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Abstract 
Using Lindblad approach to study decoherence of quantum systems, we study the decoherence 
and decay of entangled states, formed by two basic states of a chain of thee qubits. We look on 
these states for a possible regular dependence on their decay as a function of their energy separa-
tion between the basic states under different types of environments. We didn’t find regular or sig-
nificant dependence on this energy separation for the type of environment considered. 
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1. Introduction 
In the real world (quantum or classical) the interaction of the system with the environment is unavoidable. In 
principle, one could study the unitary evolution of the whole system, quantum plus environment plus quantum- 
environment interaction, but this represents a many-bodies problem which is unsolvable within any picture of 
the quantum mechanics. The most used approach to study this phenomenon is to use the matrix density approach 
for the whole system and to make the trace over the environment variables [1]-[5]. The resulting density matrix 
is called “reduced density matrix”, and its associated non-unitary evolution equation is called “master equation”. 
This equation is phenomenological where dissipative and diffusion parameters are defined, and they are respon-
sible of the decay behavior of the non diagonal elements of the reduced density matrix. This phenomenon is 
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called “decoherence” because it is related with the disappearance of the interference in terms of the product of 
the quantum wave function [6] [7] and many think that this decoherence effect is closely related with the ap-
pearance of the classical world [7]-[9]. In most of the approaches, the positiveness and trace equal to one are 
kept as principal condition for the reduced density matrix. The best known mathematical approach which kept 
these conditions was given by Lindblad [10], which gave an abstract general non unitary evolution equation for 
the reduced density matrix. The master equation is different when dealing with continuous systems (quantum 
Browning motion, for example) [1] [2] or discrete quantum systems (spin system) [11]. One of the used ap-
proaches for quantum discrete system is described in [12], and we will use this approach for our study of deco-
herence of entangled states built up with two states of three qubits in a quantum computer model of a linear 
chain of three paramagnetic atoms with nuclear spin one half [13]. In this work, we are interested in determining 
the decoherence of several entangled states formed by two states of three qubits, and we will use the above men-
tioned Markovian-Lindblad master type of equation [4] [12]. On the other hand, even this model for solid state 
quantum computer has not been built; it has been very useful for theoretical studies about implementation of 
quantum gates and quantum algorithms [13]-[16] which can be extrapolated to other solid state quantum com-
puters. The main idea is to explore the possible sensitivity of the decay of an entangled state with respect to the 
energy-difference of its two states involved; we establish four cases to be considered with the quantum-environ- 
ment system: independent environment interaction, pure dephasing interaction, correlated dissipation interaction, 
and dephasing correlated interaction. The analytical dynamical systems of the reduced density matrix elements 
are obtained for these cases, and the results of the analytical and numerical simulations are presented.  

2. Hamiltonian of the Chain of Nuclear Spins 
Following Lloyd’s idea [17], consider a linear chain of nuclear spin one half, separated by some distance and in-
side a magnetic in a direction z, ( ) ( )( )00,0,z B z=B , and making and angle θ  with respect this linear chain. 
Choosing this angle such that cos 1 3θ = , the dipole-dipole interaction is canceled, the Larmore’s frequency 
for each spin is different, ( )0k kB zω γ=  with γ  the gyromagnetic ratio. The magnetic moment of the nucleus 

kµ  is related with its spin through the relation k kγ= Sµ , and the interaction energy between the magnetic field 
and magnetic moments is ( ) z

int k k k kk kH B z Sω= − ⋅ = −∑ ∑µ . If in addition, one has first and second neighbor 
Ising interaction, the Hamiltonian of the system is just [13]  

1 2

1 2
1 1 1

2 2 ,
N N N

z z z z z
s k k k k k k

k k k

J JH S S S S Sω
− −

+ +
= = =

′
= − − −∑ ∑ ∑

 

                         (1) 

where N is the number of nuclear spins in the chain (or qubits), J and J' are the coupling constant of the nucleus 
at first and second neighbor. Using the basis of the register of N-qubits, { }1, ,

N
ξ ξ  with 0,1kξ = , one has 

that ( )1 2kz
k k kS ξξ ξ= −  . Therefore, the Hamiltonian is diagonal on this basis, and its eigenvalues are  

( ) ( ) ( )1 2
1 2

1 1 1
1 1 1 .

2 2 2
k k k k k

N N N

k
k k k

J JE ξ ξ ξ ξ ξ
ξ ω + +

− −
+ +

= = =

′
= − − − − − −∑ ∑ ∑                      (2) 

3. Interaction with the Environment 
Consider now that the environment is characterized by a Hamiltonian eH  and its interacting with the quantum 
system with Hamiltonian sH . Thus, the total Hamiltonian would be s e seH H H H= + + , where seH  is the 
part of the Hamiltonian which takes into account the interaction system-environment, and the equation one 
would need to solve, in terms of the density matrix, is [18] [19] 

[ ], ,t
ti H

t
ρ

ρ
∂

=
∂

                                      (3) 

where ( ),t t s eρ ρ=  is the density matrix which depends on the system and environment coordinates. The evo-
lution of the system is unitary, but it is not possible to solve this equation. Therefore, under some approxima-
tions and tracing over the environment coordinates [5] [20], it is possible to arrive to a Lindblad type of equation 
[4] [21] for the reduced density matrix ( ) ( )e ts trρ ρ= ,  
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[ ] † † †

1

1 1,
2 2

I

s i i i i i i
i

i H V V V V VV
t
ρ ρ ρ ρ ρ

=

∂  = + − − 
∂  

∑
                        (4) 

where iV  are called Kraus’ operators. This equation is not unitary and Markovian (without memory of the dy-
namical process). This equation can be written in the interaction picture, through the transformation †U Uρ ρ=  
with e siH tU =  , as  

( ) ,i
t
ρ ρ∂
=

∂





                                        (5) 

where ( )ρ   is the Lindblad operator  

( ) † † †

1

1 1
2 2

I

i i i i i i
i

V V V V VVρ ρ ρ ρ
=

 = − − 
 

∑      

                               (6) 

with †V UVU= . The explicit form of Lindblad operator is determined by the type of environment to consider 
[12] at zero temperature. In this work we consider dissipation effects and dephasing. So, the operators can be 

i iV S −=  (for dissipation), z
i iV S=  (for dephasing), and i iγ   is the coupling constant with the environment. 

In this way, one considers the following cases:  
1) Independent: In this case, each qubit of the chain acts independently with the environment, and one has 

local decoherence of the system. The Lindblad operator is  

( ) ( )1 2
2

N

k k k k k k k
k

S S S S S S
i

ρ γ ρ ρ ρ− + + − + −= − −∑    

   



                          (7) 

where kS +
  and kS −

  are the ascend and descend operators such that  
ˆ† e ,ki t

k k kS US U S ± Ω± ± ±= =                                   (8) 

where ˆ
kΩ  has been defined as  

( ) ( )1 1 2 2
ˆ .z z z z

k k k k k k
J Jw S S S S+ − + −

′
Ω = + + + +

 

                          (9) 

2) Correlated independent: Each qubit interact with the environment but its effect is felt by the other qubits, 
that is, the type of interaction is nonlocal with a collective interction between qubits and environment. The 
Lindblad operator is  

( ) ( )
,

1 2
2

N
jk

k j j k j k
j k

S S S S S S
i

γ
ρ ρ ρ ρ− + + − + −= − −∑      



                         (10) 

where jkγ  are the coupling constant between qubits and environment, with jk kjγ γ=  and ii iγ γ= .  
3) Dephasing: There is not interchange of energy between qubits and environment, only decoherence is pre-

sented where the non diagonal elements of the reduced density matrix go to zero. The Lindblad operator is  

( ) ( )1 2
N

z z z z z z
k k k k k k k

k
S S S S S S

i
ρ ρ ρ ρ= Γ − −∑



                          (11) 

where kΓ  is the parameter of the kth-qubit which take into account the dephasing of the qubit with the envi-
ronment (the tilde operators do not appear due to commutation of this operators with the evolution operator U).  

4) Correlated dephasing: Here, one takes into account the collective effect of the environment to the qubits. 
Lindblad’s operator is of the form  

( ) ( )
,

1 2 ,
N

z z z z z z
jk k j j k j k

j k
S S S S S S

i
ρ ρ ρ ρ= Γ − −∑



                         (12) 

where jk kjΓ = Γ  is the parameter with take into account the correlation ( )ii iΓ = Γ .  
The analytical solutions for these four cases are given in the Appendix. 
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4. Entanglement and GME-Concurrence 

Our 3-qubits Hilbert space H is generated by the basis { }1 2 3 0,1jξ
ξ ξ ξ

=
. Labeling the qubit of the 3-qubits chain  

as ABC, we understand an entanglement of the form AB when the qubits { }1,2  are entangled, and we under-
stand an entanglement of the form ABC when the 3-qubits { }1,2,3  are entangled. The entangled state under our 
consideration are listed on Table 1. We chose these state since they are mostly used on experiments of quantum 
computation or quantum information. 
 

Table 1. Entangled states (ordered according their energy separation). 

Entangled form Initial entangled state ( )2π MHzE∆ 
 

ABC 

( )18 1 8 2 ;Ψ = +  18 8 1 700E E E∆ = − =  

( )27 2 7 2 ;Ψ = +  27 7 2 500E E E∆ = − =  

( )36 3 6 2 ;Ψ = +  36 6 3 300E E E∆ = − =  

( )45 4 5 2 ;Ψ = +  45 5 4 100E E E∆ = − =  

AB 

( )17 1 7 2 ;α = +  17 7 1 605.2E E E∆ = − =  

( )28 2 8 2 ;α = +  28 8 2 594.8E E E∆ = − =  

( )46 4 6 2 ;α = +  46 6 4 209.8E E E∆ = − =  

( )35 3 5 2 ;α = +  35 5 3 195.2E E E∆ = − =  

BC 

( )14 1 4 2 ;β = +  14 4 1 305.2E E E∆ = − =  

( )58 5 8 2 ;β = +  58 8 5 294.8E E E∆ = − =  

( )23 2 3 2 ;β = +  23 3 2 104.8E E E∆ = − =  

( )67 6 7 2 ;β = +  67 7 6 95.2E E E∆ = − =  

AC 

( )16 1 6 2 ;ξ = +  16 6 1 510E E E∆ = − =  

( )38 3 8 2 ;ξ = +  38 8 3 490E E E∆ = − =  

( )25 2 5 2 ;ξ = +  25 5 2 300E E E∆ = − =  

( )47 4 7 2 ;ξ = +  47 7 4 300E E E∆ = − =  

 
In order to quantify the entanglement of a state formed by three qubits basis-states, we will use the criteria 

given on [22]-[24] where the lower bound of the concurrence is  

( ) { }
2 2

GME 1, ,2 NC β β
β

ρ ρ⊗ ⊗ 
Φ ≥ Φ Π Φ − Φ Π Π Φ 

 
∑



                 (13) 

where Φ  is a separable state of the two copies of the Hilbert space, ⊗  . { }αΠ  is the permutation oper-
ator acting on the double copies of the Hilbert space, ⊗  , interchanging elements of one space into the oth-
er, for example { } ( )1 2 1 2 1 2 1 21 φ φ ψ ψ ψ φ φψΠ ⊗ = ⊗ . if { }1 ,l m nζ = , { },l m nΠ  acting on rsΨ  means that 
the qubit label by “l” is fixed and the qubits label “m” and “n” are interchanged ( { }1|2,3 18 45Π = ,

{ }1,2,3 18 81Π = ). Denoting by 18 18mn m nρ = Ψ Ψ , one has the fallowing GME-concurrence associated to 
the given entangled state (Table 2):  
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Table 2. Entanglement form: ABC. 

State Φ  GME-concurrence 

18Ψ  18  
18 44 55 33 66 22 772 2 2 2ρ ρ ρ ρ ρ ρ ρ− − −  

27Ψ  27  
27 11 88 33 66 44 552 2 2 2ρ ρ ρ ρ ρ ρ ρ− − −  

36Ψ  36  
36 11 88 22 77 44 552 2 2 2ρ ρ ρ ρ ρ ρ ρ− − −  

45Ψ  45  
45 11 88 22 77 33 662 2 2 2ρ ρ ρ ρ ρ ρ ρ− − −  

 
For the case when entangled state is of the form AB, BC or AC, one makes the trace on the missing letter qubit, 

and it follows that ( )ijklΦ =  (Tables 3-5) 

GME

2 AB AB AB
C

il kj ij ij kl klρ ρ ρ= −                       (14) 

 
Table 3. Entanglemet form: AB. 

State Φ  GME-concurrence 

17α  0101  ( )( )17 28 33 44 55 662 2ρ ρ ρ ρ ρ ρ+ − + +  

28α  
    

46α  0011  ( )( )35 46 11 22 77 882 2ρ ρ ρ ρ ρ ρ+ − + +  

35α  
    

 
Table 4. Entanglement form: BC. 

State Φ  GME-concurrence 

14β  0101  ( )( )14 58 22 66 33 772 2ρ ρ ρ ρ ρ ρ+ − + +  

58β  
    

23β  0011  ( )( )23 67 11 55 44 882 2ρ ρ ρ ρ ρ ρ+ − + +  

67β  
    

 
Table 5. Entanglement form: AC. 

State Φ  GME-concurrence 

16ξ  0101  ( )( )16 38 22 44 55 772 2ρ ρ ρ ρ ρ ρ+ − + +  

38ξ  
    

25ξ  0011  ( )( )23 47 11 33 66 882 2ρ ρ ρ ρ ρ ρ+ − + +  

47ξ  
    
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5. Results 
In our case, we have three qubits space { }2 2 1 =0,1iξ

ξ ξ ξ , and our parameter in units 2π MHz are  

1 2 3

1 2 3 1 2 3

12 23 13 12 23 13

400; 200; 100; 10; 0.4
0.05; 0.05; 0.05; 0.05; 0.05; 0.05
0.05; 0.025 0.0125; 0.05; 0.025; 0.0125

J Jω ω ω
γ γ γ
γ γ γ

′= = = = =

= = = Γ = Γ = Γ =

= = = Γ = Γ = Γ =

 

the time is normalized by the same factor of 2π MHz. To determine the departure of the pure state entangled 
state, we use the purity parameter, ( )2P Tr ρ=  [25]. Figure 1(a) shows the behavior of this parameter for the 
entangled state 18Ψ  as a function of time, where one can see that correlations does not affect much the inde-
pendent model of the environment, which can be seen only for much bigger dissipation parameters, Figure 1(b). 
Dephasing models finish with the mix state on the system at the end, instead of a pure state of the independent 
model. As seen on Figure 2, independent model ends with a pure state in the system due to the system ends on 
the ground state after sharing energy with the environment. 

Let us see now how the GME-concurrence and Purity behave for different entangled state and different envi-
ronments. 

Independent Model: For the entangled states listed on Table 1, Figure 3(a), Figure 3(c), Figure 4(a), and 
Figure 4(c) show GME-concurrence, and Figure 3(b), Figure 3(d), Figure 4(b), and Figure 4(d) show their  
 

 
(a)                                                        (b) 

Figure 1. Independent model: (a) Purity behavior with 4-models environments; (b) Indepent model with big dissipation. 
 

 
Figure 2. Diagonal matrix elements behavior. 
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Figure 3. Independent: (a), (c) GME-concurrence vs τ. (b), (d) Purity vs τ. 

 

 
Figure 4. Independent: (a), (c) GME-concurrence vs τ. (b), (d) Purity vs τ. 
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associated Purity parameter behavior. The system always finish on the pure ground states ( )1 000= , the 
lowest bound of the GME-concurrence fall down (although this parameter can not tell us whether or not the en-
tanglement has been completely destroyed). Except for the entangled state 18Ψ  (maximum entergy difference 
between their entangled qubits), there is not clear difference how this entanglement decay is developed. For 
example, the entangled states 27Ψ , 36Ψ , 45Ψ  have the same GME-concurrence decay behavior, but 
these states have different energy-difference on their associated qubits. The entangled states 17α  and 46α  
the GME-concurrence decay is the same, although their energy-difference is quite big. 

Dephasing model: In this case, the GME-concurrence and purity parameters can be expressed explicitly in a 
simple form as shown in Table 6:  
 

Table 6. Exact solution for dephasing model. 

Entanglement ( )GME: ij
C τ

ϒ
 ( )

ij
P τ

ϒ
 

(ABC) ( ) ( )2 0 expijρ τ−Γ , ( ) ( ) ( ) ( )2 2 20 0 2 0 expii jj ijρ ρ ρ τ+ + −Γ  

(AB) ( ) ( )1 22 0 expijρ τ− Γ + Γ   , ( ) ( ) ( ) ( )2 2 2
1 20 0 2 0 expii jj ijρ ρ ρ τ+ + − Γ + Γ    

(BC) ( ) ( )2 32 0 expijρ τ− Γ + Γ   , ( ) ( ) ( ) ( )2 2 2
2 30 0 2 0 expii jj ijρ ρ ρ τ+ + − Γ + Γ    

(AC) ( ) ( )1 32 0 expijρ τ− Γ + Γ   , ( ) ( ) ( ) ( )2 2 2
1 30 0 2 0 expii jj ijρ ρ ρ τ+ + − Γ + Γ    

 
where 1 2 3Γ = Γ +Γ +Γ , and { }, , ,ij ij ij ij ijα β ξϒ = Ψ , for the entangled cases ABC, AB, BC and AC 
respectively. This expressions show that the decay behavior is the same for each family of entangled states, that 
is, entangled states in the same family have the same decay behavior. 
 

 
Figure 5. GME-concurrence for entangled states with the four difference environments. 
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Independent correlated: From Figure 1, we saw that correlations have no effect on the purity. In addition, 
Figure 5 shows entangled states in different environments where we see that the behavior of the GME-concur- 
rence is the same for the independent and independent correlated models.  

6. Conclusion 
We have studied the decay behavior of entangled states, formed by two basic states of three qubits registers, un-
der four different environments and using Lindblad type of equation to see whether or not this decay has a regu-
lar dependence with respect to the energy-difference (difference of energy of the two basic states of three qubits 
which made up the entangled state) associated to the entangled state. We did not find this regular dependence, 
but rather a complicated situation which depends also on the type of environment. 
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Appendix 
We consider a linear chain of three nuclear spin system. Then, our basis is { }3 2 1 0,1iξ

ξ ξ ξ
=

, and the equations for 
the reduced matrix elements are obtained by making the bracket with these elements of the basis of the equation 
(5). 

1) Independent: 

( ) ( ) ( )
2 , 2

e
2

mn
N k N k

i k tk
mn mn mn k mn m n

k k
k k

t
γρ δ ρ γ δ ρ − −

∆Ω

+ +

∂
+ =

∂ ∑ ∑                    (15) 

where we have made the following definitions 

( )
2 2,1 ,1,0 ,0

m N k n N km nk kk k
mn k

α αα α
δ δ δ δ δ− −− −

= +                            (16) 

( ) ,0 ,0m n
k k

mn k
α α

δ δ δ=                                    (17) 

( ) , 2 , 2
.N k N kmn k n k m

k − −+ +
∆Ω = Ω −Ω                              (18) 

2) Correlated independent: 

( ) ( ) ( )

( ) ( ) ( ) ( )

,
2 , 2

,

, ,
2 2 , , 2 2

2 , e
2

, e , e

mn
N k N k

mn mn
N l N k N l N k

i k l tkl
mn mn m n

k l

i k l t i k l t
m nm n m n

t N k l
t

k l k l

γ
ρ δ ρ

δ ρ δ ρ

− −

− − − −

∆Ω

+ +

′ ′′∆Ω ∆Ω

− + − +

∂ = ∂

− − 

∑
           (19) 

where the following definitions have been made 

( ) ( ),0 ,0 , 2 , 2
, ,m n N k N k

l k
mn mn k n l m

k l k l
α α

δ δ δ − −+ +
= ∆Ω = Ω −Ω                       (20) 

( ) ( )
2,1 , 2 2 , 2,0

, ,m N l N l N k N lml k
m mn k m l m

k l k l
α α

δ δ δ − − − −− − + −
′= ∆Ω = Ω −Ω                    (21) 

( ) ( )
2,1 , 2 2 , 2,0

, , .n N l N l N k N lnl k
n mn k n l n

k l k l
α α

δ δ δ − − − −− − + −
′′= ∆Ω = Ω −Ω                     (22) 

3) Dephasing: 

( ) ( ) ( )1 1
m n
k k

N

mn k mn
k

t t
t

α αρ ρ+∂  = Γ − −  ∂ ∑                            (23) 

which has the following analytical solution 

( ) ( ) ( )0 exp 1 1 .
m n
k k

N

mn mn k
k

t tα αρ ρ +  = − Γ − −    
∑                         (24) 

4) Correlated depahsing: 

( ) ( ) ( ) ( ) ( )
,

2 1 1 1
4

m n m m n n
l k l k l k

N
kl

mn mn
k l

t t
t

α α α α α αρ ρ+ + +Γ∂  = − − − − −  ∂ ∑                  (25) 

which has the explicit solution 

( ) ( ) ( ) ( ) ( )
,

0 exp 1 1 2 1 .
4

m m n n m n
l k l k l k

N
kl

mn mn
k l

t tα α α α α αρ ρ + + + Γ  = − − + − − −    
∑               (26) 
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