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Abstract 
Using the Picard iteration method and treating the involved integration by numerical quadrature 
formulas, we propose a numerical scheme for the second kind nonlinear Volterra integral equa-
tions. For enlarging the convergence region of the Picard iteration method, multistage algorithm is 
devised. We also introduce an algorithm for problems with some singularities at the limits of in-
tegration including fractional integral equations. Numerical tests verify the validity of the pro-
posed schemes. 
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1. Introduction 
The Volterra integral equations arise in many scientific and engineering fields such as the population dynamics, 
spread of epidemics, semi-conductor devices, vehicular traffic, the theory of optimal control, the kinetic theory 
of gases and economics [1]-[7]. The initial or boundary value problems for ordinary differential equations and 
some fractional differential equations can be equivalently expressed by the second-kind Volterra integral equa-
tion [6]-[9]. 

In this work, we consider the general nonlinear Volterra integral equation of the second kind 
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where it permits weak singularity at the limits of integration. 
The specific conditions under which a solution exists for the nonlinear Volterra integral equation are consi-

dered in [1]-[4] [7]. Many analytical and numerical methods have been proposed for solving this type of equa-
tions, such as the linearization and collocation method [10]-[14], the trapezoidal numerical integration and im-
plicit scheme method [15], the implicit multistep collocation methods [16], the reproducing kernel method [17], 
the wavelet method [18] [19], the Adomian decomposition method [6] [7] [20] and the methods by using func-
tion approximation [21]-[23]. 

The Picard iteration method, or the successive approximations method, is a direct and convenient technique 
for the resolution of differential equations. This method solves any problem by finding successive approxima-
tions to the solution by starting with the zeroth approximation. The symbolic computation applied to the Picard 
iteration is considered in [24] [25], and the Picard iteration can be used to generate the Taylor series solution for 
an ordinary differential equation [25]. 

In this work, we concern on the numerical Picard iteration methods for nonlinear Volterra integral Equation 
(1). By using the proposed methods, we treat the involved integrals numerically and enlarge the effective region 
of convergence of the Picard iteration. The rest of the paper is organized as follows. In Section 2, the scheme in 
a single interval is considered, and the validity of the method is verified by some numerical tests. Basing on the 
scheme proposed in Section 2, we devise a multistage algorithm in Section 3 for enlarging the convergence re-
gion. In Section 4, an algorithm is introduced for problems with some singularity. To show the effectiveness of 
the proposed algorithms, we perform some numerical results. 

2. Numerical Picard Iteration Method for Integral Equations 
The Picard iteration scheme for the considered Equation (1) reads [7] [26] 

( ) ( )0 ,t C tϕ =                                                   (2) 

( ) ( ) ( )( )
0

1 , , d , 0.
t

n nt
t C t f t s s s nϕ ϕ+ = + ≥∫                            (3) 

The Picard iteration scheme has been applied in almost each textbook on differential equations to mainly 
prove the existence and uniqueness of solutions. It is direct and easily learned for numerical calculation. 

Assume the recursion scheme is convergent for [ ]0 ,t I t T∈ = . Denote 

( )0 0, , 0,1, 2, , .ih T t N t t hi i N= − = + =   
At it t= , (3) becomes 

( ) ( ) ( )( )
0

1 , , d , 0.it
n i i i nt

t C t f t s s s nϕ ϕ+ = + ≥∫                            (4) 

Treating the integral involved in (4) by numerical quadrature formulas, we have the numerical Picard iteration 
scheme for (1) over [ ]0 ,t T  

( ) ( )0 , 0 ,i it C t i Nϕ = ≤ ≤                                 (5) 

( ) ( ) ( ) ( ) ( )( )1 0 0 1 ,
0

, , , , 1 ,
i

n n i i i j i j n j
j

t C t t C t f t t t i Nϕ ϕ ω ϕ+ +
=

= = + ≤ ≤∑             (6) 

where 0n ≥  and ,i jω  are the corresponding weights. Considering the compound trapezoidal formula in (6), 
the weights are 

0 0
,0 , ,

1 , , 1 1.
2 2

i i
i i i i j

t t t t
h h j i

i i
ω ω ω

− −
= = = = = ≤ ≤ −

 
Numerical results are given to validate the proposed scheme. Let us start with an example in which the inte- 

grand ( )( ), ,f t s u s  is independent with t. 
Example 1 Consider the initial value problem (IVP) for the nonlinear differential equation 
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This IVP has the exact solution 

( )* 1 12sin sin
2 2

tu t h h− = − 
 

 

The equivalent integral equation of the IVP is 

( ) ( )
1 2

2
0

11 1 d .
4

t
u t u s s = − + 

 ∫  

Denote N
nϕ  the result after n  iterations when discretization parameter N is taken. Take T = 10, N = 20. 

Figure 1(a) and Figure 1(b) show the results of the first 5 iterations and the errors at T for each iteration 
respectively. It’s shown in the figure that, the iterative solution converges exponentially respect to iteration num- 
ber n. 

The relative errors 
( ) ( )

( )

*

*

N
n T u T

u T
ϕ −

are larger than 210−  when N = 20. For higher accuracy, more nodes in  

numerical integration are needed. For each fixed N, iterations stop when ( ) ( ) 14
1 < 10N N

n nT Tϕ ϕ −
+ − . Errors for 

10,20,40,80,160,320N =  are plotted in Figure 2(a). Especially at T, we report the dependence of the error on 
n and N in Figure 2(b) and Figure 2(c), respectively. The figures show that the errors increase respect to t and 
decrease respect to n exponentially, and decrease respect to N at an order about  

( ) ( )3log 10 log 320 10 2− ≈ − . 
Next we give an example with t-dependent integrand. 
Example 2 Consider the pendulum equation 

( ) ( )

2

2

d sin 0, 0 ,
d

0 0, 0 1.

u u t T
t

u u


+ = < ≤


 ′= =

                            (7) 

The exact solution can be expressed in terms of the Jacobi elliptic function 

( )* 1 12arcsin , .
2 4

u t sn t  =   
    

Integrating the differential equation in (7) yields 

( ) ( ) ( )
0 0 0

sin d d sin d .
t s t

u t u s t t s u s sτ τ= − = − −∫ ∫ ∫  

Take 6T = , 20N = . Similar behavior of errors as in Figure 1 can be observed from Figure 3 which shows 
 

       
(a)                                                    (b) 

Figure 1. Example 1 is simulated by numerical scheme (5), (6) with discretization parameter N = 20. (a) The 
numerical solution ϕ  of the first 5 iterations for integration time [ ]0,10t∈ ; (b) Dependence of the error 

( ) ( )10 10N
n uϕ ∗−  on iteration number n.                                                                 
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(a) 

         
(b)                                                    (c) 

Figure 2. Example 1 is simulated by (5), (6) with various discretization parameter N. (a) Dependence of the error
( ) ( )N

n t u tϕ ∗−  on integration time t; (b) Dependence of the error ( ) ( )10 10N
n uϕ ∗−  on iteration number n; (c) 

Dependence of the error ( ) ( )10 10N
n uϕ ∗−  on discretization parameter N.                                            

 

       
(a)                                                     (b) 

Figure 3. Example 2 is simulated by numerical scheme (5), (6) with N = 20. (a) The numerical solution ϕ  of the 

first 5 iterations for integration time [ ]0,6t∈ ; (b) Dependence of the error ( ) ( )6 6N
n uϕ ∗−  on iteration number n.       

 
the results of the first 5 iterations and the errors at T for each iteration. It confirms the validity of the scheme (5), 
(6) for equations with general integrand f. 

What’s different from Example 1 is that, at T, the results of the second and the third iterations are even worse 
than the first one. However, it can be noticed that, in the interval closer to t = 0, for example [ ]0,3 , the errors 
decrease as n increases all the same. So the underlying numerical iteration method can be viewed as a point-by- 
point correction process. 
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3. Multistage Scheme 
It’s well-known that the convergence of the Picard iteration is constrained in some interval. Then how can we 
get the numerical solution to the integral Equation (1) when t is outside the interval of convergence? We will 
take advantage of the multistage method and design a scheme by which the considered problem can be solved 
interval by interval. For example, the Equation (1) is considered on [ ]0 ,t T , however, assume that the single- 
stage-scheme designed in the previous section is convergent only on [ ]0 1,t t , where t1 < T. For achieving the 
numerical result at T, we can regard the problem on [ ]1,t T  as a new one, in which we take the numerical result 
at 1t  as the initial value. Now we begin to design the multistage scheme in detail. 

Denote the time interval considered for (1) by [ ]0 ,I t T= . For a given positive integer K, we break I into K 
disjoint subintervals such that 

1

K
kk

I I
=

=


, 

( 1 1, , , 1, , ,k k k k
k kI t t h t t k K− −= = − =   

where 0 1
0

Kt t t t T= < < < = . For 1, ,k K=  , take kN  uniformly distributed nodes { }k
it  on kI  satisfy- 

ing 

1, , 0 .k kk
k i k k

k

h
h t t ih i N

N
−= = + ≤ ≤                              (8) 

Suppose the equation has been solved on 0 , kt t   , namely, the first k  subintervals. For Iκ  (1 kκ≤ ≤ ), 
denote the times of iteration by nκ  and the iterative solutions by { }, 0i i Nκ

κϕ ≤ ≤ , where ( )i n itκ

κ κϕ ϕ= . 
Now we consider the solution on 1kI + . Taking kt t=  in (1), 

( ) ( ) ( )( )0 , , d ,
ktk k k

t
u t C t f t s u s s= + ∫  

we have for 1kt I +∈ , 
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t tk k k
t t
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C t f t s u s s f t s u s f t s u s s C t C t f t s u s s

u t f t s u s f t s u s s C t C t f t s u s s

= + = + +

 = + + − + − + 

 = + − + − + 

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 (9) 

the right hand side of which will be analyzed below. 
• An approximation k

Nk
ϕ  of the first term ( )ku t  has been gotten in previous resolution. 

• The second part, with the approximations of u  on nodes in 0 , kt t    having been gained, can also be ap- 
proximated 

( )( ) ( )( ) ( )( ) ( )( )
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1
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, , , , d , , , , d

, , , , , , , , ,
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κ

κ

κ

κ

κ
κ κ κ κ κ κ κ κ κ κ

κ κ
ω ω ϕ ϕ

−
=

= = = =

   − = −   

   ≈ − ≈ −  

∑∫ ∫

∑∑ ∑∑  

 

where the corresponding weights for numerical integration on Iκ  are 

0
1 , , 1 1.
2N ih h i Nκ κ κ

κ κ κκ
ω ω ω= = = ≤ ≤ −                           (10) 

• ( ) ( )kC t C t−  can be calculated directly. 
Denoting 

( ) ( ) ( ) ( ) ( )1 1
1 0

, , , , , , 0 ,
Nk

k k k
k N i i i i i kk

i
C t f t t f t t C t C t t I k K

κ
κ κ κ κ κ

κ
ϕ ω ϕ ϕ+ +

= =

 = + − + − ∈ ≤ < ∑∑        (11) 

(9) leads to a new equation, which is similar to the considered problem (1),  

( ) ( ) ( ) ( )( )1 1 1: , , d , , 0 < ,k

t
k k kt

u t u t C t f t s u s s t I k K+ + +≈ = + ∈ ≤∫  
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namely, 

( ) ( ) ( ) ( )( )1: , , d , , 1 .k

t
k k kt

u t u t C t f t s u s s t I k K−≈ = + ∈ ≤ ≤∫                  (12) 

Using (5), (6) over 1,k kt t−   , numerical solution to (12) can be obtained. 
We conclude the previous analysis as an algorithm. 
Algorithm 1 Choose the algorithm’s parameters: number of subintervals K , set of nodes { }, 0kt k K≤ ≤  

and discretization parameters { }, 1kN k K≤ ≤ . 
Step 1. For 1 k K≤ ≤ , generate 

- the uniformly distributed nodes and corresponding weights ( ){ }, , 0k k
i i kt i Nω ≤ ≤  on kI  according to (8) and 

(10) 
- the weights { }, , 0k

i j j iω ≤ ≤  for numerical integration on 0 ,k k
it t    ( )1 ki N≤ ≤ , 

0 0
,0 , ,

1 , , 1 1.
2 2

k k k k
k k ki i
i i i i j

t t t t
j i

i iκ κω ω ω
− −

= = = = = ≤ ≤ −   

Step 2. For k = 1, solve (12). Note that the first term of ( ) ( ) ( )0

0 0 0
1 : NC t u t C tϕ = = . So solving (12) for k = 1 

is equivalent to solving the original Equation (1) for 1T t= . Use (5), (6) with { }1 1
,,i i jt ω  instead of { },,i i jt ω . 

Step 3. Recursively solve (12) for 1 < k K≤  using a similar scheme to (2) as follows:   
- Calculate ( )k

k iC t  ( )1 ki N≤ ≤  by (11).  
- The initial value of iteration:  

( ) ( ) ( ) ( ) ( )1 1
0 0 0 01

, , 1 .k k k k k k
k k N i k i kk

t C t C t t C t i Nϕ ϕ ϕ− −

−
= = = = ≤ ≤  

- For 0n ≥ , ( ) 1
1 0 1

k k
n Nk

tϕ ϕ −
+ −

=   and 

( ) ( ) ( )( )1 ,
0

, , , 1 .
i

k k k k k k
n i k i i j i j n j k

j
t C t f t t t i Nϕ ω ϕ+

=

= + ≤ ≤∑  

Here, we perform a numerical test to examine the effectiveness of Algorithm 1 and compare it with the 
scheme in single interval (2). 

Example 3 Consider the Lane-Emden equation 

( ) ( )

52 0, 0 ,

0 1, 0 0.

u u u t T
t

u u

 ′′ ′+ + = < ≤

 ′= =

 

The exact solution is 

( )
1

2 2
1 .

3
tu t

−
 

= + 
 

 

The equivalent integral form of the Lane–Emden equation is [20] 

( ) ( )5
0

1 1 d .
t su t s u s s

t
 = − − 
 ∫  

First, taking T = 4, 20N = , we solve the current problem by (5), (6). The numerical solutions of the first 5 
iterations and the errors at T are shown in Figure 4 from which the convergence can be observed. Unfortunately, 
the scheme is not convergent for T = 6. 

Consider the underlying problem for larger T by Algorithm 1. The time interval [ ]0,T  is uniformly divided 
into K subintervals, in which the same discretization parameter, denoted by N, is taken. Take 3,4,6,12K =  and 

10,20,30,40N = . For each N, iterations on kI  (1 k K≤ ≤ ) stop when 

( ) ( ), , 14
1 < 10 ,N K k N K k

n N n Nt tϕ ϕ −
+ −                              (13) 

where ,N K
nϕ  denotes the result after n iterations when discretization parameters N and K are taken. Errors and 

convergence rates respect to N at t = 12 are reported in Table 1, from which one can see that the underlying 
scheme is of order 2N − . 
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(a)                                                    (b) 

Figure 4. Example 3 is simulated by numerical scheme (5), (6) with N = 20. (a) The numerical solution φ of the first 
5 iterations for integration time [ ]0,4t∈ ; (b) Dependence of the error ( ) ( )4 4N

n uϕ ∗−  on iteration number n.          

 
Table 1. The error ( ) ( ), *N K

n t u tϕ −  and convergence rate at t = 12 (Example 3 is simulated by Algorithm 1 with 

various discretization parameter N and number of subintervals K).                                             

N 
K = 3 K = 4 K = 6 K = 12 

Error Order Error Order Error Order Error Order 

10 1.814e−3  9.131e−4  3.771e−4  9.040e−5  

20 3.771e−4 −2.27 2.070e−4 −2.14 9.040e−5 −2.06 2.237e−5 −2.01 

30 1.625e−4 −2.08 9.040e−5 −2.04 3.987e−5 −2.02 9.922e−6 −2.01 

40 9.040e−5 −2.04 5.054e−5 −2.02 2.237e−5 −2.01 5.578e−6 −2.00 

 
In fact, from the errors reported in the table, the convergence order 2K −  can also be obtained. So the scheme is 
of order ( ) 2NK − . Errors for K = 3 and N = 10, 20, 30, 40 are plotted in Figure 5(a). The validity of Algorithm 1 
is numerically confirmed.  

It’s an interesting phenomenon observed from Table 1 that almost the same results are obtained for same NK. 
For example, when NK = 120, the errors are all 9.040e 5− . This may be because “enough” iteration numbers 
are taken for all subintervals in the sense of (13). Setting the maximal iteration number allowed for each sub- 
interval to 3 and taking NK = 120, we recalculate the current example up to T = 12 for K = 3, 4, 5, 6, 8, 10, 12, 
15. The errors at T are presented in Figure 5(b) which shows the decrement of the errors respect to K. 

4. Problem with Singular Integrand 
In recent years, the fractional differential or integral equations are much involved. In fact, fractional integral is a 
class of integration with weak singular kernel. So many fractional differential and integral equations can be 
equivalently expressed by the singular Volterra integral equation of the second kind. Let us consider such an 
integral equation with some singularity. 

Example 4 Consider the singular Volterra integral equation [14] 

( ) ( )3
2

0

3 π d .
8

t u s
u t t t s

t s
= + −

−∫  

The exact solution is ( )*u t t= . Note that in the integrand there has 1
t s−

, which is infinity at s t= . In  

such case, the numerical scheme (5), (6) and corresponding multistage scheme (Algorithm 1) are not valid any 
more. 

A simple idea is to avoid the value of the integrand at s = t in the numerical integration, so an alternative is to  
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(a)                                                   (b) 

Figure 5. Example 3 is simulated by Algorithm 1. (a) Dependence of the error ( ) ( ), *N K
n t u tϕ −  on integration 

time t with the number of subintervals K = 3; (b) Dependence of the error ( ) ( ), *12 12N K
n uϕ −  on the number 

of subintervals K with NK = 120 and ( )max = 3n .                                                      

 
integrate with compound rectangular formula. The only things we need to do are changing the nodes of numeri-
cal integration and generating approximations for the values of ϕ  on these points since only the values on the  
nodes { }k

it  have been gained. 

For 1 k K≤ ≤ , denote the midpoint of 1,k k
i it t−    (1 ki N≤ ≤ ) and the corresponding weight by  

( ) 1
1

1 1ˆ ˆ, .
2 2

k k k k k
i i i k i kt t t t i h hω−

−
 = + = + − = 
 

                          (14) 

Denote 

( ) ( ) ( ) ( ) ( )
1

1 1 1
1

1 1

ˆ ˆ ˆˆ ˆ ˆ, , , , , , 1 ,
Nk

k k k
k N i i i i i kk

i
C t f t t f t t C t C t t I k K

κ
κ κ κ κ κ

κ
ϕ ω ϕ ϕ

−
− − −

−
= =

 = + − + − ∈ ≤ ≤ ∑∑       (15) 

in which 

( )1
1ˆ .
2i i i

κ κ κϕ ϕ ϕ−= +   

Thus, (12) becomes 

( ) ( ) ( ) ( )( )1
ˆˆ : , , d , , 1 .

t
kk k kt

u t u t C t f t s u s s t I k K−≈ = + ∈ ≤ ≤∫                 (16) 

We present the following algorithm. 
Algorithm 2 Choose the algorithm’s parameters: number of subintervals K , set of nodes { }, 0kt k K≤ ≤  

and discretization parameters { }, 1kN k K≤ ≤ . 
Step 1. For 1 k K≤ ≤ , generate 

- the nodes { }k
it  on kI  according to (8). 

- the integral nodes and weights ( ){ }ˆ ˆ, , 1k k
i i kt i Nω ≤ ≤  on kI  according to (14). 

- the weights { },ˆ , 1k
i j j iω ≤ ≤  for numerical integration on 0 ,k k

it t    ( )1 ki N≤ ≤ , 

,ˆ , 1 .k
i j h j iκω = ≤ ≤  

Step 2. Solve (16) for k = 1. As in Algorithm 1, since ( ) ( )1Ĉ t C t= , it is equivalent to solving (1) for 1T t= . 
Detail algorithm reads: 
- For 10 i N≤ ≤ , calculate ( )1

iC t  and get the initial value of iteration: ( ) ( )1 1
0 i it C tϕ = . 

- For 0n ≥ , ( ) ( )1 0
1 0n t C tϕ + =  and 

( ) ( ) ( )1 1 1 1 1 1
1 , 1

1

ˆˆ ˆ, , , 1 ,
i

n i i i j i j j
j

t C t f t t i Nϕ ω ψ+
=

= + ≤ ≤∑  
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where ( ) ( )( )1 1 1
1

1ˆ
2j n j n jt tψ ϕ ϕ−= + . 

Step 3. Recursively solve (16) for 1 < k K≤  as follows: 
- For 1 ki N≤ ≤ , calculate ( )ˆ k

k iC t  by (15) and get the initial value of iteration: 

( ) ( ) ( )1
0 0 01

ˆ, , 1 .k k k k
N i k i kk

t t C t i Nϕ ϕ ϕ−

−
= = ≤ ≤  

- For 0n ≥ , ( ) 1
1 0 1

k k
n Nk

tϕ ϕ −
+ −

=   and 

( ) ( ) ( )1 ,
1

ˆ ˆˆ ˆ, , , 1 ,
i

k k k k k k
n i k i i j i j j k

j
t C t f t t i Nϕ ω ψ+

=

= + ≤ ≤∑  

where ( ) ( )( )1
1ˆ
2

k k k
j n j n jt tψ ϕ ϕ−= + . 

Now, we come back to Example 4. Taking 0.5,0.8t =  to subdivide the time interval [ ]0,1  and N = 5, 10, 
20, 40. Figure 6 presents the dependence of the error on t  for each N and that on N at t = 1. The results verify 
the validity of Algorithm 2 in solving problems with some singularity at the limits of integration. However, the 
method is of order about only 0.5N −  for this example. 

Remark 1. Algorithm 2 is devised not especially for singular problems. It’s also valid for regular problems. 
For instance, we recalculate Example 1 with K = 2 and N = 5, 10, 20, 40, 80, 160. Errors and convergence rates 
respect to N are reported in Table 2, from which we can find the order is 2N − . 

5. Conclusions 
In this work, Picard iteration methods with numerical integration are devised for the second kind nonlinear Vol-
terra integral equations. The Picard iteration method solves the considered nonlinear equation explicitly, while 
the multistage scheme solves it interval by interval and enlarges the convergence region of the Picard iteration 
method. Numerical results validate the proposed schemes and algorithms and reveal that the schemes are of or-
der ( ) 2NK −  for regular problems. 
 

       
(a)                                                    (b) 

Figure 6. Example 4 is simulated by Algorithm 2. (a) Dependence of the error ( ) ( ), *N K
n t u tϕ −  on integration 

time t; (b) Dependence of the error ( ) ( ), *1 1N K
n uϕ −  on discretization parameter N.                          

 
Table 2. The error ( ) ( ), *N K

n t u tϕ −  and convergence rate at t = 10 (Example 1 is simulated by Algorithm 2 with 

number of subintervals K = 2 and various discretization parameter N).                                         

N 5 10 20 40 80 160 

Error 5.807e−0 1.376e−0 3.394e−1 8.459e−2 2.113e−2 5.281e−3 

Order  −2.08 −2.02 −2.00 −2.00 −2.00 
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What should be noticed is that the errors reported in the numerical results decrease exponentially respect to 
times of iteration n (for example, through simple calculation, we can observe from Figure 3(b) and Figure 4(b) 
that the convergence rates are about 4 n−  for Examples 2 and 3) and are of order 2−  respect to discretization 
parameter NK. Future work may concern on enhancing the rate of convergence respect to NK. 
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