, D., Östreicher, T., Bi, S. and Zoitl, A. (2010) The Adaptation of Test-Driven Software Pro-
cesses to Industrial Automation Engineering. 2010 8th IEEE International Conference on Industrial Informatics
(INDIN), Osaka, 13-16 July 2010, 921-927. http://dx.doi.org/10.1109/indin.2010.5549620

[82] Hussain, T. and Frey, G. (2006) UML-Based Development Process for IEC 61499 with Automatic Test-Case Genera-
tion. IEEE Conference on Emerging Technologies and Factory Automation (ETFA’06), Prague, 20-22 September 2006,
1277-1284. http://dx.doi.org/10.1109/etfa.2006.355407

[83] Hametner, R., Kormann, B., Vogel-Heuser, B., Winkler, D. and Zoitl, A. (2011) Test Case Generation Approach for
Industrial Automation Systems. 2011 5th International Conference on Automation, Robotics and Applications, Wel-
lington, 6-8 December 2011, 57-62. http://dx.doi.org/10.1109/ICARA.2011.6144856

[84] Krause, J., Herrmann, A. and Diedrich, C. (2008) Test Case Generation from Formal System Specifications Based on
UML State Machine. ATP-International, 1, 47-54.

[85] Kormann, B., Tikhonov, D. and Vogel-Heuser, B. (2012) Automated PLC Software Testing Using Adapted UML Se-
quence Diagrams. 14th IFAC Symposium of Information Control Problems in Manufacturing, 14, 1615-1621.

[86] Zander, J., Dai, Z.R., Schieferdecker, I. and Din, G. (2005) From U2TP Models to Executable Tests with TTCN-3—
An Approach to Model Driven Testing. In: Khendek, F. and Dssouli, R., Eds., Testing of Communicating Systems,
Springer, Berlin, 289-303. http://dx.doi.org/10.1007/11430230_20

[87] Kumar, B., Czybik, B. and Jasperneite, J. (2011) Model Based TTCN-3 Testing of Industrial Automation Systems—
First Results. 2011 IEEE 16th Conference on Emerging Technologies and Factory Automation, Toulouse, 5-9 Sep-
tember 2011, 1-4. http://dx.doi.org/10.1109/etfa.2011.6059146

[88] DeTommasi, G., Vitelli, R., Boncagni, L. and Neto, A.C. (2013) Modeling of MARTe-Based Real-Time Applications
with SysML. IEEE Transactions on Industrial Informatics, 9, 2407-2415. http://dx.doi.org/10.1109/TII.2012.2235073

[89] Bayrak, G. and Vogel-Heuser, B. (2014) Evaluation of Programming Languages for a Flexible Programming of Ther-
mo-Mechanical Processes by Means of Cognitive Effectiveness. IEEE.

[90] Bayrak, G., Murr, P., Ulewicz, S. and Vogel-Heuser, B. (2012) Comparison of a Transformed Matlab/Simulink Model

http://dx.doi.org/10.1007/978-3-540-27863-4_22
http://dx.doi.org/10.1016/j.conengprac.2010.10.001
http://dx.doi.org/10.1109/CASE.2011.6042457
http://dx.doi.org/10.1109/TII.2014.2315972
http://dx.doi.org/10.1109/ICIT.2013.6505674
http://dx.doi.org/10.1007/s10009-007-0049-7
http://dx.doi.org/10.1016/j.scico.2007.08.002
http://dx.doi.org/10.1109/ICIT.2013.6505881
http://dx.doi.org/10.1109/TII.2014.2346133
http://dx.doi.org/10.1109/indin.2010.5549620
http://dx.doi.org/10.1109/etfa.2006.355407
http://dx.doi.org/10.1109/ICARA.2011.6144856
http://dx.doi.org/10.1007/11430230_20
http://dx.doi.org/10.1109/etfa.2011.6059146
http://dx.doi.org/10.1109/TII.2012.2235073

S. Rӧsch et al.

518

into the Programming Language CFC on Different IEC 61131-3 PLC Environments. 2012 IEEE 17th Conference on
Emerging Technologies & Factory Automation (ETFA), Krakow, 17-21 September 2012, 1-8.
http://dx.doi.org/10.1109/ETFA.2012.6489667

[91] Petrenko, A., Dury, A., Ramesh, S. and Mohalik, S. (2013) A Method and Tool for Test Optimization for Automotive
Controllers. 2013 IEEE 6th International Conference on Software Testing, Verification and Validation Workshops
(ICSTW), Luxembourg, 18-22 March 2013, 198-207. http://dx.doi.org/10.1109/ICSTW.2013.31

[92] Zelenov, S., Silakov, D., Petrenko, A., Conrad, M. and Fey, I. (2006) Automatic Test Generation for Model-Based
Code Generators. ISoLA 2006, 2nd International Symposium on Leveraging Applications of Formal Methods, Verifica-
tion and Validation, Paphos, 15-19 November 2006, 75-81. http://dx.doi.org/10.1109/ISoLA.2006.70

[93] Estévez, E. and Marcos, M. (2012) Model-Based Validation of Industrial Control Systems. IEEE Transactions on In-
dustrial Informatics, 8, 302-310. http://dx.doi.org/10.1109/TII.2011.2174248

[94] Svenningsson, R., Vinter, J., Eriksson, H. and Törngren, M. (2010) MODIFI: A MODel-Implemented Fault Injection
Tool. In: Schoitsch, E., Ed., Computer Safety, Reliability, and Security, Lecture Notes in Computer Science, Vol. 6351,
Springer, Berlin, 210-222. http://dx.doi.org/10.1007/978-3-642-15651-9_16

[95] Arlat, J., Aguera, M., Amat, L., Crouzet, Y., Fabre, J.-C., Laprie, J.-C., Martins, E. and Powell, D. (1990) Fault Injec-
tion for Dependability Validation: A Methodology and Some Applications. IEEE Transactions on Software Engineer-
ing, 16, 166-182. http://dx.doi.org/10.1109/32.44380

[96] Aidemark, J., Vinter, J., Folkesson, P. and Karlsson, J. (2001) GOOFI: Generic Object-Oriented Fault Injection Tool.
2001 International Conference on Dependable Systems and Networks, DSN 2001, Goteborg, 1-4 July 2001, 83-88.
http://dx.doi.org/10.1109/DSN.2001.941394

[97] Ziade, H., Ayoubi, R. and Velazco, R. (2004) A Survey on Fault Injection Techniques. The International Arab Journal
of Information Technology, 1, 171-186.

[98] Baraza, J., Gracia, J., Gil, D. and Gil, P. (2005) Improvement of Fault Injection Techniques Based on VHDL Code
Modification. 10th IEEE International High-Level Design Validation and Test Workshop, 30 November-2 December
2005, 19-26. http://dx.doi.org/10.1109/hldvt.2005.1568808

[99] Schlingloff, H. and Vulinovic, S. (2005) Model Based Dependability Evaluation for Automotive Control Functions. In:
Fritzson, P., Ed., Modeling and Simulation for Public Safety.

[100] Vinterl, J., Bromander, L., Raistrick, P. and Edlerl, H. (2007) FISCADE—A Fault Injection Tool for SCADE Models.
2007 3rd Institution of Engineering and Technology Conference on Automotive Electronics, Warwick, 28-29 June
2007, 1-9.

[101] Powell, D., Arlat, J., Chu, H.N., Ingrand, F. and Killijian, M. (2012) Testing the Input Timing Robustness of Real-
Time Control Software for Autonomous Systems. 2012 9th European Dependable Computing Conference, Sibiu, 8-11
May 2012, 73-83. http://dx.doi.org/10.1109/EDCC.2012.16

[102] Kormann, B. and Vogel-Heuser, B. (2011) Automated Test Case Generation Approach for PLC Control Software Ex-
ception Handling Using Fault Injection. IECON 2011—37th Annual Conference on IEEE Industrial Electronics Socie-
ty, Melbourne, 7-10 November 2011, 365-372. http://dx.doi.org/10.1109/IECON.2011.6119280

[103] Rösch, S., Tikhonov, D., Schütz, D. and Vogel-Heuser, B. (2014) Model-Based Testing of PLC Software: Test of
Plants’ Reliability by Using Fault Injection on Component Level. IFAC World Conference, Cape Town, 24-29 August
2014.

[104] Sung, A., Choi, B., Wong, W.E. and Debroy, V. (2011) Mutant Generation for Embedded Systems Using Kernel-
Based Software and Hardware Fault Simulation. Information and Software Technology, 53, 1153-1164.
http://dx.doi.org/10.1016/j.infsof.2011.03.010

[105] Arlat, J. and Crouzet, Y. (2010) Physical Fault Models and Fault Tolerance. In: Wunderlich, H.-J., Ed., Models in
Hardware Testing, Frontiers in Electronic Testing, Vol. 43, Springer Netherlands, Dordrecht, 217-255.
http://dx.doi.org/10.1007/978-90-481-3282-9_8

[106] Schludermann, H., Kirchmair, T. and Vorderwinkler, M. (2000) Soft-Commissioning: Hardware-in-the-Loop-Based
Verification of Controller Software. Proceedings of the 2000 Winter Simulation Conference, 1, 893-899.
http://dx.doi.org/10.1109/wsc.2000.899889

[107] Carreira, J., Madeira, H. and Silva, J.G. (1998) Xception: Software Fault Injection and Monitoring in Processor Func-
tional Units. Dependable Computing and Fault Tolerant Systems, 10, 245-266.

[108] Yuste, P., Ruiz, J.C., Lemus, L. and Gil, P. (2003) Non-Intrusive Software-Implemented Fault Injection in Embedded
Systems. In: de Lemos, R., Weber, T.S. and Camargo Jr., J.B., Eds., Dependable Computing, Springer, Berlin, 23-38.
http://dx.doi.org/10.1007/978-3-540-45214-0_5

[109] (1998) IEEE Std 1219-1998, IEEE Standard for Software Maintenance. The Institute of Electrical and Electronics En-
gineers, Inc., Los Alamos.

http://dx.doi.org/10.1109/ETFA.2012.6489667
http://dx.doi.org/10.1109/ICSTW.2013.31
http://dx.doi.org/10.1109/ISoLA.2006.70
http://dx.doi.org/10.1109/TII.2011.2174248
http://dx.doi.org/10.1007/978-3-642-15651-9_16
http://dx.doi.org/10.1109/32.44380
http://dx.doi.org/10.1109/DSN.2001.941394
http://dx.doi.org/10.1109/hldvt.2005.1568808
http://dx.doi.org/10.1109/EDCC.2012.16
http://dx.doi.org/10.1109/IECON.2011.6119280
http://dx.doi.org/10.1016/j.infsof.2011.03.010
http://dx.doi.org/10.1007/978-90-481-3282-9_8
http://dx.doi.org/10.1109/wsc.2000.899889
http://dx.doi.org/10.1007/978-3-540-45214-0_5

S. Rӧsch et al.

519

[110] Rothermel, G. and Harrold, M. (1996) Analyzing Regression Test Selection Techniques. IEEE Transactions on Soft-
ware Engineering, 22, 529-551. http://dx.doi.org/10.1109/32.536955

[111] Yoo, S. and Harman, M. (2010) Regression Testing Minimization, Selection and Prioritization: A Survey. Software
Testing, Verification and Reliability, 22, 67-120. http://dx.doi.org/10.1002/stv.430

[112] Bohner, S.A. and Arnold, R.S. (1996) Software Change Impact Analysis. The Institute of Electrical and Electronic En-
gineers, Inc., Los Alamos.

[113] Farooq, Q., Iqbal, M.Z.Z., Malik, Z.I. and Nadeem, A. (2007) An Approach for Selective State Machine Based Re-
gression Testing. Proceedings of the 3rd International Workshop on Advances in Model-Based Testing (A-MOST’07),
ACM Press, New York, 44-52. http://dx.doi.org/10.1145/1291535.1291540

[114] Briand, L., Labiche, Y. and Soccar, G. (2002) Automating Impact Analysis and Regression Test Selection Based on
UML Designs. International Conference on Software Maintenance, Montreal, 3-6 October 2002, 252-261.
http://dx.doi.org/10.1109/icsm.2002.1167775

[115] Le Traon, Y., Jéron, T., Jézéquel, J.-M. and Morel, P. (2000) Efficient Object-Oriented Integration and Regression
Testing. IEEE Transactions on Reliability, 49, 12-25. http://dx.doi.org/10.1109/24.855533

[116] Caliebe, P., Herpel, T. and German, R. (2012) Dependency-Based Test Case Selection and Prioritization in Embedded
Systems. 2012 IEEE 5th International Conference on Software Testing, Verification and Validation, Montreal, 17-21
April 2012, 731-735. http://dx.doi.org/10.1109/ICST.2012.164

[117] Chen, Y., Probert, R.L. and Ural, H. (2009) Regression Test Suite Reduction Based on SDL Models of System Re-
quirements. Journal of Software Maintenance and Evolution: Research and Practice, 21, 379-405.
http://dx.doi.org/10.1002/smr.415

[118] Korel, B., Tahat, L. and Vaysburg, B. (2002) Model Based Regression Test Reduction Using Dependence Analysis.
2002 International Conference on Software Maintenance, Montreal, 3-6 October 2002, 214-223.
http://dx.doi.org/10.1109/icsm.2002.1167768

[119] Ryder, B. and Tip, F. (2001) Change Impact Analysis for Object-Oriented Programs. Proceedings of the 2001 ACM
SIGPLAN-SIGSOFT Workshop on Program Analysis for Software Tools and Engineering, 46-53.
http://dx.doi.org/10.1145/379605.379661

[120] Leung, H. and White, L. (1990) A Study of Integration Testing and Software Regression at the Integration Level. 1990
International Conference on Software Maintenance, San Diego, 26-29 November 1990, 290-301.
http://dx.doi.org/10.1109/icsm.1990.131377

[121] Ren, X., Shah, F., Tip, F., Ryder, B.G. and Chesley, O. (2004) Chianti: A Tool for Change Impact Analysis of Java
Programs Categories and Subject Descriptors. ACM Sigplan Notices, 39, 432-448.
http://dx.doi.org/10.1145/1028976.1029012

[122] Orso, A., Apiwattanapong, T. and Harrold, M.J. (2003) Leveraging Field Data for Impact Analysis and Regression
Testing. ACM SIGSOFT Software Engineering Notes, 28, 128-137. http://dx.doi.org/10.1145/949952.940089

[123] Rothermel, G. and Harrold, M.J. (1997) A Safe, Efficient Regression Test Selection Technique. ACM Transactions on
Software Engineering and Methodology, 6, 173-210. http://dx.doi.org/10.1145/248233.248262

[124] Chen, Y.F., Rosenblum, D. and Vo, K. (1994) TESTTUBE: A System for Selective Regression Testing. Proceedings
of 16th International Conference on Software Engineering, (ICSE’94), Sorrento, 16-21 May 1994, 211-220.
http://dx.doi.org/10.1109/ICSE.1994.296780

[125] Ulewicz, S., Schütz, D. and Vogel-Heuser, B. (2014) Software Changes in Factory Automation—Towards Automatic
Change Based Regression Testing. IECON 2014, 40th Annual Conference of the IEEE Industrial Electronics Society,
Dallas, 29 October-1 November 2014, 2617-2623. http://dx.doi.org/10.1109/IECON.2014.7048875

http://dx.doi.org/10.1109/32.536955
http://dx.doi.org/10.1002/stv.430
http://dx.doi.org/10.1145/1291535.1291540
http://dx.doi.org/10.1109/icsm.2002.1167775
http://dx.doi.org/10.1109/24.855533
http://dx.doi.org/10.1109/ICST.2012.164
http://dx.doi.org/10.1002/smr.415
http://dx.doi.org/10.1109/icsm.2002.1167768
http://dx.doi.org/10.1145/379605.379661
http://dx.doi.org/10.1109/icsm.1990.131377
http://dx.doi.org/10.1145/1028976.1029012
http://dx.doi.org/10.1145/949952.940089
http://dx.doi.org/10.1145/248233.248262
http://dx.doi.org/10.1109/ICSE.1994.296780
http://dx.doi.org/10.1109/IECON.2014.7048875

	Review of Model-Based Testing Approaches in Production Automation and Adjacent Domains—Current Challenges and Research Gaps
	Abstract
	Keywords
	1. Introduction
	2. Research Methodology, Design and Classification
	3. Methodology, Classification and Definitions
	3.1. Model/Specification—Classification Criterion C1
	3.2. Test Selection Criteria—C2
	3.3. Test Cases—C3
	3.4. Test Bed—C4
	3.5. System under Test (SUT)—C5
	3.6. Test Verdict

	4. Testing and Test Sequence Generation of and from Discrete Event System Specifications
	4.1. Testing of Discrete Event System Models
	4.2. Model Transformation

	5. Test Sequence Generation from Models Used within Development Processes
	6. Test Generation from Fault Models—Testing of Unintended Behavior
	6.1. Hardware-Implemented Fault Injection (HWIFI)
	6.2. Model-Implemented Fault Injection (MIFI)
	6.3. Software-Implemented Fault Injection (SWIFI)

	7. Test Selection from Change Models—Regression Testing
	7.1. Traceability Based CIA
	7.2. Dependency Based CIA

	8. Discussion and Research Gaps
	9. Conclusion
	References

