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Abstract 
In the current article we propose a new efficient, reliable and breakdown-free algorithm for solv-
ing general opposite-bordered tridiagonal linear systems. An explicit formula for computing the 
determinant of an opposite-bordered tridiagonal matrix is investigated. Some illustrative exam-
ples are given. 
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1. Introduction 
The n n×  general tridiagonal matrix nT  takes the form:  
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The matrix in (1) frequently appears in many applications, for example, in parallel computing, telecommu- 
nication system analysis, solving differential equations using finite differences, heat conduction and fluid flow 
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problems. The interested reader may refer to [1]-[12] and the references therein. 
Inverting tridiagonal matrices in (1) have been considered by many authors. See for instance, [13]-[22]. To 

study matrices of the form (1) it is advantageous to introduce an n-dimensional vector e  in the following way 
[23]:  

[ ]1 2, , , ,ne e e=e                                          (2) 

whose components 1 2, , , ne e e  are given by:  

1 1

1

, if 1,

, if 2,3, , .

i

i i i
i

i

d i
e a b

d i n
e
− −

−

=
=  − =




                                (3) 

The symbolic algorithm DETGTRI [23] is based on (2) and (3). By using the LU factorization of nT , it is 
known that [23]  

( )
1

det .
n

n r
r

T e
=

=∏                                          (4) 

There are great interests in solving general opposite-bordered tridiagonal linear system, and hereafter it will 
be referred to as OBTLS, of the form:  

,A =x f                                               (5) 

in which the coefficient matrix A is given by:  

0 0 0

0 1 1 1

1 1 2 2 2

2

4 3 3 3
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0 0
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 
 
 
 
 

=  
 
 
 
 
 

 

 

 

   

  

 

 

                           (6) 

[ ]1 2, , , t
nx x x=x   and [ ]0 1 1, , , .t

nf f f −=f   
This system frequently occurs in engineering computation and science, e.g. in the numerical solution of an 

ablation and heat transfer problem as referred in [24]-[28]. The matrix A in (6) can be stored in 5 6n −  memory 
locations only. 

In [28], the author presented a numeric algorithm for solving the linear system (5) with 0 2 0np q −= = . The 
algorithm is based on the elementary column operations (ECO’s). It is noted that the numerical algorithm in [28] 
fails to solve some OBTLS of the form (5). Therefore, the main objective of the present paper is to construct a 
new symbolic and breakdown-free algorithm for solving the OBTLS in (5).  

Throughout this paper, the word “simplify” means simplifying the algebraic expression under consideration to 
its simplest rational form. Also, λ  is a formal parameter which can be treated as a symbolic name whose 
actual value is 0 as we will see later.  

The organization of the paper is as follows. The main results are given in the next section. Some illustrative 
examples are given in Section 3. In Section 4, we present some concluding remarks. 

2. Main Results  
In this section, we are going to formulate a new algorithm for solving OBTLS of the form (5). We begin by 
considering the singly bordered tridiagonal linear systems of the form (7)-(8) below. 

2.1. A Symbolic Algorithm for Solving Singly Bordered Tridiagonal Linear Systems 
The k k×  singly bordered tridiagonal linear system takes the form:  
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,kS =y f                                          (7) 

where  

1 1 1
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0 0

k

k k k k

k k k

k k

d a p
b d a p

b d a p
S

b d a p
b d a

b d

− − − −

− − −

−

 
 
 
 
 

=  
 
 
 
 
 

 

 

 

     

 

 

  

                          (8) 

[ ]1 2, , , t
ky y y=y   and [ ]1 2, , , .t

kf f f=f   
The Doolittle LU factorization of kS  is given by [1]:  

kS LU=                                              (9) 

where  
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and  
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where the quantities , 1, 2, , ,ic i k=   iγ  and , 1, 2, , 1i i kβ = −  are given, respectively, by:  

1

1 1
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, for ,
i i i i

k k k

d i
c d a i k

d i k
γ
γ β
− −

− −

=
= − = −
 − =

                             (12) 
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i

i

b
i k

c
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It follows from (9)-(11) that  
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1

det .
k

k i
i

S c
=

=∏                                          (15) 
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At this point, it should be mentioned that the above LU  factorization is always possible even if the matrix 
kS  is singular.  
The solution of the system in (7) reduces to solving the two standard linear systems:  

,L =z f                                             (16) 

and  
.U =y z                                             (17) 

We are now ready to formulate the following algorithm for solving the linear system (7). 
 

 

2.2. A Symbolic Algorithm for Solving General OBTLS 
In order to solve the general OBTLS (5) it is convenient to introduce the following notations:  

[ ] ( )1 1
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[ ]1 2 3ˆ , , , , ,t
nx x x x= =x x   
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and  

[ ]0 1 2 1
ˆ , , , , .t

nf f f f −= =f f   

Based on the above notations, the linear system in (5) can be written in the partitioned form:  

0

1

ˆˆ ˆ
.

t

n

d
A

S −

     
= =      

            

x xg f
x xq f 

                                (21) 

The solution of the linear system (21), may be obtained by solving the two linear systems:  

0
ˆˆ ,td + =x g x f                                        (22) 

1ˆ ,nS −+ =qx x f                                        (23) 

It is not difficult to prove that:  
1 1
1 1 ˆ.n nS S− −
− −= −x f qx

                                      (24) 

As can be seen from (24), we need to compute 1
1nS −
−=v f  and 1

1 .nS −
−=w q  By solving the following singly 

bordered systems with two right-hand sides we obtain the solution vectors v  and w :  

1 .nS −
   =   v w f q                                      (25) 

Consequently, we have from (24)  

2 1 1 1,x v x w= −                                          (26) 

and  

1 1 1.n n nx v x w− −= −                                        (27) 

By substituting (26) and (27) into (22), it follows that  

0 0 1 0 1
1

0 0 1 0 1

.n

n

f a v p v
x

d a w p w
−

−

− −
=

− −
                                    (28) 

Therefore, we get  

1 .x= − ⋅x v w                                          (29) 

Hence, the solution vector of the OBTLS (5) is [ ]ˆ , .t=x x x  
The proofs of the following result may be found in [29].  
Theorem 1. (Schur determinant identity) Let 1 2 3, ,M M M  and 4M  are ,m m×  ( ) ,m n m× −  ( )n m m− ×  

and ( ) ( )n m n m− × −  matrices, respectively. Let M  be a 2 2×  block matrix given by 

1 2

3 4

.
M M

M
M M
 

=  
 

                                       (30) 

Then  

( )
( ) ( )
( ) ( )

1
1 4 3 1 2 1

1
4 1 2 4 3 4

det det if is nonsingular,
det

det det if is nonsingular.

M M M M M M
M

M M M M M M

−

−

 −= 
−

 

By noticing (21), we see that the matrix A  in (6) can be written in the partitioned form:  

0

1
.

t

n

d
A

S −

 
=  
  

g
q

                                        (31) 

Hence, by applying Theorem 1 on this matrix, we get the following result:  
Corollary 1. Let A  be the n n×  matrix given in (31), then the determinant of A  is given by:  
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( ) ( )
1

0 0 1 0 1
1 0

det ,
n

i n
i

A c d a w p w
λ

−

−
= =

  = − −  
  
∏                            (32) 

provided 1nS −  is a nonsingular matrix. 
The main result of the present paper may now be formulated as follows: 

 

 
 

This algorithm will be referred to as the OBS algorithm. The computational cost for OBS is 21 35n −  in 
terms of total number of flops, where each flop represents one of the four basic arithmetic floating point 
operations. 

A MATLAB code based on the OBS algorithm is available upon request from the authors.  

3. Illustrative Examples  
In this section we are going to consider some illustrative examples. The, symbolic computations are performed 
in Example 1 by using MATLAB with Symbolic Math Toolbox. Also, we compare the proposed algorithm with 
MATLAB back-slash and the algorithm in [28] by means of execution times and accuracy of the solutions in 
Example 2. Finally, we give Example 3 in order to demonstrate the validity of the OBS algorithm. All 
experiments were carried out using MATLAB 7.10.0.499 (R2010a) on a PC with Intel(R) Core(TM) i7-3770 
CPU processor.  

Example 1. Solve the opposite-bordered tridiagonal linear system:  

1

2

3

4

5

6

7

8

1 2 0 0 0 0 0 0 3
1 2 5 0 0 0 0 7 15
2 2 5 3 0 0 0 1 7

1 0 2 1 1 0 0 2 5
.

5 0 0 1 6 2 0 3 11
3 0 0 0 1 1 3 4 12
2 0 0 0 0 1 3 2 8
0 0 0 0 0 0 2 4 6

x
x
x
x
x
x
x
x

    
    
    
    − −
    

−     =    −
    
    
    
    
        

                          (33) 

Solution.  
Here, 8,n =  0 1,d =  ˆ 3,=f  [ ]15,7,5,11,12,8,6 ,t=f  [ ]2,0,0,0,0,0,0 ,t=g  [ ]1, 2,1,5,3,2,0 ,t= −q  and  

1

2 5 0 0 0 0 7
2 5 3 0 0 0 1
0 2 1 1 0 0 2
0 0 1 6 2 0 3
0 0 0 1 1 3 4
0 0 0 0 1 3 2
0 0 0 0 0 2 4

nS −

 
 − 
 −
 = − 
 
 
 
  

 

The numeric algorithm in [28] fails to solve the linear system (33) although det 148 0.A = ≠  Applying the 
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OBS algorithm, we obtain: 

( ) ( ) ( )4 1 3 23 58 10 2 55 5 23 15 19 64 22 7, , , , , , ,
2 11 26 11 26 11 26 11 26 11 26 11 26 11 26

λ λ λλ λ λ
λ λ λ λ λ λ λ

− + − − − − − +
= − − − − − − − − 

v  

( ) ( ) ( )2 19 3 2 25 74 2 24 71 63 38 41 22 3 24 7, , , , , ,
2 11 26 11 26 11 26 11 26 11 26 11 26 11 26

λ λ λλ λ λ
λ λ λ λ λ λ λ

− + − − − + − + − + − +
= − − − − − − − − 

w  (Step 1).  

1
37 8ˆ

49 37
x λ

λ
+

= =
+

x  (Step 2) and  

( )
139 74 37 37 89 37 20 37 271 37 21 37 84, , , , , ,

2 49 37 49 37 49 37 49 37 49 37 49 37 49 37
λ λ λ λ λ λ
λ λ λ λ λ λ λ

 + + + + − +
=  

+ + + + + + +  
x  (Step 3). 

The solution vector [ ] [ ]0
ˆ , 1,1,1,1,1,1,1,1t t

λ=
= =x x x  (Step 4).  

Example 2. Consider the opposite-bordered tridiagonal linear system:  

1

2

3

2

1

4 1.2 0 0 0 5.2
2.3 4 1.2 1.5 9
2.5 2.3 4 1.2 1.5 11.5

.2.5 0 0
2.3 4 1.2 1.5 11.5

2.5 2.3 4 1.2 10
0 0 0 2.3 4 6.3

n

n

n

x
x
x

x
x
x

−

−

    
    
    
    
    =    
    
    
    
        

 

 

 

    

  

 

 

                        (34) 

The exact solution of this system is * 1,1, ,1 .
t

n

 
=  
 

x


  Table 1 shows the CPU times (after 100 tests) ob-  

tained from the OBS algorithm, the algorithm in [28] and MATLAB back-slash operator for n = 1000, 2000,  , 
10,000. The absolute errors *−x x  are shown in Figure 1. Here, .  is the Euclidean vector norm. 

Example 3. Consider the opposite-bordered tridiagonal linear system:  

1

2

3

2

1

4 2 0 0 1 7
1 4 2 1 8
2 1 4 2 10

.2 0 0
1 4 2 1 10

2 1 4 2 9
2 0 0 1 4 7

n

n

n

x
x
x

x
x
x

−

−

    
    
    
    
    =    
    
    
    
        

 

 

  

    

  

 

 

                            (35) 

Table 2 gives the absolute errors and CPU times (after 100 tests) obtained from the OBS algorithm for n = 
1000, 5000, 10,000, 20,000, 30,000, 40,000, 50,000. 

 
Table 1. Mean value of the CPU times after 100 tests.                                                           

n 1000 2000 3000 4000 5000 6000 7000 8000 9000 10,000 

OBS Algorithm 2.360e−4 2.503e−4 3.290e−4 4.531e−4 5.536e−4 6.607e−4 7.613e−4 8.7950e−4 9.870e−4 0.0011 

Algorithm in [28] 2.372e−4 2.56e−4 3.420e−4 4.578e−4 5.849e−4 6.974e−4 8.129e−4 9.267e−4 0.0011 0.0012 

MATLAB 0.0013 0.0027 0.0043 0.0056 0.0069 0.0084 0.0100 0.0114 0.0125 0.0145 
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Figure 1. Absolute errors for Example 2.                    

 
Table 2. Absolute errors and CPU times of Example 3 for the OBS algorithm.                                        

n 1000 5000 10,000 20,000 30,000 400,000 50,000 

*−x x  3.6333e−15 7.9060e−15 1.1142e−14 1.5729e−14 1.9252e−14 2.2224e−14 2.4843e−14 

CPU time (s) 1.635e−4 7.849e−4 0.0011 0.0022 0.0035 0.0045 0.0057 

4. Conclusion 
In this paper, we proposed a new efficient and reliable algorithm for solving general opposite-bordered tridia- 
gonal linear systems in linear time. An explicit formula for computing the determinant of an opposite-bordered 
tridiagonal matrix is obtained. Some illustrative examples are given.  
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