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Abstract 
The present paper deals with very important practical problems of wide range of applications. The 
main target of the present paper is to track all moving boundaries that appear throughout the 
whole process when dealing with multi-moving boundary problems continuously with time up to 
the end of the process with high accuracy and minimum number of iterations. A new numerical 
iterative scheme based the boundary integral equation method is developed to track the moving 
boundaries as well as compute all unknowns in the problem. Three practical applications, one for 
vaporization and two for ablation were solved and their results were compared with finite ele-
ment, heat balance integral and the source and sink results and a good agreement were obtained. 
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1. Introduction 
The differential equation in a certain domain satisfying some given conditions is referred to as boundary-value 
problem. If one or more of the boundaries are not known and moving with time, the problem then is referred to 
as moving boundary problem [1] [2]. Furthermore, if the governing equation is time independent as well as the 
boundary condition, then the problem is referred to as free boundary problem [3]. Phase change problems are 
practical examples of free and moving boundary problems, frequently appear in industrial process and other 
problems of technological interests such as the determination of the depth of the frost or thaw penetration, de-
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signing of the roadway or other engineering works in cold regions and the so-called re-entry problem of hyper-
sonic missiles in aeronautical science [4] [5]. When a body is exposed to heat flux the surface of the body 
changes phase, the changed phase is immediately removed upon formation. This is referred to ablation problem 
[6]. A major difference between Stefan and ablation problems is that the overall domain in Stefan problem re-
mains fixed in space while the domain in the ablation problem is variable and diminishes in size with time. Nu-
merical methods become more popular rather than analytical methods. Some of famous numerical methods are 
finite differences [7], finite elements [8], boundary elements [9] and more recent mesh-less (mesh-free) numeri-
cal methods [10]. In many aspects, the boundary integral equation method for solving boundary value problems 
proves to be advantageous over the conventional numerical methods. The present paper deals with very impor-
tant practical problems of wide range of applications. The main target of the present paper is to track all moving 
boundaries that appear throughout the whole process when dealing with multi-moving boundary problems con-
tinuously with time up to the end of the process with high accuracy and minimum number of iterations. A new 
numerical iterative scheme based the boundary integral equation method is developed to track the moving 
boundaries as well as compute all unknowns in the problem. 

2. Mathematical Model 
A semi-infinite solid initially at uniform temperature with the following constraints, there is no sub cooling, no 
mushy zone, solid and liquid phases have equal and constant properties and finally no convection. The mathe-
matical formulation consists of three different stages as follow: 

Heating stage 

( ) ( )2

2
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As 0x =  reaches the melting temperature, the second stage starts appearing. 
Liquid-solid stage 
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3. Boundary Integral Formulation 
Starting by the weighted residual statement for diffusion equation as follows: 
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In Equation (18) ( )* , ; ,u x tξ τ is the fundamental solution for diffusion equation and it is defined as: 
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In which, ( ) ( ) ( )2 ,r x X X xξ ξ= −  and ( )X ξ  is the source point while ( )X x  is the field point. 
Integrating equation (18) twice by parts leads to: 
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For one-dimensional problems, Equation (20) takes the following form: 
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In Equation (21) 
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Making use of Equations (22) and (23) into Equation (20), the last one takes the following form: 
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For any point the integral equation takes the following form: 
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Discretization of Time 
Equation (25) after the discretization of time takes the following form: 
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Assume that the potential u and the flux q are constant within each time step therefore Equation (26) can be 
written as: 
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In Equation (27), we have two different time integrals, they are: 
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The domain integral 
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Now, the final form for the integral equation corresponding to the diffusion equation defined over fixed do-
main will be: 
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Similar procedure can be carried out taking into consideration the moving boundaries and their normal veloci-
ties, therefore and according to [11] [12], and for the second and third stages, the integral equation correspond-
ing to the diffusion equation with moving boundaries in a general final form will be: 
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In Equation (33), nV  represents the outward normal velocity to the surface. In one-dimensional problem, as  

in our case study, this velocity may be 
( )1d

d
s t

t
 or 

( )2d
d

s t
t

 according to the phase underhand. 

4. New Fixed-Moving-Fixed Algorithm 
In the present paper, a generalized numerical algorithm and code for multi-moving boundary problem are de-
veloped, using visual Fortran 6.6. The main code consists of main program and three subroutines. The flow chart 
describing the main parts of the proposed algorithm is shown in Figure 1. 
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Figure 1. General fixed-moving-fixed integral 
algorithm.                                        

4.1. Algorithm and Subroutine ONEPHASE 
In this subroutine, a single phase bounded by two fixed boundaries are solved, using Equation (32) and the out-
put will be the time at which melting starts and the corresponding location of the first moving boundary, sepa-
rating the liquid and the solid, ( )1s t . 

Suggested Algorithm 
1) Input data, mold length , spatial grid size x∆  and time step .t∆  
2) Apply the boundary integral equation, given by Equation (32) at the end points of the domain of interest to  

estimate ( )( )1 , .j ju x s t t=  

3) Check ( )( )1 , , 1, 2, ,j j
mu x s t t t i N= ≥ =  , if yes, then go to the next two-phase subroutine, with outputs,  

time of melting and the corresponding position for the moving boundary separating liquid and solid. If no 
update both the spatial and time variables 1

1 1 , j j
i ix x x t t t+
+ += + ∆ = + ∆  and repeat steps 2 - 3 till the re-
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quired output of this subroutine achieved. 

4.2. Algorithm and Subroutine TWOPHASE 
This subroutine concerns mainly with two phases each phase will be bounded by one fixed and the second is 
moving are solved and the output will be the time at which vapor starts and the corresponding location of the 
first and second moving boundaries ( )1s t  and ( )2s t . 

Suggested Algorithm 
1) The input unit here is the output from one-phase subroutine. 
2) Solve solid phase subjected to melting temperature at the moving boundary and initial temperature at the  

fixed end to get 
( )1

.
ts

us
x

∂ 
 ∂ 
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d
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t
 and 
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u
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.
s t

u
x

∂ 
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  

4) Check ( )( )1 ,j j
Vu x s t t u= ≥ , if yes, then the output of this subroutine will be the time at which vapor starts  

appearing with the new position of the moving boundary separating liquid/solid and the starting position of 
the second moving boundary separating vapor(gas)/liquid, if no update the moving boundary separating liq-
uid/solid. 

4.3. Algorithm and Subroutine THREEPHASE 
This subroutine is for three phases, the first one is bounded by two boundaries, one fixed and one moving, the 
second phase is bounded by two moving boundaries, and the third phase is also bounded by two boundaries one 
fixed and one moving. The output of this subroutine is to track all moving boundaries, determination all un-
knowns in all phases up to the end of the process with minimum number of iterations and high prescribed accu-
racy. The flow chart of this subroutine is shown in Figure 2. In this figure, the absolute errors 1E  and 2E  
are defined as follow: 

( ) ( ) ( )1
1
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x x t
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                              (35) 

5. Numerical Results 
5.1. Vaporization Test Problem 
In this section, three test problems are solved to check the validity of the proposed algorithm and the high accu-
racy expected. The first example is a multi-moving boundary problem [13]. The thermo-physical properties are 
listed below in Table 1. 

The solid material herein is of a low thermal conductivity and so the vaporization occurs before the moving 
boundary separating liquid and solid reaches the adiabatic boundary. The result due to the present algorithm is 
shown in Figure 3. In this figure, both vapor/liquid and liquid/solid moving boundaries are plotted both on the 
same figure. The liquid/solid moving boundary is in the left side, while the other one is on the right. From this 
figure, one can clearly determine the melting, vapor and the time at which the process ends. These times are de-
termined and summarized in Table 2, at two different time steps. The absolute errors between the results due to 
the present method compared with the finite elements method are also presented in the same table. As we see, 
the absolute errors decrease by decreasing the time step. On the other hand by decreasing the time step, the 
number of iterations increases. The number of iterations are shown in Table 2, corresponding to the two time 
steps used. It is clear that the increase in the number of iterations is not so much but the accuracy improved to  
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Figure 2. Flow chart for THREEPHASE subroutine.                                                           

 

 
Figure 3. Moving boundaries location for vaporization test problem.                                                           
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Table 1. Numerical data for vaporization test problem.                                                           

Parameter Definition Numerical data 

sc  Specific heat for solid 4.944 

c  Specific heat for liquid 4.944 

sK  Thermal conductivity for solid 0.259 

K  Thermal conductivity for liquid 0.259 

mu  Melting temperature 1454 

vu  Vaporization temperature 3000 

mL  Latent heat for melting 2160 

vL  Latent heat for vaporization 37,200 

( ),0u x  Initial temperature 27 

( )q t  Input heat flux at the boundary 0x =  2500 

ρ  Density 1 

 
Table 2. Comparison between melting, vaporization and end time.                                                           

Time step Type of time FE Present Absolute error Average number of 
iterations 

0.25t∆ =  

mt  0.36150 0.36158 58.0 10−×  

12 - 16 vt  1.63034 1.63041 57.0 10−×  

et  9.75464 9.75468 53.4 10−×  

0.0625t∆ =  

mt  0.32767 0.32771 54.0 10−×  

20 - 24 vt  1.63446 1.63449 53.25 10−×  

et  9.38719 9.38721 52.0 10−×  

 
nearly the half. 

5.2. Ablation Test Problem-1 
A solid medium initially at uniform temperature, 300 Kiu =  , the boundary 0x =  exposed to two different 
cases of input heat flux, constant, ( ) 65 10Q t = ×  and linear, ( ) 43 10Q t t= ×  respectively. The domain in the 
present problem is still fixed while appearing two moving interfaces, solid-liquid and vapor (gas)-liquid (Ablation 
surface). The results due to the present algorithm are shown in Figures 4-6, respectively and the results are com-
pared with the results due to the source and sink method [14]. Figure 4 shows the movement of solid-liquid due 
to constant input heat flux, and the resulting ablation surface due to the same input heat flux is shown in Figure 5. 
The same results due to linear case are plotted on the same plot as shown in Figure 6. From the computations and 
figures, it is found that the solid-liquid interface has the same behavior in both constant and linear cases of input 
heat flux that is concave upward. In case of linear heat flux input this concavity becomes more apparent than the 
constant case. In the contrary, the vapor (gas)/liquid interface behaves concave downward but in linear case this 
concavity increases. 

5.3. Ablation Test Problem-2 
This problem is for a long enough solid mold initially at a uniform temperature. The surface 0x =  exposed 
to two different high input heat flux, constant and linear and the vapor is removed as soon as it formed- 
ablation problem-. Two specific heat flux boundary condition are chosen in the present computations, namely, 
( ) ( )2.0,10 cq t t t=  and the following values used in the calculation [15] (Table 3). 
The ablation thickness due to the present method compared with the corresponding from the heat balance 

integral method is shown in Figure 7. It is clear that the ablation thickness is concave downward in both case of  
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Figure 4. Solid/liquid due to Constant heat flux-problem-1.                                                           

 

 
Figure 5. Ablated surface due to constant heat flux-problem-1.                                                           
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Figure 6. Solid/liquid and Ablated surface due to linear heat flux-problem-1.                                                           

 

 
Figure 7. Ablation thickness for ablation test problem-2.                                                           
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Table 3. Thermo-physical parameters.                                                                                 

Symbol Physical meanning Numerical value 

α  Thermal diffusivity 20.1 / secft  

ct  Characteristic time 10sec  

L  characteristic length 1.0 st  

rq  Reference heat flux 210 / secBtu ft−  

0mT T−  Temperature difference 100 F  

v  Inverse Stefan number 1 

T  Reference time 100 sec 

 
input heat flux and at the same time, the ablation thickness in case of linear heat flux is higher than that for con-
stant case. There is a good agreement between the two methods in both cases. 

6. Conclusion 
The importance of the present paper comes from its dealing with practical applications of wide range of our dai-
ly life. The boundary integral equation method is not so new but it is used as a mathematical tool due to its sim-
plicity in use. Based on this method, a generalized numerical algorithm and computer code are developed to 
solve such applications. It is found from the computations that the developed algorithm and the code are so sim-
ple to handle and that an acceptable accuracy is obtained. Also by decreasing the time step, and a little bit in-
crease of iterations, the absolute errors are decreased to the half nearly. Finally, the algorithm and subsequently 
the code can be easily modified to cover higher dimensional problems with acceptable accuracy, which can be 
improved by decreasing the time step, but on the other hand, stability should be achieved. 
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Nomenclature 
u : Temperature 

*u : Fundamental solution 
α : Thermal diffusivity 
K : Conductivity 
ρ : Density 
( )q t : Input heat flux 
( )1s t : Liquid-solid interface 
( )2s t : Vapor-liquid interface 

 : Truncated long enough boundary length 
L : Latent heat 

Subscript 
s : Solid 
 : Liquid 
i : Initial 
v : Vapor 
m : Melting 
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