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Abstract 
This study is concerned with describing the thermodynamic equilibrium of the saturated fluid 
with and without a free surface area A. Discussion of the role of A as system variable of the 
interface phase and an estimate of the ratio of the respective free energies of systems with and 
without A show that the system variables ( )V M S U, , ,  given by Gibbs suffice to describe the 
volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies 
of the two-phase fluid, namely ( ) ( ) ( ) ( )d d 1 d d 1vT T v p T Tµ − ⋅  for the vapor and  

( ) ( ) ( ) ( )d d 1 d d 1lT T v p T Tµ − ⋅  for the condensate (liquid or solid), only differ with respect to 
the phase-specific volumes vv  and lv . The saturation temperature T, vapor presssure p, and 
chemical potential µ  are intensive parameters, each of which has the same value everywhere 
within the fluid, and hence are phase-independent quantities. If one succeeds in representing µ  
as a function of vv  and lv , then the internal energies can also be described by expressions that 
only differ from one another with respect to their dependence on vv  and lv . Here it is shown that 

( ) ( )T p Td dµ  can be uniquely expressed by the volume function ( ) ( )( )v l v l v lv v v v v vln+ − − . 

Therefore, the internal energies can be represented explicitly as functions of the vapor pressure 
and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto 
existing problem of applied thermodynamics, calculating the internal energy from the measurable 
quantities T, p, vv , and lv , is thus solved. The same method applies to the calculation of the 
entropy, chemical potential, and heat capacity. 
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1. Introduction 
We are concerned here with electrically and magnetically neutral single-component matter under steady-state 
equilibrium conditions which are thermodynamically defined in the immediate vicinity of the critical point and 
below it. Between the critical gas temperature cT  and the triple-point temperature tT  (if it exists) the gas mass 
M is structureless and homogeneously distributed in the vessel volume V. It is assumed that M has the critical 
density 1 1cv M V v= = . Below the critical point, M is decomposed as condensed mass lM  with the density 

1 1l l lM V v v= >  in the sub-volume lV  and as vapor mass vM  with the density 1 1v v vM V v v= <  in the 
sub-volume vV . This gas mass in thermodynamic equilibrium existing in two phases is called a saturated fluid. 
As thermodynamic theory teaches, the only independent variable of the saturated fluid that can be chosen is the 
saturation temperature T, since the other field variables possible, viz. vapor pressure p and chemical potential 
µ , are unique functions of T. 

The critical point, from the experimental perspective, is the first occurrence or vanishing of a free surface A 
observed in V, which separates the volumes lV  and vV  from one another. By variation of T and M or V and 
observing the occurrence of A, one can define and measure the critical values v, cT , and cp . 

The work in Section 2 is concerned with describing the thermodynamic equilibrium of the real gas. The 
stationary equilibrium of M in V is known from Gibbs to be expressed by the fundamental equation 

( ), ,V V M S U=  which reproduces the functional relation among V, M, and the properties of the fluid, viz. 
entropy S, internal energy U, and free energy F U ST= − . 

Section 3 firstly treats the equilibrium of the two-phase fluid without an internal free surface, i.e. 0A = . The 
distributions of the masses lM  and vM  in lV  and vV  are given as functions of T. Then the equilibrium in 
the case 0A >  is discussed where there is a third fluid phase, called the interface phase. To it is assigned the 
free interface energy iF , which is identified with A γ− ⋅  ( γ  surface tension), so that the ratio iF F  can be 
numerically estimated. Estimation and discussion of the role of A as system variable show that the system 
variables ( ), , ,V M S U  given by Gibbs suffice to describe the volumetric properties of the fluid with and with- 
out a free surface area. 

In Section 4, it is reminded that the entropy and energy functions S, lS , and vS  and also U, lU , and vU  
assigned to the masses M, lM , and vM  are absolute temperature functions with thermodynamic zeros. This 
result, which can be deduced from internal energy functions being subject to Nernst’s theorem at absolute zero, 
is noteworthy, because the said quantities have been treated in Applied Thermodynamic Theory for more than a 
century as temperature functions with arbitrarily specified constants. 

Finally, in Section 5, the central task of this work, viz. finding an explicit thermodynamic expression for 
( ) ( )d dT p Tµ  in [ ]0, cT , is tackled and then solved in Section 6. The energy functions u, vu , lu , sT , 

vs T , ls T  and µ , and the heat capacities c, vc , and lc  can then be calculated from the measurable 
quantities ( )vv T , ( )lv T , and ( )p T . 

By means of the expression given for the volume function ( ) ( )d dT p Tµ  many thermodynamic relations 
are verified in the Appendix, this in turn being evidence for the correctness of the volume function used.  

2. Description of the Thermodynamic Equilibrium of the Real Gas 
Thermodynamics uses intensive and extensive quantities to describe the equilibrium state of the gas mass M 
enclosed in the volume V. An intensive property of the gas is the same everywhere in the volume and is 
therefore independent of the mass. Intensive equilibrium state quantities are the temperature T, pressure p, and 
chemical potential µ . They are defined by the first partial derivatives of extensive quantities [1], e.g., the 
internal energy U, which according to the fundamental equation is a function of entropy S, volume V, and mass 
M [2]:  
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( ), , ,U U S V M TS pV Mµ= = − +  

, , ,

, , .
V M M S S V

U U UT p
S V M

µ∂ ∂ ∂     = = − =     ∂ ∂ ∂     
                      (1) 

Variations in the extensive quantities S, V, and M lead to variations in the intensive quantities T, p, and µ  [2] 
as follows:  

, , ,

, , ,

, , ,

d d d d ,

d d d d ,

d d d d .

V M M S S V

V M M S S V

V M M S S V

T T TT S V M
S V M

p p pp S V M
S V M

S V M
S V M
µ µ µµ

∂ ∂ ∂     = + +     ∂ ∂ ∂     

∂ ∂ ∂     = + +     ∂ ∂ ∂     

∂ ∂ ∂     = + +     ∂ ∂ ∂     

                      (2) 

By means of Maxwell’s relations [2] ( ) ( ), ,M S V MT V p S∂ ∂ = − ∂ ∂ , ( ) ( ), ,S V V MT M Sµ∂ ∂ = ∂ ∂ ,  

( ) ( ), ,V M M Sp S T V∂ ∂ = − ∂ ∂ , ( ) ( ), ,S V M Sp M Vµ∂ ∂ = − ∂ ∂ , ( ) ( ), ,V M S VS T Mµ∂ ∂ = ∂ ∂ , and  

( ) ( ), ,M S S VV p Mµ∂ ∂ = − ∂ ∂  the differentials (2) can be written in the form  

, , ,

, , ,

, , ,

d d d d ,

d d d d ,

d d d d .

V M V M V M

M S M S M S

S V S V S V

T pT S V M
S S S

T pp S V M
V V V

T pS V M
M M M

µ

µ

µµ

∂ ∂ ∂     = + − +     ∂ ∂ ∂     

∂ ∂ ∂     = − + −     ∂ ∂ ∂     

∂ ∂ ∂     = + − +     ∂ ∂ ∂     

                     (3) 

For the single-component gas the well-known Gibbs-Duhem relation between the intensive quantities in dif- 
ferential form reads [2]:  

d d d 0.S T V p M µ− + =                                  (4) 

Explicit writing gives  

, , ,

, , ,

, , ,

0 d d d

d d d

d d d .

V M V M V M

M S M S M S

S V S V S V

T pS S V M
S S S

T pV S V M
V V V

T pM S V M
M M M

µ

µ

µ

 ∂ ∂ ∂     = − +      ∂ ∂ ∂       
 ∂ ∂ ∂     + − +      ∂ ∂ ∂       
 ∂ ∂ ∂     + − +      ∂ ∂ ∂       

                   (5) 

Variations in S, V, and M can be performed independently of each other. For dV = 0 and dM = 0 one thus has 
( ) ( ) ( ), , ,0 V M M S S VS T S V T V M T M= ∂ ∂ + ∂ ∂ + ∂ ∂  or 

( ) ( ) ( ) ( ), , , ,M S V M S V V MS V T V T S M T M T S= − ∂ ∂ ∂ ∂ − ∂ ∂ ∂ ∂ . Applying the identity  

( ) ( ) ( ) 1X Z YZ Y Y X X Z∂ ∂ ∂ ∂ ∂ ∂ = − , the entropy relation can be written as ( ) ( ), ,T M T VS V S V M S M= ∂ ∂ + ∂ ∂ .  

Using the Maxwell relations ( ) ( ), ,T M V MS V p T∂ ∂ = ∂ ∂  and ( ) ( ), ,T V V MS M Tµ∂ ∂ = − ∂ ∂ , one arrives at the  

Gibbs-Duhem form of the entropy:  

, ,

.
V M V M

pS V M
T T

µ∂ ∂   = −   ∂ ∂   
                              (6) 
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With d 0S =  and dM = 0 one obtains ( ) ( ), ,M S M SS V p T M Tµ= ∂ ∂ − ∂ ∂ , whereas the conditions d 0S =   

and d 0V =  give ( ) ( ), ,S V S VS V p T M Tµ= ∂ ∂ − ∂ ∂ . 

In the following, the properties of the real gas are investigated under the condition of constant mass M in 
given volume V. The entropy thus has the form (6). The internal-energy expression immediately follows from  
the fundamental equation, i.e. ( ) ( ), ,V M V MU ST Vp M V p T T Vp M T T Mµ µ µ= − + = ∂ ∂ − − ∂ ∂ +  or  

( )
( )

( )
( ), ,

.
1 1

V M V M

T p T
U M V

T T
µ   ∂ ∂

= −      ∂ ∂   
                           (7) 

According to relations (6) and (7), the entropy and internal energy of the gas mass are defined by the 
temperature derivatives of the intensive quantities µ  and p and the quantities M and V. The gas volume V has 
the significant property that it is proportional to the gas mass M since the gas of mean density 1−v  assumes the 
equilibrium-state volume V vM= . The entropy S and internal energy U are thus quantities that are proportional 
to M and hence absolute quantities [3]. As mentioned above, extensive and intensive quantities, both of which 
are given with absolute figures, are used for describing the emquilibrium properties of the gas, no matter which 
gas phases exist.  

3. Two-Phase Equilibrium without and with a Free Surface Area 
For every real gas there is a certain temperature cT , called critical temperature, at which the gas mass M 
decomposes into a low-density vapor-phase mass vM  and a high-density condensed-phase mass lM  (liquid 
or solid). The masses vM  and lM  are located in different subvolumes vV  and lV , separated from one 
another by a free interface area A. If v v v l l lV M v V M v V M v= = = = = , the first occurrence of A in V defines 
the critical volume v and cT , i.e. the critical point ( ), cv T  of the gas, which for temperatures cT T≤  is termed 
as a saturated fluid. Ignoring the existence of A, this fluid has the following properties:  

{ }
{ }

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

, , ,

, , , , , , , , , 0,

, , , , , , , ,

0 0 0 for 0 ,

0 0 , , 0 ,

0 , , 0 0 .

v l v l v l

v l v l v l

l l l c v c v v c

l l c v v

l l c v v

M M M V V V X X X X S U F H G C A

X M x v s u f h g c X M x

v v T v T v v T v T v T T

s s T s v T s v T s T s

u u T u v T u v T u u T

= + = + = + = =

= = =

< < ≤ = = ≤ < < ≤

= < ≤ ≤ ≤ <

< ≤ ≤ = ≤ ≤

                (8) 

The relation X xM=  states that the quantity X is proportional to the mass M, which means that each of the 
functions X (gas volume V, entropy S, internal energy U, free (Helmholtz) energy F U ST= − , enthalpy 
H U Vp= + , Gibbs energy G F Vp= + , and heat capacity d dC U T= ) ensures its uniqueness, has absolute 
value due to its thermodynamic zero, and is numerically interrelated to one another [3]. 

The decomposition of mass M into vM  and lM  below the critical point is intrinsicly described by [3]  

, .v l l l v v

v l l v v l l v

M xy yx M yx xy
M x y x y M x y x y

− −
= =

− −
                              (9) 

Taking x v= , , ,l v l vx v=  and ,l vy v v= = , Equation (9) gives  

10 1 for 0 .
2

l v l v
c

v l v l

v v M M v v
T T

v v M M v v
− −

≤ = ≤ ≤ = ≤ ≤ ≤
− −

                      (10) 

It is seen, because of ( ), ,v l v lv v T= , that the mass ratios ,v lM M  are functions of v and T. 

The proof of ( ) ( ) 1
2v c l cM T M M T M= =  is as follows: The positive functions ( ) ( )v v ly v v v v= − −  and  

( ) ( )l v ly v v v v= − −  are related by y y≥  and 1y y= − . For v lv v v= =  the functions y  and y  con- 

verge from above and below to the same limiting value cy . This yields 1c cy y= −  or 1
2cy = . 
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Then equation ( ) ( ) 1v l l vM M v v v v= − − =  represents the relation between the masses and specific 
volumes on incipient decomposition. With decreasing system temperature, more and more vapor particles con- 
dense into the liquid phase, i.e. the mass ratio v lM M  becomes less than 1 and decreases with decreasing  
temperature: ( ) ( ) 1v l l vM M v v v v= − − <  and ( ) ( )d d 0l vv v v v T − − >   for cT T< . 

If one investigates the temperature dependence of the volumes vV  and lV  between the critical point and 
absolute zero, one can generally ascertain that the volume variations are smaller than those of the masses and take 
opposite directions. From ( ) ( )l l lV V v M vM=  one obtains ( ) ( ) ( )2 1 2l cV T V vM vM= =  and 

( ) ( ) ( )( ) ( ) ( )0 0 0 0l l l lV V v M vM v v= = , while from ( ) ( )v l v l v lV V v v M M= ⋅  it follows that  

( ) ( ) 1v c l cV T V T =  and ( ) ( ) ( )0 0 0 1v l lV V v v= − . Since for real gases ( )2.5 0 4lv v< <  the ratio ( ) ( )0 0v lV V  
takes values between 1.5 and 3, with a jump occurring at the triple point. The following relations are valid:  

1 1 1 1 11 , 1.
1 1 2 1 1 1

v l l v v l

l v l v l v

V v v V v v V v v
V v v V v v V v v

− − −
= ≥ ≥ = = ≥

− − −
                   (11) 

Evaluation of relations (10) and (11) is given by means of published volume data for argon in Figure 1. 
Let us now turn to the problem of thermodynamic treatment of the physics of the free interface surface A. As 

stated, the existence of A affords the possibility of distinguishing in V between two fluid phases of different 
mass densities 1

v v vM V v−=  and 1
l l lM V v−=  and defining the critical point. Thermodynamic theory teaches 

that the intensive quantities T, p and µ  have the same value everywhere in V, i.e. in the interface layer as well, 
in which the density decreases from 1

lv−  to 1
vv− . If the length of this decrease is denoted by the distance Lδ , 

the volume V A Lδ δ= ⋅  can be assigned to the interface layer, in which the interface mass Mδ  is located, 
where it holds that ( ) ( )l vV V V V Vαδ αδ+ ± =  and ( ) ( )l vM M M M Mαδ αδ± + =  with 0 1α≤ ≤ . The 
fictitious quantities Vδ  and Mδ , however, cannot be thermodynamically calculated, whereas both the 
minimum surface expansion A, resulting from intermolecular and acceleration forces, and the surface tension γ , 
which is a measure of the effectiveness of these forces at the surface, are measurable quantities, γ  being a 
positive quantity [5]. The force resulting from these two yields the direction of the surface normal of A. The 
expansion of A depends on the shape of the vessel V. If, for example, the shape of V is chosen such that arbitrary 
rotation about the center of gravity of M changes the location of the interface, i.e. the height and expansion, the 
values of p and γ  as measures of the energy density in ,v lV  and A remain unchanged, but the distribution of  

 

 
Figure 1. Mass ratio v lM M M M≤  and volume ratio v lV V V V≥  of argon as 

functions of the temperature. Data 31.8809 cm gv  =    and ( ),v lv T  from Ref. [4].       
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the interface mass Mδ  in the newly formed volume Vδ  is changed and this can also be reversed isother- 
mally and isobarically, since the free energy measures the mechanical work done. On the other hand, the 
redistribution of the fluid mass is a result of the changed gravitation potential in V and this can, in principle, be 
determined as potental energy from the height differences of A before and after rotation and hence be 
thermodynmically expressed by the difference in the free energy F. Thus A can be regarded as an external 
thermodynamic variable, and the product ( )A γ⋅  is measurable and constitutes a thermodynamic quantity. 

Independently of prehistory, it holds for the saturated fluid that if the condition for forming a free surface 
between the liquid and vapor phases is given, then there is an interface particle layer, which represents a new 
equilibrium state described by a minimum internal energy U and simultaneously a maximum entropy S. Hence 
formation of the free interface surface A lowers the free energy of the fluid, F. This situation is formally taken 
into account by introducing the phase “interface” in keeping with the additive property of a variable X in 
addition to the phases “vapor” and “condensate” [6]:  

{ }

( ) ( )2

, , , , , , , , ,
0 , 0, 0, d d 0,

0 d , 0 d d d .c c

v l v l v l i

i i i
T T

i iT T

M M M V V V X X X X X S U F H G C
F U S T A A T

U A T T T S A T T T

γ γ γ

γ γ

= + = + = + + =

≥ = − ⋅ = − ⋅ > ≥ − ≥

≥ = − ⋅ ≤ = ⋅ −∫ ∫

              (12) 

The energy term ( )A γ− ⋅  is interpreted as free interface energy and described by the function iF ; the newly 
introduced function iU  is interpreted as surface energy, and the function iS  as surface entropy. These func- 
tions represent reversible interface quantities of the free surface A which vanish at 0A =  and also at cT T=  
because 0cγ =  and d d 0cTγ = . 

Then the enlarged Gibbs relations (6) and (7) read [6]  

( )
( )

( )
( ) 2

d d d 1 d ,
d d d

d d
d ,

d 1 d 1
.

c

Tc
T

T

T

pS M V A T
T T T T

T p T
U M V A T T

T T T
F U S T M V p A

µ γ

µ γ

µ γ

= − ⋅ + ⋅ − ⋅

= ⋅ − ⋅ − ⋅

= − ⋅ = ⋅ − ⋅ − ⋅

∫

∫                         (13) 

Figure 2 shows the temperature dependence of iF A F A∂ ∂ = , iU A U A∂ ∂ = , and iS A S A∂ ∂ =  for 
argon. In turn, these functions multiplied by A represent the area-contributions to the negative internal and free 
energies and positive entropy of the saturated fluid. 

In order to put the interface quantity iF  in thermodynamic relation to the above-mentioned quantities Mδ  
and Vδ , iF  is set equal to ( ),F M V M p Vδ δ µδ δ= − . Assuming ˆM V vδ δ= , V A Lδ δ= ⋅  and a mean in-  

terface density ( )1 11 ˆ1
2 v lv v v− −+ = , one obtains, because of iF Aγ= − , a functional relation between surface  

tension and interface quantities,  

0,
ˆ

p V M p L
A v

δ µδ µγ δ−  = = − ⋅ ≥  
                             (14) 

which, however, remains numerically indeterminable owing to the hypothetical length Lδ . In turn, relation (14) 
allows the qualitative statement that Lδ  is continuously increasing from 0 at cT  to values of order 810 cm−  
at tT  (see Figure 2, Figure 4 and Figure 8). 

The relative energy contribution of an interface quantity to the respective system quantity depends on the ratio 
of the numbers of interacting particles in the interface volume Vδ  and system volume V, i.e.  

( ) ( )ˆM M V v V v V Vδ δ δ= ≈ , and is therefore extremely small. Despite the smallness of the order 810−  
and less [7] [10], surface effects play a great role in nature and technology. The smallness of an interface 
quantity shows, on the other hand, that ignoring it when studying volume properties of the fluid is completely 
justified. As the existence of a surface A does not change the mass M and volume V, the property of U, S, and F 
being extensive quantities is maintained.  

4. The Thermodynamic Zero of Thermodynamic Functions 
According to the Gibbsian energy Equation (7), the mass- and phase-specific internal energies of the saturated  
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Figure 2. Analysis of free-surface quantities. From fitted published surface tension data ( )γ  of 

argon [8] [9] and setting ( )γ−  equal to the area-specific free energy, i.e. 0iF A γ= − < , one 

gets the area-specific surface energy ( )2 d 0cT

i T
U A T T Tγ= − <∫  and the area-specific entropy 

( )d d d 0
Tc

i T
S A T T Tγ= − >∫ . It holds that 0i i iU S T F Aγ− ⋅ = = − < . Each of these functions 

vanishes at cT T= .                                                                     
 
fluid are interrelated as follows:  

( )
( )

( )
( )

( )
( )

( )
( )

d d d d
.

d 1 d 1 d 1 d 1l l v v

p T p T p T T
u v u v u v

T T T T
µ

+ = + = + =                    (15) 

Since 0 < l vv v v≤ ≤  and ( ) ( )d d 1 d d 0p T T p T T p− = ⋅ − >  for cT T≤ , one has l vu u u< <  and  
( ) ( ) ( )d d 0v l v lu u v v p T T p− = − ⋅ ⋅ − >  for cT T<  and v lu u u= =  at cT T= . By virtue of Nernst’s theorem  
at absolute temperature zero it holds that ( )0 0T = ,  

( ) ( ) ( )( )( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )0 d d 1 0 d d 1 0 0 0 0 0 0,v l v lv p T T T T u u u uµ µ= = = = = − − <   

( ) ( ) ( ) ( ) ( ) ( ) ( )( )( ) ( )( ) ( )( )0 0 0 0 0 d d 1 0 / 0 0 0,v l v lu s T vp v p T T v v v u uµ − = − + = = − − ⋅ − =  and  

( ) ( ) ( )( )( ) ( ) ( ) ( )( )( )0 d d 1 0 0 d d 1 0 0.v vu T T v p T Tµ= − =  The vanishing energy value ( )0vu  gives the 
argument for binding the thermodynamic value 0 to the relations l vu u u≤ ≤ . The conditions 0 l vv v v< ≤ ≤  ex- 
clude, however, the validity of the relations 0 l vu u u≤ ≤ ≤ , 0l vu u u≤ ≤ ≤ , and 0l vu u u≤ ≤ ≤  for 0 cT T≤ ≤ , 
and admit 0l vu u u≤ ≤ ≤  only. Thus the unique solution for the internal energies is found:  

( ) ( ) ( ), 0 for 0 .l v cu T u T v u T T T≤ ≤ ≤ ≤ ≤                          (16) 

Relations (16) say that the internal vapor energy vu  is not negative and the internal fluid energy u is equal or 
greater than the internal condensed matter energy lu  and the two are not positive. At the crtical point, each of 
these energies vanishes. 

In keeping with W. Gibbs [1], it is hypothetically asserted in the literature (e.g. [11]-[13]) that the temperature 
dependence of u, ,v lu , and µ  is determined only up to an arbitrary constant a, i.e. l vu a u a u a+ ≤ + ≤ +  and 
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aµ + . On the contrary, because of Nernst’s theorem the relations (16) state that 0a ≡  and thus confirm the 
universality of the Gibbsian entropy and energy expressions (6) and (7), which are given in thermodynamic 
terms without any shifts. 

Moreover, some thermodynamic relations are mentioned in relation to the thermodynamic value 0:  

( )
( )

2

2

0 , 0,

dd 0, 0 ,
d d 1

d 0.
d

l v l v

l v l v

l v l v

l v l v

l v

l v

u u f fu fT p
s s s v v v

p Ts s u us p u
v v v T v v v T

c cc p T
v v v T

< < < < < < < − <

> > > > < < < < −

> > > >

                      (17) 

The chemical potential functions are given in explicit form as energy functions:  

( )
( )

( )
( )

( )
( )

( )
( )

, , , , ,

, ,
, , ,

, ,
, , ,

2 2 2
, , ,

, ,2 2 2

0,
d dd d d 0,

d d d d d
d dd d d

0,
d 1 d 1 d 1 d d 1

d dd d d d 0.
d d dd d d

v l v l v l v l v l

v l v l
v l v l v l

v l v l
v l v l v l

v l v l v l
v l v l

f v p u s T v p
f vp ps v p v

T T T T T
f T vT p T p T

u v Tp v
T T T T T

c s vp p pv v
T T T TT T T

µ

µ

µ

µ

= + = − + <

= − + = + + ≤

= + = − + <

= − + = − + + <

                (18) 

Setting { }, , , , ,, , ,v l v l v l v l v lx f s u c=  relations (9) yield  

( )
( )

2 2

2 2

d d d0, 0,
d dd

d d d0, 0.
d d d

v l l v v l l v

v l v l

v l l v v l l v

v l v l

f v f v s v s vp
T Tp f f p s s

T u v u v c v c vp
p T u u c cT T

µ µ µ

µ µ

− −
= < = = <

− −

− −
= > = <

− −

                    (19) 

The critical value is finite for { }, ,x f s u=  and divergent for x c= .  

5. The Unsolved Problem in Applied Thermodynamics 
Endeavors to publish data of the energy and entropy functions ,v lu  and ,v ls  are prominent in the current literature. 
Since the numerical solution ( ) ( )( )d d cT p T T vµ =  and the consequence, viz. ( ) ( ) 0l c v cu T u T= = , are 
known in the literature [3], it is obvious from relations (15) that the task of finding an explicit thermodynamic 
expression for ( ) ( ) ( ) ( ) ( ) ( )d d d d 1 d d 1T p T T T p T Tµ µ=  for cT T<  should be tackled. Calcula- 
tion of ( ) ( )d dT p Tµ  now occupies the center of interest in applied thermodynamics. 

Solution of the problem is not trivial, as the following solution ansatzes for the volume function  

( ) ( )d dv T p Tµ=  will show. The specified lower limit ( )1
2 v lv v v= +  does not constitute a solution for  

Temperatures T < Tc, because this ansatz leads to a value of the condensate at absolute zero of 
( )( )1 2 0v lu u− − , whereas ( ) ( )( )0 0l v lu u u= − −  is the correct result there. The upper limit vv v=  is no 

solution of ( ) ( )d T d p Tµ  either, because in this case the function vu  would vanish identically. 
In order to find a solution for ( ) ( )d T d p Tµ , the obvious course is to consider the equilibrium relation 

that follows from relations (15):  

( )
( )

( )
( )

( )
( ) ( ) ( )

d d 1
0,

d 2 2 d 2 2

d
0.

d

v l v l v l v l v l

v l

v l
v v v l l v l l

v l v l

T Tv v u u v v v v u u
p T p T u u

T u u
v v v v v v v v

p T u u u u

µ

µ

+ + + − +
= + = − >

−

> = − − = − − > >
− −

                  (20) 
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As the equations show, what is needed is a thermodynamic expression for ( ),v l v lu u u− . For temperatures 
0 cT T≤ ≤ , the limits of the energies ,v lu  in relation to the evaporation energy ( )v lu u−  are known [3]:  

10 1.
2

v l

v l v l

u u
u u u u

−
≤ ≤ ≤ ≤

− −
                                (21) 

Van der Waals showed that the volumes ,v lv  can be represented as functions of ( )v lv v− . (Here ( )v lv v−  
is expanded as a power function of the temperature distance from the critical point, where the temperature 
distance between cT  and 0 is given by the expansion parameter ζ  passing through the values from 0 to 1). 
Thus the functions ( ),v lu T  can be analogously represented as functions of ( )( )v lu u T− :  

( ) ( )1 1, .
2 2v v l l v lu u u u u uζ ζ− +

= − = − −                           (22) 

At the critical point one gets 0ζ =  and ( )1 0
2v v lu u u= − = , ( )1 0

2l v lu u u= − − = , and at absolute zero  

one gets 1ζ =  and 0vu = , ( )l v lu u u= − − . The success of the van der Waals representation of ,v lv  as 
functions of ( )v lv v−  consists in giving a relation between ( )v lv v−  and ζ . As long as ζ  is regarded as an 
independent variable, the ansatzes (22) merely state that the functions ,v lu  scale at the critical point as the 
function ( )v lu u− . If, however, every value ζ  can be assigned a certain temperature value T, the values ,v lu  
are fixed. Therefore, ( )Tζ  in Equation (22) is replaced as follows in order to characterize the phase of the 
energy functions ( ),v lu T  with temperature-dependent phase-specific functions ( )v Tρ  and ( )l Tρ :  

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 ,
2 2 2 2

1 1 1 .
2 2 2 2

v v l v l v l v v l

l v l v l v l l v l

u u u u u u u u u

u u u u u u u u u

ζ ρ

ζ ρ

 = − − − = − + − − 
 

 = − − − − = − − − − − 
 

                 (23) 

Taking the difference ( )v lu u−  yields the condition 1 0v lρ ρ+ − =  and calculating vu  and lu  gives  

( ) ( ), , where 1.v v v l l l v l v lu u u u u uρ ρ ρ ρ= ⋅ − = − ⋅ − + =                    (24) 

Appropriate as variable of the phase functions ,v lρ  is the volume ratio in the vapor and liquid phases, 
( ) ( ) ( )v lz T v T v T= , because this numerical ratio at the same time inter-relates the effects of the interaction 

forces between the fluid particles in the respective phases. Just as the subscript v or l suffices to describe the 
phase of an energy function, a phase function ,v lρ  is adequately described either by the subscript v  or l  
again or else just by specifying the variables 1 z  and z. The definition of z and phase functions ( )1 zρ  and 
( )zρ  is thus  

( )1 , , where 1.l v v
v l

v l l

v v v
z z

v z v v
ρ ρ ρ ρ ρ ρ

    ≡ = ≡ = = ≥    
    

                (25) 

A phase function ρ  represents a state function in that it contains information on the density and internal 
energy distribution in the respective phase. This becomes particularly clear when the ratio ( )v lu u  is formed,  

which can also be expressed by the ratio ( ) ( )1
v l z

z
ρ ρ ρ ρ − = −  

 
. It holds that 0v lu u =  at absolute zero and  

that 1v lu u = −  at the critical point, whence ( )10 1z
z

ρ ρ ≤ ≤ 
 

. Furthermore, it holds that ( )d d 0v lu u T <   

and ( )d d 0v lv v T < , and hence ( ) ( )d d 0v l v lu u v v > ; it thus follows that  

( ) ( ) ( )1d d d d 0v l v lu u v v z z
z

ρ ρ  − = <    
 or ( )d d 0z zρ > , i.e. the function ( )zρ  increases strictly  

monotonically as z and, at the same time, the function 1
z

ρ  
 
 

 decreases strictly monotonically. The domain of  

the function ρ  is [ )0,∞ , because the value 1
z

 tends to zero when the value of z grows beyond all limits.  
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What is now needed is a solution of the functional equation for ρ  with subsidiary conditions:  

( ) ( ) ( )1 11, 0 1, d d 0, 1.z z z z z
zz

ρ ρ ρ ρ ρ   + = ≤ ≤ > ≥     
               (26) 

The general solution is of the form  

( ) [ )1 1ln : is an odd function defined on with 0 for 0, .
2 2

x x Cρ α α α= + ≤ < +∞ R         (27) 

Proof: Suppose ρ  being a real (composed) function, ( ) ( )1 ln
2

z zρ α= +  for [ )1,z C +∞ . One has  

( ) ( ) ( ) ( ) ( )1 11 1 10 1 0 ln ln 1 0 ln 0
2 2 2 2

z z z z x
z

ρ ρ α α α α     < ≤ ↔ < − + ≤ ↔ < < ↔ < <     
     

 with ln z x≡   

and [ )0,x C +∞ . 

Of the mathematical solutions possible the following (with 1
2

ρ =  at the critical point 1z = ) is selected:  

( )1 1 1 1, .
ln 1 ln 1

zz
z z z z z

ρ ρ  = − = − +  − − 
                         (28) 

This equation yields the physically relevant solution. It is noted that the solution ρ according to Equation (28) 
can be represented as a convergent Taylor series. Figure 3 shows the functions ( )1v zρ ρ=  and ( )l zρ ρ= . 

Before tackling the important investigation of the uniqueness of this solution, one should consider the method 
of solution that uses the variable ζ . Equations (23) and (24) yield  

( )( ).l v l v l vζ ρ ρ ρ ρ ρ ρ= − = + −                               (29) 

Admittedly, the latter equation does not yield a direct solution lρ , but it does give the interesting dependence 
( )l vρ ρ  in the form of ( )2 2 0l l v vρ ρ ρ ρ− − − =  with the solutions 1l vρ ρ= −  and l vρ ρ= . The equality of 

lρ  and vρ  only exists at the critical point and marks the start of the single-fluid phase. 

With ( )l zρ ρ=  and 1
v z

ρ ρ  =  
 

 the variable ζ  has the following dependence on z:  

 

 
Figure 3. ( )1 1 lnl z z zρ = − − , ( )1 1 1 lnv z zρ = − − + , and 

( )( ) ( )( )1 1 1 ln 1 1 lnv l z z z z zρ ρ = − − + − −  as functions of 
z for 1 100z≤ ≤ .                                                                     
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1 2 ,
1 ln

z
z z

ζ +
= −

−
                                     (30) 

and one calculates 0ζ →  for 1z →  and 1ζ →  for z →∞ . 
According to Equations (20) and (22) one obtains  

( )
( )

d
.

d 2 2 2
v l v l v l

v

T v v v v v v
v

p T
µ

ζ
+ − +

≥ = + ≥                          (31) 

Inserting the solution for ζ  in Equation (31) gives the symmetric form:  

( )
( )

d
.

d
l v

l v
v l

T v v
v v

p T v v
µ

ρ ρ
   

= ⋅ + ⋅   
   

                            (32) 

Let us now turn to the uniqueness of the solution (28). It is immediately seen that the functions  
( ) ( ) ( )1 1 1 lnx x xz z z zρ = − −  and ( ) ( ) ( )2 1 lnz z z x zρ = − −  with 1x ≥  may also be regarded as solutions 

of Equation (27). Any discussion of values 1x ≠  leads, however, to contradictions in the physical behavior of 
,v lu . 
 It is claimed that every solution ρ  is expandable into a convergent Taylor series for all [ )1,z C ∞ ; this 

condition is probably contained in the theory of Yang and Lee [14] stating that the equation of state of a 
one-phase system or a system with possible phase transition is represented by an analytic function of a complex 
argument Z for all Z in the corresponding region, which contains a segment of the real positive axis. As stated 
above, solution (28) can be expanded into a convergent Taylor series for all [ )1,z C ∞  and meets, for the case 
of a complex argument Z instead of z, the condition according to Yang and Lee. One now looks for further 
solutions. Let a solution be assumed in the form  

( ) ( ) ( )* .z z zρ ρ σ= +  

It follows that  

( ) ( ) ( )* *1 1 1 ,z z z
z z z

ρ ρ ρ ρ σ σ     + = + + +     
     

 

( )1 0.z
z

σ σ  + = 
 

 

Expanding ( )zσ  into a convergent Taylor series in [ )1,z C ∞ , one now obtains  

( ) 0 1 ,k
kz c c z c zσ = + + + +   

1
0

1 .k
k

ccc
z z z

σ   = + + + + 
 

 
 

If z →∞ , all the kc  for 1k ≥  must be zero in order to satisfy the condition above, ( )1 0z
z

σ σ  + = 
 

.  

Then 0 0c =  also holds, because the condition must be satisfied for every value z. Thus ( )zσ  vanishes 
identically and the solution ( )zρ  is unique.  

6. Explicit Expression for ( ) ( )T p Tµd d  
The expression proposed [15] [16] for the volume function ( ) ( )d dT p Tµ  is  

( )
( ) ( ) ( ) ( )

d
, , .

d ln
v l

v l v l l v
v l

T v v
v v v v v v v v

p T v v
µ −

= = + − =                    (33) 

It is symmetric in the variables and linear in both vv  and lv , and at the critical point it yields v. Figure 4  

shows the temperature dependence of ( ) ( )d dT p Tµ  for argon and the boundaries vv  and ( )1
2 v lv v+ ,  

which are set by relations (31). 
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Figure 4. Volume function ( ) ( )d dT p Tµ  of argon 

versus the temperature between tT  and cT . Curve 1 
represents Equation (33), curve 2 gives the lower boundary 

( )1
2 v lv v+ , and curve 3 the upper boundary vv .                                   

 
Expression (33) is the only one thermodynamically possible and it alone satisfies all known thermodynamic 

conditions (see Appendix). 
The description of the two-phase state of the saturated fluid by the expression (33) admits further formu- 

lations of the two-phase equilibrium. 
Relations (15) and (33) yield the result of the ambitious task of representing the phase-specific internal en- 

ergies in terms of phase-specific volumes and vapor pressure, i.e. measurable quantities:  

( )
( )
( ) ( )

( )
( )

d d
, .

ln d 1 ln d 1
v l v l

v l l v
v l v l

p T p Tv v v v
u v u v

v v T v v T
   − −

= − ⋅ = − ⋅   
      

                  (34) 

The positive term ( ) ( )lnv l v lv v v v−  can be written in agreement with Equations (19), (20), and (33) as  

( )
.

ln
v l v v l l

v l v l

v v u v u v
v v u u
− −

=
−

                                (35) 

Rearranging this to ( ) ( )( )( ) ( )ln 1v v l l v l v l v lu v u v u u v v v v− − − ⋅ =  yields the following very interesting  

thermodynamic equations valid for cT T≤ : 

ln ln 1.v l v l v v

v l v l l v l v l l

u v v u v v
u u v v v u u v v v
       

+ ⋅ = + ⋅ =      − − − −       
                   (36) 

Equation (36) are valid for temperatures 0T =  to cT T=  and can serve as a criterion for calculated data 
,v lu  of a gas, if the experimental data ( )v lu u−  and ,v lv  are considered to be trustworthy. In turn, from Equa- 

tion (36) one obtains  

( ), , ,
ln

v l v l
v l l v

v l v l

u u u u
u v

v v v v
− −

= −
−

                                (37) 

which is in agreement with Equation (34). Figure 5 shows some energy functions of saturated argon. 
As mentioned by relation (35), the term ( ) ( )lnv l v lv v v v−  gives the weighted volume value  
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Figure 5. Energies of saturated argon: 1 lu , 2 vu , 3 u, 
4 ( )l vu u+ , 5 ( )l vu u− .                                   

 
( )( ) ( )( )v v l l v lu v u v u u+ − + − . Let us recall here the mean-value theorem of the differential calculus, which, 

when applied to the function ( )ln v lv v , yields the result  

( ) ( )
1 1ln ln , .

ln 1
v l

v l
l v l v l v l

v v
v v

v v v v v v v
ρ

ρ
−

− = = −
+ − −

                   (38) 

The term ( ) ( )lnv l v lv v v v−  can thus be replaced by the function ( )l v lv v v ρ+ − , where the function ρ  
depends only on the volume ratio ( )v lv v  or ( )l vv v . With the definitions  

( ) ( )
1 1 1 1,

ln 1 ln 1
l v

v v l v l l l v l v

v v
v v v v v v v v v v

ρ ρ
   

= − = −   − −   
               (39) 

it holds that  

1, 0 1 for 1.l v vl v

v lv l l

v v vv v
v vv v v

ρ ρ ρ ρ
       

+ = ≤ ≤ ≥       
      

                 (40) 

The function ( )v lv vρ  varies strictly monotonically from the value 1
2

 at 1v lv v =  to the asymptotic  

value 1 for ( )v lv v →∞ , the increase being greatest with 1
12

 at 1v lv v = , and ( )l vv vρ  decreases mono-  

tonically to 0. The physical meaning of ρ  is discussed in Ref. [16]. There the phase-specific energies ( )vu T  
and ( )lu T  are represented as a product function, ( )v lu uρ ⋅ − , composed of the one term ρ , which denotes 
the phase, and the term ( )v lu u− , which specifies the temperature dependence. The phase-specific term is 
related to the local interaction potential of fluid particles in the vapor space and in the liquid. With a phase 
change of fluid particles, the phase-specific energy value, say vu , becomes lu  in a manner that can be des- 
cribed simply by interchanging the phase indices. This yields the following equations:  

( )( ) ( )( ) ( )( ), .v l v v l l v l l v v l v lu v v u u u v v u u v v u uρ ρ ρ= − = − = − −              (41) 

The procedure in Ref. [16] is the exact opposite of that described here: There Equation (41) serves as starting 
point to derive relation (40) and find their solution (38). The energy ratio ( )v lu u  depends only on the volume 
ratio ( )v lv v z=  and with the same value z is equal for all gases, i.e. is universal:  
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1 ln0 1 for 1.
1 ln

v

l

u z z z
u z z z

− −
≥ = ≥ − ≥

− −
                             (42) 

It is found that ( )v lu u  is equal to ( )v lρ ρ−  and varies with values between 0 and 1−  as z varies from 
high values to 1. 

The ratios of the phase-specific internal energies to the evaporation energy are likewise universal and for 
temperatures 0 cT T≤ ≤  it holds that  

( ) ( ) ( )1 ln 1 1 ln10 1.
1 2 1

lv

v l v l

uz z z z zu
u u z u u z

−− − − −
≤ = ≤ ≤ = ≤

− − − −
                 (43) 

Finally, the integral ( ), dcT

T
c T v T−∫  with the heat-capacity function [17] (see Figure 6),  

( ) ( )
( )
( )

dd, ,
d ln d 1

v l
v l

v l

p Tv v
c T v v v v

T v v T

  −
= + − −  

    
                      (44) 

yields, of course, the temperature value of the fluid internal energy,  

( ) ( ) ( )
( )
( )

d
, , d 0.

ln d 1
cT v l

v lT
v l

p Tv v
u T v c T v T v v v

v v T
 −

= − = + − − ≤ 
  

∫                 (45) 

The entropy value ( ),s T v  is defined by the integral ( )
0

d d d
T

s T T⋅∫  because of ( )0, 0s v = . Since  

( ) ( ) ( )d d d d ,s T u T T c T v T= =  one gets ( )
0

d
T

s c T T= ⋅∫ . From this and from Equations (1) and (4) it  

follows that  

( ) ( ) ( ) ( ) ( ) ( ) ( )
0

, , d d, d .
d d

T c T v T u T v vp T ps T v T T v T
T T T T

µ µ− + +
= = = − +∫            (46) 

According to Equations (10), (34), and (45), one has ( ) ( ) ( ) ( )l v l v v lu u u u v v v v M M− − = − − = . In gen- 
eral, it holds that [3]  

 

 
Figure 6. Heat capacity ( ), cc T v  of saturated argon ac- 

cording to Equation (44) for t cT T T≤ ≤ .                                   
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{ }where , , , , , ,v l

l v

M x x
x v s u c f h

M x x
−

= =
−

                       (47) 

, .f u sT h sT vp vp h u vp f vp sT sTµ µ= − = − − = − = + = + + = +  

Thermodynamic equations for µ  of the saturated fluid are listed in Table 1.   

7. Results and Discussion 
In treating the thermodynamic equilibrium of a fluid mass M in a volume V, a distinction is made between an 
equilibrium state with a free surface area 0A >  among the phase volumes, vapor and condensate, and a state 
without a free surface. In the case 0A = , according to Gibbs the internal energy U and entropy S of the fluid are 
functions with minimum equilibrium value ( ), ,U U M V S=  and maximum equilibrium value ( ), ,S S M V U= . 
As the quantities V, U, and S are proportional to the mass M, they are absolute quantities with the known 
thermodynamic zeros 0U =  at the critical point and 0S =  at the absolute temperature zero. Equations (16) 
to (19) and (59) afford examples of absolute order of relations between different thermodynamic functions. 
Extensive quantities have the additive property vapor condensateX X X= + , where { }, , ,X M V U S= . The intensive  

 
Table 1. Chemical potential relations [3].                                                                     

( )Tµ  if tT T≤  ( ) ( ) ( )0

0 0
, d , d , dt c

t

T T T

t T
vp c T v T u c T v T T c T v T T= − − ∆ − −∫ ∫ ∫  

( )Tµ  if tT T>  ( ) ( ) ( )0

0
, d , d , dc t

t

T T T

t tT T
vp c T v T T c T v T T u T c T v T T = − − + ∆ +  ∫ ∫ ∫  

d dTµ  if tT T≤  ( )
0

d d , d
T

v p T c T v T T= − ∫  

d dTµ  if tT T>  ( ) ( )0

0
d d , d , dt

t

T T

t t T
v p T c T v T T u T c T v T T= − − ∆ −∫ ∫  

2 2d dTµ  ( )2 2d d ,v p T c T v T= −  

0
t u∆  

( ) ( )

( ) ( ) ( )
0lim , , d

d d d d 0

t

t

T T

T t tT T

v t t t

c T T v c T T v T

v T v p T T T p T T T

+∆

∆ → −∆
= + ∆ − − ∆  

= − ⋅ − ∆ − + ∆ >      

∫  

( )0 0µ µ=  ( ) ( )0

0
= , d , dt c

t

T T

t T
c T v T u c T v T− − ∆ −∫ ∫  

( )t tTµ µ=  ( ) ( ) ( )0

0
, d , dc t

t

T T

t t tT
vp T c T v T u T c T v T T= − − ∆ −∫ ∫  

( )c cTµ µ=  ( ) ( ) ( )0

0
, d , d

T Tt c
c c t t Tt

vp T T c T v T T u T c T v T T = − + ∆ +  ∫ ∫  

( )d d 0Tµ  0=  

( )d d tT T Tµ − ∆  ( ) ( )
0

d d , dtT

tv p T T T c T v T T= − ∆ − ∫  

( )d d tT T Tµ + ∆  ( ) ( ) 0

0
d d , dtT

t t tv p T T T c T v T T u T= + ∆ − − ∆∫  

( )d d cT Tµ  ( ) ( ) ( )0

0
d d , d , dt c

t

T T

c t t T
v p T T c T v T T u T c T v T T= − − ∆ −∫ ∫  

( )2 2d d 0Tµ  0=  

( )2 2d d tT T Tµ − ∆  ( ) ( )2 2d d ,t t tv p T T T c T T v T= − ∆ − − ∆  

( )2 2d d tT T Tµ + ∆  ( ) ( )2 2d d ,t t tv p T T T c T T v T= + ∆ − + ∆  

( )2 2d d cT Tµ  = −∞  
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quantities of the fluid are the temperature ( ) ,M VT U S= ∂ ∂ , pressure ( ) ,M Sp U V= − ∂ ∂ , and the chemical  

potential ( ) ,V SU Mµ = ∂ ∂ , which are related to one another because of ( )p p T=  and ( )Tµ µ= . The 
thermodynamic equilibrium is described by the so-called fundamental equation 0U Vp ST M µ+ − − = . 

When a free surface 0A >  first transpires among the phase volumes, vapor and condensate, one has the 
possibility by varying T and M or V, of experimentally determing the critical point of a fluid and measuring the 
critical values 1M V v−= , cT , and cp . The presence of a free surface area shows at the same time that 
between the volumes vapor vV V=  and condensate lV V= , in which fluid particles are homogeneously distributed, 
there exists an interface phase with inhomogeneous particle distribution. Unlike in volume phases, fluid particles 
in the interface phase are not exposed to isotropically effective interaction potentials and therefore interface 
particles are endowed with a surface energy iU  and entropy iS . When a free surface is increasing, the redis- 
tribution of the fluid particles in V proceeds in the direction of decreasing U and increasing S; in other words, in 
the direction of decreasing F by virtue of decreasing interface free energy 0i i iF U S T= − < . Surprisingly, its 
value A γ− ⋅  can be macroscopically determined. With γ  as surface tension, the effect of the interaction 
potential of all interface particles is measurably available. The Gibbs’ Equations (6) and (7) are enlarged by the 
interface terms and are given by Equation (13). The interface terms are evaluated in Figure 2 for fluid argon. 
The ratio of free interface energy A γ⋅  and free volume energy V v pµ −  yields with the assumptions 

21 cmA = , 31 cmV =  and averaged values of v pµ −  (see Figure 2 and Figure 8) the approximate number  
( ) 810iF F A V v p vγ µ γ µ −= ⋅ − ≈ ≈ . This estimate explains why the free energy at the free surface A in  

relation to its value in V can be completely ignored if volumetric considerations are to the fore, as in this work. 
Here it is investigated whether there is a definitely specifiable functional relation between phase-specific 

energies ( ) ( ), , d d 1v l v lu v p T T+ ⋅  and the phase-invariant energy term ( ) ( )d d 1T Tµ , which is given by 
Gibbs in the energy Equation (15) for the saturated fluid. The solution  
( ) ( ) ( ) ( )( ) ( ) ( )d d 1 ln d d 1v l v l v lT T v v v v v v p T Tµ = + − − ⋅ , Equation (33), has been known in the 

literature [15] [16] for many years but has remained neglected, presumably because proof of its uniqueness was 
lacking. This is made up for here in Section 5 by showing that the dimensionless phase-specific temperature 
functions vρ  and lρ  in the ansatzes for the internal energies ( )v v v lu u uρ= ⋅ −  and ( )l l v lu u uρ= ⋅ −  have 
the physically relevant and unique solutions ( ) ( )1 lnv v l l v lv v v v vρ = − −  and ( ) ( )1 lnl v l v v lv v v v vρ = − −  
(see Equations (24)-(28) and Figure 3). Numerical evaluation of ( ) ( )d dT p Tµ  is presented in Figure 4. 
The presentation of ,v lu  in terms of ,v lv  and p (see Equation (34)) allows evaluating internal energy functions 
as shown in Figure 5 for fluid argon. As is known, with the solutions described and proved here one can 
represent and calculate all thermodynamic volumetric functions as functions of ( ),v lv T  and ( )p T . In Table 1, 
for example, expressions for ( )Tµ  are listed, and in the Appendix thermodynamically derived relations are 
investigated for their validity by means of ( ),v l Tρ  and verified.    
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Appendix: Test Functions for the Volume Function ( ) ( )lnv l v l v lv v v v v v+ − −  

The correctness of Equation (33) is now demonstrated in a few test cases. With ( )v lz v v= , the volume 
function (33) can be written as ( )1 1 lnlv z z z+ − −   . Since 0lv > , one has  

( )
( )

d1 1 11 , where 1.
2 d ln

v

l l

T vz zz z z
v p T z v

µ+ −
≤ = + − ≤ = ≥                    (48) 

From ( ) ( ) ( )1 1 1 ln 1 0 1 lnz z z z z z− − ≤ ≤ − −  one obtains the relations  

( ) ( )
1 1

0 1 1 ,
ln ln

v v l l l v
l l v v

l v l v l v

v v v v v v
v v v v

v v v v v v
   − −

< ≤ + − = + − ≤   
      

                (49) 

which shows the symmetry of the volume function in respect of its variables lv  and vv . 
At this point it is appropriate to comment on the argument of the logarithm in expression (33). As can be seen, 

the relations of the last line can be transformed to the relations ( ) ( )1 ln 2 1 1z z z z− ≥ ≥ − + , which are known 
to describe the asymptotic behavior of ln z  in the vicinity of 1z = . This shows that the argument of the 
logarithm must be exactly the volume ratio ( )v lv v  and cannot be, for example, the entropy ratio ( )v ls s . An 
entropy ratio ( )v ls s  as argument of the logarithm would, admittedly, yield the required symmetry property 
( ) ( ), , , , , ,v l v l l v l vv v v s s v v v s s= , but relations ( ) 2v v lv v v v v≥ ≥ + ≥  could not be numerically satisfied, since 

one has v l v ls s v v<  for cT T< . 
A particularly critical test for the correctness of Equation (33) is afforded by the internal relations (16) and 

(34). As it holds that ( ) ( )( ), d d 1 0v lv p T T− >  for cT T≤ , it is only the terms  

( ) ( )1 ln , 1 ln 1l vu z z z u z z∼ − − ∼ − −                          (50) 

that have to be investigated. It is in fact found that 0l vu u< <  for cT T<  and 0l vu u= =  for cT T=  since  

( ) ( )1 ln 0 1 ln 1 for 1,z z z z z z− − < < − − >  

( ) ( )1 ln 0 1 ln 1 for 1.z z z z z z− − = = − − =  

According to relation (20) it is postulated that the sum ( )v lu u+  is not be positive. This can be confirmed 
since  

( )2 1 ln 1 0 for 1.v lu u z z z z+ ∼ − − − ≤ ≥                          (51) 

It should be emphasized that the energy sum ( )v lu u+ , which according to Equation (34) can be written as 
( ) ( ) ( ) ( )2 ln d d 1v l v l v lv v v v v v p T T + − −   and hence evaluated as a function of the measurable quantities 

,v lv  and p for every gas, is a negative function of the temperature, which increases strictly monotonically as the 
temperature and is convex in the very immediate vicinity of the critical point (see Figure 5). 

The fluid energy ( ),u T v  is not positive and given by  

( ) ( )
( )
( ) ( ) ( )

( )
( )

d d
, .

ln d 1 ln d 1
v l v l

v l v l
v l v l

p T p Tv v v v
u T v v v v u u v

v v T v v T
   − −

= + − − = + + −   
      

          (52) 

It is negative and greater than lu  for 1z >  since 1lv v ≥  and  
( ) ( ) ( )1 ln 1 1 ln .l lu z z z v v z z z u∼ − − + − > − − ∼  

The difference between the energy sum ( )v lu u+  and u  must not be negative according to Equations (16) 
and (52). The energy Equation (15) give  

( ) [ ] ( )
( )

( )
( ) [ ] [ ]( )

( )
( )

d d d
1 .

d 1 d 1 d 1ln
v l

v l v l
v l

p T T p Tv v v v
u u u v v v v

T T Tv v v v
µ  −

+ − = − − + = − − 
  

           (53) 

This difference is not negative if  

( )
( )

1
1,

ln
v l

v l l

v v v
v v v

−
≥ ≥                                      (54) 
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see also Figure 7. Thermodynamically correct density data confirm the validity of condition (54). For example, 
the formulae for vv  and lv  in Ref. [4] allows one to prove the correctness of condition (54) up to the critical 
point. On the other hand, the relations ( )1vv v ζ= −  and ( )1lv v ζ= +  with 0ζ ≥  are valid in the critical  
region. They lead to ( ) ( ) ( ) ( )2 1

0ln ln 1 1 2 2 1n
v l nv v nζ ζ ζ +

=
= + − = +   ∑  and  

( ) ( ) ( ) ( )
12

01 ln 1 2 1n
v l v l nv v v v nζ ζ

−

=
 − = − + ∑ . The last expression is greater than ( )1 1lv v ζ= + ≥ ,  

which means that condition (54) is satisfied and that the expression ( ) ( )lnv l v l v lv v v v v v+ − −  instead of 
( ) ( )d dT p Tµ  confirms the thermodynamically derived result ( )v lu u u+ > . 
The next example investigated is the ratio ( )v lu u  given by Equation (42). It is found that ( )v lu u  is equal 

to ( )v lρ ρ−  (see Figure 3) with values between 0 and −1:  

( ) ( )
1

1 ln 1 ln0 lim 0, lim 1.
1 ln 1 ln

v v
cz z

l l

u uz z z zT
u z z z u z z z→∞ →

− − − −
= = = = −

− − − −
 

Finally, the ratio of the phase-specific internal energies to the evaporation energy is considered, for which the 
theory yields according to relation (21) ( ) ( ) ( )0 1 2 1v v l l v lu u u u u u≤ − ≤ ≤ − − ≤ . This ratio is likewise 
universal and the result can be confirmed with the solution (34) since  

( ) ( ) ( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
1

1

1 ln , ln 1
,

( 1) ln 1 ln

0 1 ln 1 1 lim 1 ln 1 1 1 2,

1 2 lim 1 ln 1 1 ln 1 1.

lv

v l v l

z

z

uz z z z zu
u u z z u u z z

z z z z z z

z z z z z z z z
→

→

−− − − −
= =

− − − −

≤ − − − ≤ − − − =      

= − − − ≤ − − − ≤      

                 (55) 

Chemical potential relations: with the identity  

d dc c

t t

T Tt c
T T

t cT T T T T
µ µ

µ µ

µ µµ µ µ   = + = −   
   ∫ ∫  

as starting point and by means of the expression for the volume function ( ) ( )d dT p T vµ =  according to  
 

 
Figure 7. Functions ( ) ( )1 lnv l v lv v v v−  and ( )lv v  of 
argon for temperatures between the triple point and critical 
point (logarithmic representation).                                   
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Equation (33), µ  and the two temperature derivatives d dTµ  and 2 2d dTµ  are calculated as functions of 
p and ,v lv :  

,c c

t t

p T p Tt c
p T p T

t c

p pvd v
T T T T T

µ µµ    = + = −   
   ∫ ∫                           (56) 

( )
( )

( )
( )

( )
( )

( )
( )2 2

d d d dd d 1 d 1 ,
d d 1 d 1 d 1 d 1

c

t

T Tt c
T T

t c

p T p T p T p TT Tv v v v
T T T T T T T T TT T

µ µµ
= − − = + −∫ ∫        (57) 

( )
( )

2 2

2 2

dd d d 1 ,
d d 1d d

p Tp vv
T T TT T

µ
= −                               (58) 

and (see Figure 8)  

d d d 0,
d d d

d d d d0 , 0 , 0 .
d d d d

t c

c tt c

t c

t ct c

T T T T T T
p pp p p p p p
T T T T T T T T

µ µµ µ µ µ
< < < < < <

< < < < < < < <
                    (59) 

 

 
Figure 8. Functions d dTµ , Tµ , d dp T , and p T  
of argon for temperatures between the triple point and 
critical point.                                                 

 
 
 


	Thermodynamic Equilibrium of the Saturated Fluid with a Free Surface Area and the Internal Energy as a Function of the Phase-Specific Volumes and Vapor Pressure
	Abstract
	Keywords
	1. Introduction
	2. Description of the Thermodynamic Equilibrium of the Real Gas
	3. Two-Phase Equilibrium without and with a Free Surface Area
	4. The Thermodynamic Zero of Thermodynamic Functions
	5. The Unsolved Problem in Applied Thermodynamics
	6. Explicit Expression for 
	7. Results and Discussion
	Acknowledgements
	References
	Appendix: Test Functions for the Volume Function 

