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Abstract 
We calculate the work done by a Landau-Zener-like dynamical field on two- and three-level quan-
tum system by constructing a quantum power operator. We elaborate a general theory applicable 
to a wide range of closed-quantum system. We consider the dynamics of the system in the time 
domain ] [,LZ LZt t−  (where LZt  is the LZ transition time in the sudden limit) where the external 
pulse changes its sign and its action becomes relevant. The statistical work is evaluated in a period 
[ ]T0,  where LZT t≤ . Our results are observed to be in good qualitative agreement with known 
results. 

 
Keywords 
Power Operator, Statistical Work, Landau-Zener Model, Level Crossing 

 
 

1. Introduction 
The pioneering work of Jarzynski establishes a non-trivial relation between the non-equilibrium work performed 
on a thermally insulated classical system and the change in its equilibrium free energy [1]. This expression 
became a coner stone of theories discussing non-equilibrium statistical mechanics and reads 

Δe e .W Fβ β− −=                                          (1) 

Here, W  is the work, 1 Bkβ =   where Bk  and   are respectively the Boltzman constant and absolute 
temperature. The brackets ...  denote the ensemble average over all possible realizations of the work  
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where ( )ˆ η  is the total Hamiltonian and ( )tη , the control protocol. ( )( ) ( )( )Δ 0F F t Fη η= −  is the free 
energy difference between a reference equilibrium state of the system and a state achieved at time t by changing 
the protocol ( )tη  during the work. The Jarzynski equality holds irrespectively of whether the system ever 
reaches this reference equilibrium state. Even out of equilibrium, it proved to be applicable. The Jarzynski equa- 
lity has been extended to quantum regimes and experimentally tested [2]-[4]. It was accurately studied in single- 
electron transport [5]-[7] and molecular systems [8]. It was applied in Refs. [9] and [10] to produce the cooling 
of nanomechanical resonators and atoms. 

Though Equation (1) is extended to quantum systems, a key and natural question arised: does it still hold in a 
more realistic situation where the system remains in thermal contact with its environment while the forcing 
protocol is in action? An affirmative answer to this question was given by Crooks based on classical arguments 
[11] [12]. He proved this by showing that the Jarzyinski equality can be derived from a fluctuation theorem [11] 
[12]. 

The experimental measurements of the proper free energy of a system lead to the average exponentiated work 
using Equation (1). This measurement is not always easily performed experimentally. The determination of the 
proper work has turned out to be a non-trivial task [13]-[15]. It attracted a lot of remarkable attentions and fed 
several scientist debates [13]-[18]. In order to find the work done by changing an external protocol on a quantum 
system, it is recommended to find the work operator [16]-[18]. Though this reasoning is quantum mechanically 
founded, it has quickly presented serious drawbacks [16]. The work does not depend on the instantaneous 
eigenstates of the system. It essentially depends on the process involved [17] [18]. Therefore, for open systems, 
the work cannot be defined by a local time-dependent operator. This is not an issue for closed systems [17] 
[18]. 

The present paper is devoted to the calculation of the work done by an external field of constant amplitude on 
two- and three-level isolated systems. The systems are assumed to be thermally isolated from their environ- 
ments. We consider as in Ref. [19] that the work can be experimentally measured by the two-measurement 
process (TMP) [20]-[22]. The work corresponds to the change of the internal energy of the system. The TMP 
suggests a measurement of the internal energy between the initial and the final times it  and ft . The relevant 
work corresponds to the difference between the associated internal energies. The work is statistically distributed. 
The experiment should be repeated under the same experimental protocol. In order to ensure a thermal equili- 
brium between two measurements, we demand a long enough time between two experiments. Assume that the 
system behavior is appreciable between the times ti and tf. Consider the difference Hamiltonian operator  

( )( ) ( )( ) ( )( )ˆ ˆ ˆΔ f it t tη η η= −    that the average yields the change on the internal energy. Basically, this lies 
on the variation of the functional ( )( )ˆ tη  of the protocol. We define the power injected during this evolution 
as ( )( )ˆˆ Δ ΔP t tη=   where Δ f it t t= −  is the time necessary to produce a transfer of population. If Δ 0t →  
one defines the power operator: 

( )ˆ
ˆ .P

η
η

η
∂

=
∂




                                     (3) 

Here, the overdot denotes the time derivative. The average statistical work done during a period T on any 
quantum system is statistically defined as:  

( )
0

1 ˆ d .
T

W P
T

τ τ= ∫                                   (4) 

This formula is employed throughout this paper. 
The paper is organized as follows: In Section 2, we present a general theory for calculating the work done on 

a coherently driven system. In Section 3, the theory is applied and tested on two-level system subjected to inter- 
band LZ transitions [23]-[26]. The same philosophy/strategy is extended to a three-level system yet subjected to 
LZ tunneling effects in Section 4. 

2. Work and Fluctuations on Multi-Level Systems 
The procedure for calculating the work done during transitions between Zeeman multiplet is illustrated. We 
consider systems on which act simultaneously a strong time-dependent diagonal field and a slowly varying 
perpendicular field. The prototype Hamiltonian describing these effects are written in the diabatic basis (basis of 
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the eigen-states of the Hamiltonian in the absence of couplings) as follows: 

( ) ( ) ( ) ( )
,

ˆ .L Rt t t
σ σ σσ

σ σ σ σ
σ σ σ σ σ σ σ σ

′ ′
′ ′

′ ′ ′ ′= + + ∆ +∑ ∑ ∑                   (5) 

The dynamical symmetry associated with (5) is referred to as ( )2SU  and is isomorphic to the relevant su(2) 
algebra. The model ( ) ( )( )ˆ ˆ ,t t tη≡   effectively describes the evolution of a system driven by a time-  
dependent control protocol ( ) ( ) ( )( ),L Rt t t

σ σ
η ≡   . The coupling Δσσ ′  between the two groups of diabatic  

states σ  and σ ′  is assumed real and constant. 
The protocols ( )L t

σ
  and ( )R t

σ
  are approximately linear functions of time. The corresponding diabatic 

trajectories cross j-times creating thus j-level-crossing (see Figure 1). The system evolves on a LZ grid and the 
population transfer is made through several resonant points. The statistical work is essentially due to the 
tunneling Landau-Zener process [23]-[26]. 

During the work, the system passes through a sequence of several configurations (non necessarily equili- 
brated). If the states of the system are described by the reduced density matrix operator: 

( )
( )

( )

ˆ

ˆ
eˆ ,
e

t
Tr

β η

β η
ρ

−

−
=




                                        (6) 

then, the statistical average of an arbitrary time-independent operator ̂  is given by ( ) ( ) ( )ˆ ˆ ˆt Tr t tρ =      

(disordered average). For our case, the eigen-spectrum is discrete and characterized by the   components of  
the total wave-function ( ) ( ) ( )ˆ 0t tψ ψ= U  where ( )ˆ tU  is the system time-evolution operator ( ( )ˆ ˆ−∞ =U I   

where Î  is the unit operator constructed by considering irreducible representation of ( )2SU ). Consequently, 
it is convenient to work in the Heisenberg picture. Thus, 

( ) ( ) ( )†ˆ ˆˆ ˆ ,H t t t= U U                                     (7) 

where H indicates the Heisenberg picture. The thermal and statistical averages are taken as: 

( ) ( ) ( ) ( )ˆ ˆ0 0 .H Ht tψ ψ=                               (8) 

Our goal is thus achieved once the evolution operator ( )ˆ tU  is constructed. This construction is process- 
dependent. 

The first and the second moments of the work whatever the process involved are respectively given in the 
Heisenberg picture by: 

( )
0

d1 ˆ ,
T HW P

T
τ τ= ∫                                    (9) 

 

 
Figure 1. Sketch of diabatic energies of the Left and the 
Right drifts as a function of time. The drifts are coupled 
by a constant field.                                      
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and 

( ) ( )12
1 2 1 22 0 0

2 ˆ ˆd d .
T H HW P P

T
τ

τ τ τ τ= ∫ ∫                         (10) 

Here, the power operator is basically a function of the fermionic occupation number Q̂σ σ σ=  defined  
such that ˆ ˆ ˆQ Q Qσ σ σ= . The states of the group σ  and σ ′  form an orthogonal basis, σσσ σ σ δ ′′ =∑ .  
As an important remark, evaluation of ( )ˆ HP τ  and ( ) ( )1 2

ˆ ˆH HP Pτ τ  requires the fermionic average 
occupation number: 

( ) ( ) ( )†ˆ ˆ ˆ ,HQσ σσ σστ τ τ′ ′=                                  (11) 

and 
( ) ( ) ( ) ( ) ( )†

1 2 1 1 2 2
ˆ ˆ ˆ ˆ ˆ, ,H HQ Qσ σ σσ σσ σστ τ τ τ τ τ′ ′=                         (12) 

where we have defined the transition amplitudes 

( ) ( )ˆ ˆ ,σσ τ σ τ σ′ ′= U                                  (13) 

and 

( ) ( ) ( )†
1 2 1 2

ˆ ˆ ˆ, .σσ τ τ σ τ τ σ= U U                         (14) 

The transition amplitude ( )σ̂σ τ′  refers to the probability amplitude of transition from the diabatic state 
σ ′  to σ  at a given moment τ . The two-time transition amplitude ( )1 2

ˆ ,σσ τ τ  describes an occupation of 
the diabatic state σ  when the system has consecutively passed 2τ  and 1τ . 

The measurement of the   instantaneous eigen-energies ( )t  (measured observable) associated with the 
eigenfunctions ( )tψ  are needed. This permits to evaluate the work values done on a  -level system. Both 
obey the Sturm-Liouville equation: 

( ) ( ) ( ) ( )ˆ .t t t tψ ψ=                                (15) 

Once the eigenvalues are obtained, the transfer matrices for the intermediates trajectories 
1j j

t tη η +
→  are 

deduced: 
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

M               (16) 

where 

( ) ( )1

1
Φ , ‍ d .j

j j
j

t

t
t t η

η
η η τ τ+

+
= ∫                              (17) 

Between measurements, the system propagator describing a set of transitions through the j-crossing points is 
expressed as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 1 12 1
ˆ ˆ ˆ ˆ ˆ ˆ ˆ, , , .

j jj f LZ LZ LZ it t t t t t tη η η η η η ητ τ τ= U M U U M U M            (18) 

Consider the 2 1S +  states of a system with a total spin S with symmetry operations that belong to the group 
( )2SU . The components ˆ

mm′U  of the transition matrix ( )ˆ
jLZ tηU  can be constructed in the basis of Jacobi 

polynomials [27]-[29]: 

( ) ( )
( ) ( ) ( ) ( )

1
2

,2 2
! !ˆ 1 2 1 .
! !

m m m m
m m m m

mm LZ LZ S m LZ

S m S m
P P P P

S m S m

′+ ′−
′ ′− +

′ ′−

′ ′ + +
= − − 

+ +  
U            (19) 
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Here, ( ),a b
nP x  are Jacobi polynomials. Stockes phases should be introduced. The diagonal elements are 

written by noting that when the probability for making a transition is LZP , then the probability for not making a  

transition is 1 LZP− . Hence the off-diagonal amplitudes are multiplied by a phase factor ( )exp j
LZi ηφ 

  
  where  

( )j
LZ
ηφ  is the Stockes phase at time 

j
tη :  

( ) ( ) ( )π arg Γ 1 ln 1 .
4

j

j j jLZ iη
η η ηφ λ λ λ= + − + −                       (20) 

Here, ( )Γ ...  is the gamma function, ( )2Δ
j L Rσ ση σσλ

′′= −    is the Landau-Zener parameter defined at the 
thj  anti-crossing point 

jητ  where the transition from the diabatic state σ  to σ ′  is executed. Here, the 
dot on functions denotes time derivative and ,R L

  are constant sweep velocities of transverse fields. 
A point of concern for introducing ( )j

LZ
ηφ  is that ( )ˆ

jLZ ητU  should be unitary. Based on the above defini- 
tions, the full propagator can be calculated. This permits to find the transitions amplitudes ( )σ̂σ τ′  and 

( )1 2
ˆ ,σσ τ τ  from Equations (13)-(14). This can be done by connecting adiabatic and the diabatic states of the 

system through the relation: 

( ) ( ) ( )ˆΨ ‍ ,St t ψ′= ∑  


                               (21) 

with ( ) ( )ˆ S t′  being the matrix elements of a rotation matrix which ensures connection between the two diffe- 
rent bases of a system with a total spin S. 

The average occupation number ( )ˆ HQσ τ  are deduced, leading thus to an average power operator. A first 
consequence being the possibility to evaluate the average work. The second moments of the work needs 

( ) ( )1 2
ˆ ˆH HQ Qσ στ τ  which also demands to have ( )1 2

ˆ ,σσ τ τ . 

3. Quantum Work and Fluctuations on Two-Level System 
We illustrate the theory presented above by considering the simplest case of the spin-1/2 two-level system. 

3.1. The Model Hamiltonian 
The model Hamiltonian considered is deduced from Equation (5) as, 

( ) ( ) ( ) ( )ˆ T T Δ T T .L Rt t S S t S S+ + + += + + +                  (22) 

The two instantaneous eigenvalues and eigenfunctions relevant to (22) should be evaluated. The results read: 

( ) ( ) ( ) ( )
1,2

Ω
,

2 2
R Lt t t

t
+

= ±
 

                             (23) 

where 

( ) ( )2 2Ω 4Δ ,t t= +                                    (24) 

is the level-separation energy and ( ) ( ) ( )L Rt t t= −    a detuning. The eigenfunctions associated with the 
eigen-energies Equation (23) are respectively given by:  

( ) ( ) ( ) ( )( )
1

1 2Δ Ω T ,G t S t t
t + = − + 


                   (25) 

( ) ( ) ( ) ( )( )
2

1 2Δ Ω T ,E t S t t
t + = + − 


                   (26) 

where the normalization factors ( )1 t  and ( )2 t  are given by: 

( ) ( ) ( )( )2 2
1,2 Ω 4Δ ,t t t= ± +                              (27) 

For spin-1/2 considered, adiabatic ( )Ψ t  and diabatic states ψ  in Equations (25) and (26) are related 
as suggested in Equation (21) by the rotation matrix: 
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( )
1
2 cos sinˆ ,

sin cos
t

θ θ
θ θ

 
 
 

− 
=  
 

                               (28) 

with tan 2 Δθ =   with 0 π 2θ≤ ≤ . This matrix helps to rotate a system from its adiabatic to diabatic basis 
and vis versa. A Caley-Klein algebra can be attributed to (28). 

The projections ( )kj j k tσ ψ=  of the instantaneous eigenfunctions ψ  in the diabatic basis are 
needed: 

( )
( )

.kj
kj

k

f t
t

=


                                        (29) 

Here, ( )11 2Δf t = , ( ) ( ) ( )( )12 Ωf t t t= − +  , ( )21 2Δf t =  and ( ) ( ) ( )( )22 Ωf t t t= − . In the above repre-  
sentation, ( ) ( )1 2, , TSσ σ += . Similarly, ( ) ( )( )1 2,t tψ ψ  map ( ) ( )( ),G t E t . 

Our analyzes of the work done on a two-level system are mainly performed in the limits ( )Δ 1  and 
( )Δ 1 . These limits can be respectively interpreted as sudden and adiabatic limits of transitions. In the slow 
drive regime Δ 1 , the process is quasi-static and the system passes through a sequence of equilibrium 
states and remains in its original adiabatic state according to the adiabatic theorem for a sufficiently slow vari- 
ation [28]. In the rapid drive regime Δ 1 , the two-level system will not feel the gap. For each of these 
extremal regimes, a projection matrix is constructed, 

0 1
,

1 0sudd

− 
=  
 

                                     (30) 

which is achieved in the sudden limit while 
1 11 ,
1 12adia

− 
=  

 
                                   (31) 

is the one obtained for the counterpart. It is instructive to note that the matrix M  of projections onto the 
eigenspace satisfy: T ˆ

M M =  1 , where 1̂  is the unit matrix. This last remark implies a conservation of the total 
population in the sudden and adiabatic limit. 

These data are helpful to evaluate the work done on a two-level system by an external field of constant 
amplitude. 

3.2. Work and Fluctuations by the LZ Effect 
The LZ process describes the dynamics of two states which come close by linear variation of a control protocol: 

( ), , .L R L R
tt
T

=                                        (32) 

The energies ( ),L R t  defined such that ( ) ( )L Rt t= −   are diabatic energies associated with diabatic states 
1  and 2  (see Figure 2(b)) and cross at time 0t =  while adiabatic energies are plotted on the Figure 2(a). 

They do not cross but hybridize at 0t =  and form an avoided level crossing. Super-conducting Cooper-pair 
box (CPB) is one of the experimental setups in which LZ transitions are observed. 

The time-evolution of the transition probability function during the rapid and slow drives show that nothing 
happens to the system before the crossing. It mainly remains in its initial state exhibiting an insensitivity to the 
external sweeping protocols ( ),L R t . The work is converted to heat and accumulated in the region ] ],0−∞ . 
After passing the avoided crossing, the heat is consumed to produce LZ-like transitions. We take the initial time 

0it =  and the final time ft T=  i.e we consider the system in the region where the effects of the control 
protocol is effective. 

Considering the Hamiltonian (22), the power operator for a two-level system is explicitly evaluated as:  

,T , ,T
ˆ ,S R L SP Q

+ +
= ±                                    (33) 

where ,TSσ +′ = . We used the relation ˆ 1Qσσ ′′ =∑ . 
The average work done during a period T to transfer a population from the state σ  to σ ′  will be  
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Figure 2. Energy diagram for a two-level system undergoing a tunneling 
LZ effect. The left panel corresponds to adiabatic trajectories. The right 
panel indicates the two diabatic trajectories associated with energies 
brought to the system by the protocol.                                  

 
derived using the formula: 

( ), 0
ˆ d ,

T H
R LW Q

Tσσ σσ
τ τ′ ′

= ± ∫





                              (34) 

where ( )ˆ HQ
σσ

τ
′
 is the average population transferred. The second-order moment of the work in (43) is 

calculated as well: 
( )02 2 2 2

, ,2 2 .R L R LW W W
σσσσ σσ′′ ′

= ± +                            (35) 

Here, 
( ) ( ) ( )102

1 2 1 22 0 0

1 ˆ ˆd d .
T H HW Q Q

T
τ

σ σσσ
τ τ τ τ

′
= ∫ ∫                       (36) 

The average of the square fluctuations of the work, ( ) 22 2W W W
σσσσ

δ ′′
= −  is evaluated from:  

( ) ( ) ( )02 2 2 2
, ,2 2R L R LW W W W

σσ σσ σσ
δ ′ ′ ′

= − − +                       (37) 

The full propagator for the two-level system driven by the traditional LZ process (single crossing time 
0

jητ = ) is expressed as: 

( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ, ,0 .LZt T t t t=U M U M                             (38) 

Here, 

( )
( )

( )

0

0

,

0 ,

e 0ˆ , ,
0 e

i t t

i t t
t t

φ

φ

− 
 =
 
 







M                               (39) 

with 

( ) ( )
0

0, d ,
t

t
t tφ τ τ= ∫ 

                                      (40) 

being the phase accumulated by the components of the wave-function from 0t  to t and 1,2= . The eigen- 
energies ( )1 t  and ( )2 t  are symmetric about the resonance (see Figure 2). The phases in (40) are also 
symmetric. The transition matrix reads: 

1 eˆ ,
1 e

LZ

LZ

i
LZ LZ

LZ i
LZ LZ

P P

P P

φ

φ−

 − −
 =
 − 

U                         (41) 

where the angle LZφ  defined by: 

( ) ( )π arg Γ 1 ln 1 ,
4LZ iφ λ λ λ= + − + −                            (42) 



I. Nsangou, L. C. Fai 
 

 
96 

is the Stockes phase. The function 2eLZP πλ−=  is the LZ probability for occupying the same diabatic state after 
passing the anti-crossing region. Here, ( )2Δ L RTλ = −    is the relevant LZ parameter. 

In the sudden limit of transition, 1λ  , the system is in one of its diabatic states T+  or S . In this 
regime, the ground state ( )0G  at time 0t =  can either be S  or T+ . The two components of the wave 
function are: 

1 2 1 2e 1 e ,LZi i i i i
S LZ LZP G P Eφ φ φ φ φψ + + −= − −                          (43) 

1 2 1 2
T e e 1 .LZi i i i i

LZ LZP G P Eφ φ φ φ φψ
+

− + − −= + −                         (44) 

Substituting the instantaneous eigenstates (25) and (26) into the above expressions yields the transition 
amplitudes. Another way to find the transition amplitudes is to consider the projections of the states (43) and (44) 
onto the diabatic basis ( S , T+ ). This will involve the projections in Equation (28). The average population  

ˆ HQ
σσ ′

 transferred from σ  to σ ′  are obtained as follows: 

( ) [ ]2 2 2
21 11 21 21 11 2

ˆ 2 1 cos ,H
LZ LZ LZ LZSS

Q P P P φ φ = + − − − −                  (45) 

( ) [ ]2 2 2
11 11 21 21 11 2T

ˆ 2 1 cos ,H
LZ LZ LZ LZS

Q P P P φ φ
+

  = − − + − −                 (46) 

( ) [ ]2 2 2
22 12 22 12 22 2T

ˆ 2 1 cos ,H
LZ LZ LZ LZS

Q P P P φ φ
+

 = + − − − −                 (47) 

and 
( ) [ ]2 2 2

12 22 12 12 22 2T T
ˆ 2 1 cos .H

LZ LZ LZ LZQ P P P φ φ
+ +

 = + − + − −                   (48) 

In these relations, projections of instantaneous eigenstates read: 

( ) ( )11 1 12 1 21 2 22 22Δ Ω 2Δ, , , and Ω .= = − − = = − +           

In the regime Δ 1  the instantaneous projections are given by Equation (29). The average population for 
the transition TS +→  and T S+ →  leads to the same result, namely: 

T T
ˆ ˆ 1 .H H

LZS S
Q Q P

+ +

= = −                                  (49) 

Thus, the statistical average works done on the two-state system are given by: 

T ,L LZSW P
+
= −                                        (50) 

and 

T .R LZSW P
+
= −                                        (51) 

In principle, for the Landau-Zener drive, L R= −   . In absolute values, the two works in Equations (50) and 
(51) are identical. 

An algebraic character can be associated with the quantum work. The work is antisymmetric by path reversal. 
By changing the protocol , ,L R L R→−  , this affects the work by inverting its sign: 

, , .L R L RW W
σσ σσ′ ′

 − = −                                  (52) 

In addition, it should also be noted that 

, , .L R L RW W
σσ σ σ′ ′

 = −                                  (53) 

Because of the link between work and heat, the properties in Equations (52) and (53) can be attributed to the 
heat. 

Recall that TSW
+

 is the work done on a two-level system to realize a transfer of population from the 
diabatic state S  to T+ . This work is positive; we call it “foward work”. On the other hand, the work 

T SW
+

 which corresponds to the opposite trajectory is negative; we call it “backward work”. 
A particular characteristic for a quantum work similar to that of classical work should be pointed out. Basi- 
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cally, the work done on a classical system does not depend on the followed path but only on the initial and final 
positions. Relations (50) and (51) show a contrasted situation in the regime of sudden transitions. Namely, the 
work done on a quantum two-level system does not depend on the followed path. It does not depend yet on the 
initial and the final states. The initial state can be chosen arbitrary, the efficiency remaining the same. 

In the regime Δ 1  the instantaneous projections are given by Equation (30). Populations transferred are 
deduced from Equation (45)-(48) as follows:  

( ) [ ]2T

1ˆ 1 cos ,
2

H
LZ LZ LZS

Q P P φ φ
+

= + − −                        (54) 

( ) [ ]2T

1ˆ 1 cos .
2

H
LZ LZ LZS

Q P P φ φ
+

= + − −                        (55) 

The occupation probability, 1LZP  . The maximum occupation of diabatic states is 1/2. The ”forward work”  
( )0W

σσ ′
>  or the “backward work” ( )0W

σ σ′
<  performed are not statistically enough to produce a com-  

plete transfer. Both diabatic states remain constantly coupled and the total population is preserved,  
( ) ( )

T
ˆ ˆ 1H H

S
Q t Q t

σ σ +

+ = . 

An alternative way to find the work done on a system is defined through the two-measurement process (TMP) 
[20]-[22]. The internal energy ( )ˆ t

σσ ′
  acquired during the passage σ σ ′→  is measured at the begin-  

ning and at the end of the evolution. The work done during the process is predetermined by the corresponding 
energy difference, ( )ˆW t

σσ σσ
δ′ ′

=  . We show that this approach is equivalent to the previous measurement  

procedure for a rapid LZ drive process(non-adiabatic evolution). The work is then defined as: 

( ) ( )ˆ ˆ 0W T
σσ σσ σσ′ ′ ′

= −                                 (56) 

Considering the Hamiltonian ( )ˆ t , the relevant internal energy ( )ˆ t
σσ ′

  acquired at time t during the 
transfer σ σ ′→  reads: 

( ) ( ) ( ) ( ) ( ) ( )† †
T T TT

ˆ ˆ ˆ Δ .H H
L R SS

t t Q t t Q t σ σ σ σσσ σ σ + + +
+′

= + + +                      (57) 

As already shown, the transition amplitudes do not depend on time in the sudden limit. The work is obtained 
as follows: 

,
ˆ .H

R LW Q
σσ σσ′ ′

= ±                                       (58) 

This result exactely coincides with the one derived from Equation (35) under the same assumptions. 
From a quantum mechanical view point it is more convenient to find the Hamiltonian difference  
( ) ( ) ( )ˆ ˆ ˆ 0T Tδ = −    and average it. This procedure yields: 

( ) , ,T
ˆ ˆ ,R L ST Qδ

+
= ±                                          (59) 

which is nothing but the power operator in Equation (33). 

4. Quantum Work and Fluctuations on Three-Level System 
4.1. The Model Hamiltonian 
Here, an additional level position is present. It might evolve with time or not. States are coupled by this 
intermediate position via a constant coupling. The model is of the form: 

( ) ( ) ( ) ( ) ( )0 0 0 0
ˆ T T T T Δ T T T T Δ T T T T .L Rt t t+ + − − + + − −= + + + + +          (60) 

In this representation, T+  and T−  correspond to the triplet states while 0T  is the single singlet state 
(Figure 3). 

The associated eigenvalues are expressed as follows ( )1,0,2= : 
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Figure 3. Sketch of diabatic energies of the Left and 
the Right drifts as a function of time. The drifts are 
coupled by a constant field.                           

 

( ) ( ) ( ) ( ) ( )12 cos ,
3 3

L Rt t
t t tϕ

+  = +   
 

 
                         (61) 

Here, 
( ) ( ) 2 π,k t t kϕ ϑ= −                                 (62) 

with 

( ) ( ) ( ) ( )2
2

1
π 1 1 3arccos , , ; ,
2 2 2 2

t Z t Z t F Z tϑ  = = −      
                   (63) 

where ( )2 1 ...F  is the Gauss hypergeometric function [30]-[32]. Also, 

( ) ( )
( ) ( )

3 3 .
2

q t
Z t

R t t
= −


                             (64) 

( ) ( )2
22Δ ,

3
R L

R LR t
+

= − −
 

                           (65) 

and 

( ) ( ) ( )( )23 Δ2
.

27 3
R L R LR Lq t

+ ++
= − +

    
                   (66) 

Similarly, we have defined 

( ) ( ) .
3

R t
t

−
=                                 (67) 

The instantaneous eigenfunctions are calculated. The results are written as follows:  

( ) ( ) ( ) ( ) ( )11 10 0 12
1

1 T T T ,G t f t f t f t
t + − = + + 

                   (68) 

( ) ( ) ( ) ( ) ( )01 00 0 02
0

1 T T T ,I t f t f t f t
t + − = + + 

                   (69) 

( ) ( ) ( ) ( ) ( )21 20 0 22
2

1 T T T ,E t f t f t f t
t + − = + + 

                  (70) 

where 

( ) 2
1 Δ ,kf t =                                      (71) 
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( ) ( ) ( )( )2 Ω Δ,k kf t t t= −                                  (72) 

( ) ( ) ( )( ) 4
3 Ω Ω Δ .

3
L R

k k kf t t t+ = + − − 
 

 
                    (73) 

Here, 1,0, 2k = . The notation ( )I t  in (69) indicates the intermediate level position. The detuning is 
expressed as follows: 

2 ,
3

L R−
=
 

                                   (74) 

and ( )Ω t  is generalized as: 

( ) ( ) ( )1Ω 2 cos .
3k kt t tϕ= 
  

                              (75) 

The normalization factor ( )k t  reads: 

( ) ( ) ( )( ) ( )2 2Ω ,k k kt t t t= − +                             (76) 

where 

( ) ( ) ( )( )
2

2 2 4Ω Ω Δ Δ .
3

L R
k k kt t t +  = + − − −  

  

 
                   (77) 

For spin-1, we do Δ Δ 2→  into Equations (61)-(77). Adiabatic ( )Ψ t  and diabatic states ψ  in 
Equations (68)-(70) are related by the unitary rotation matrix: 

( )

[ ] [ ]

[ ] [ ]

2 2

1

2 2

2cos sin 2 sin
2

2 2ˆ sin 2 cos 2 sin 2 .
2 2

2sin sin 2 cos
2

θ θ θ

θ θ θ

θ θ θ

 
 
 
 

= − 
 
 
 − 
 

                    (78) 

We obtained this matrix by direct calculations. Indeed, the angle θ  is used and the transformation related to 
1S =  are applied. One can see that ( )1̂  possesses the effective features of Caley-Klein algebra associated 

with spin-1 in the group ( )2SU .The projection kj j kσ ψ=  of the instantaneous eigenfunctions kψ  in  
the diabatic basis are of the form (28), namely, ( ) ( )kj kj kf t t=  . One should understand  

( ) ( )1 0 2 0, , T , T , Tσ σ σ − += . Likewise, ( ) ( ) ( )( ) ( ) ( ) ( )( )1 0 2, , , ,t t t G t I t E tψ ψ ψ = . The above  

relations serve for derivation of transition amplitudes as we did for the case of two-level. 
A projection matrix can be constructed. The extreme limits Δ 1  and Δ 1  are considered. After 

some algebra, in the sudden limit, one has:  

0 0 1
0 1 0 ,
1 0 0

sudd

 
 = − 
 
 

                                (79) 

and 
2 2 1 2 2

1 1 0 1 ,
2

2 2 1 2 2
adia

 
 

= − 
 
 

                           (80) 

for adiabatic limit. As for the case of two-level, these two matrices obey T 1M M =  . Now we can be finding the 
works done. 
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4.2. Work and Fluctuations by the LZ Effect 
The definition of the work given in the first section is used. The power operator is expressed here as:  

( ) ˆˆ .P t Qσ σ
σ

= ∑                                      (81) 

where, T ,Tσ − +=  and T L−
=  , T R+

=  . The drifts ( )tσ  are linear functions of t such that their first 
order derivative does not evolve with time. 

The average of the work can be evaluated with aid of the formula: 

( ) ( )
0

1 ˆ d .
T HW t Q t t

T σσσ σσσ
′ ′
= ∑ ∫                          (82) 

The average ( )ˆ HQ t
σσ ′

 in the Heisenberg pictures are to be evaluated as explained in the preceding section. 
Our goal will be achieved after evaluating the transition amplitudes (13). We do it as follows. The energy 
diagram shows one crossing point for this process (spin-1 LZ tunneling effects). The full propagator describing 
the adiabatic evolution could be presented as in Equation (38) where 

( )

( )

( )

0

0

,

0

,

e 0 0
ˆ , 0 1 0 ,

0 0 e

i t t

i t t

t t

φ

φ−

 
 

=  
 
 







M                            (83) 

and 

( ) ( )
( ) ( )
( ) ( )

2

2

2 1 e 1 e

ˆ 2 1 e 2 1 2 1 e ,

1 e 2 1 e

LZ LZ

LZ LZ

LZ LZ

i i
LZ LZ LZ LZ

i i
LZ LZ LZ LZ LZ LZ

i i
LZ LZ LZ LZ

P P P P

P P P P P

P P P P

φ φ

φ φ

φ φ

−

−

 − − −
 
 = − − − − 
  − − 

U          (84) 

The components ( ) ( )ˆ t tσψU  of adiabatic wave-functions are derived. The relevant transitions amplitudes 
are deduced as well. For convenience, the results are written in matrix forms: 

These representations help to approximate the work done on a three-level system for the sudden and adiabatic 
limits of transition. For instance, in the sudden limit, it can be shwon that, populations transfered between the 
three levels correspond to those for spin-1 LZ problem: 

( )
( ) ( )

( ) ( ) ( )
( ) ( )

22

2

2 2

2 1 1
ˆ 2 1 1 2 2 1 .

1 2 1

LZ LZ LZ LZ

H
LZ LZ LZ LZ LZM

LZ LZ LZ LZ

P P P P

Q t P P P P P

P P P P

 − −
 
 = − − −
 
 − − 

                (85) 

The works in (82) are decomposed as follows:  

( ) ( )ˆ ˆ ,H H
L RW Q t Q t

− −− +−
= +                              (86) 

( ) ( )0 0 0
ˆ ˆ ,H H

L RW Q t Q t
− +

= +                              (87) 

( ) ( )ˆ ˆ ,H H
L RW Q t Q t

+ −+ ++
= +                              (88) 

and correspond each to a diabatic state. As already explained, ( )ˆ HQ t
σσ ′

 represents the population which has  

been transferred from the diabatic states σ σ′ → . The work W
σ ′  is performed to produce a transfer from 

σ ′ . 
Considering the works done on two-level systems, that for three-level in Equations (86)-(88) are the sum of 

works between intermediate diabatic positions. These works could be constructed intuitively considering 
intermediate works separately. 

Equations (86)-(88) can be transformed with the aid of the components of the matrix in Equation (85). Thus, 
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one obtains: 

( )1 2 ,L LZW P
−
= − −                                    (89) 

0 0,W =                                              (90) 

( )1 2 .R LZW P
+
= − −                                    (91) 

We have exploited the fact that L R= −   . 

5. Conclusions 
We have presented a theory for evaluating the work done on a multi-level system. Two particular cases (two- 
and three-level) are considered and permit to illustrate the theory. The obtained results for two-level spin-1/2 
system were shown to be simple functions of the Landau-Zener probability function. Thus, the work depends on 
control protocol which can be experimentally manipulated. We have demonstrated that forward work and 
backward were absolutely identical and differ algebraically by a sign in the sudden limit. The efficiency of the 
work done has been observed as being independent on the initial state chosen. It has been pointed out that an 
adiabatic variation of the protocol cannot lead to a complete population transfer when the system is isolated 
from its environment. The half of the initial population corresponds to the maximum of the population trans- 
ferable. Both states remain constantly coupled. If one allows the internal energy of such a system to flow out of 
it or an external energy source to flow towards the system, it will be entangled and its states will no longer be 
expressible as linear superposition of the states of the subsystem. An equilibrium would not be achieved. The 
system will mostly evolve out of equilibrium. The work done will be accompanied by an additional work due to 
the perturbation: 

( )0
ˆ ˆˆ .

T
W Trδ ρ = −  ∫                                  (92) 

Here, ̂  is the Lindblad operator accounting for relaxation and dephasing if any. The effective power 
injected will come from two different sources ( protocol and perturbation). The theory we have presented should 
be reformulated out of equilibrium. However, the variation of the internal energy remains experimentally 
measurable. We have shown that the work done corresponds to variation of the internal energy. 

For three-level system on the other hand, the work to be done in order to achieve a transfer of population from 
one of the upper (lower) to another lower (upper) diabatic states appeared as being the sum of intermediate 
works performed independently. 
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