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Abstract 
Climate is a key driver of sugarcane production and all its by-products. Consequently, it is impor-
tant to understand how climate change will influence sugarcane crop productivity. Ensembles 
from a crop model and climate projections form part of the dual ensemble methodology to assess 
climate change impacts on sugarcane productivity for three major sugarcane-growing regions in 
Australia—Burdekin, Mackay and New South Wales (NSW). Different parameterisations of a crop 
model injected with climate outputs from eleven statistically downscaled general circulation 
models (GCM) were used to estimate regionally averaged sugarcane yields for the base period 
1971 to 2000. The forward stagewise algorithm selected crop model parameterisations that best 
explained the observed yields. Leave-one-out cross validation assessed the predictive capability of 
the equally weighted crop ensemble members characterised by the selected crop model parame-
terizations. A Monte Carlo permutation testing procedure was employed to measure the signific-
ance of the predictive correlations. The predictive correlations between historical yields and si-
mulated historical yields for the Burdekin, Mackay and NSW were 0.69 (p = 0.030), 0.83 (p < 0.001) 
and 0.70 (p = 0.034), respectively. Simulations were run based on GCM projections for 2046 to 
2065 for a low (B1) and a high (A2) emission scenario, with and without elevated CO2 levels. We 
found it was plausible for industry to consider an increase in yields to all three regions under the 
B1 scenario and highly plausible for NSW under the A2 scenario. Higher CO2 levels resulted in 
lower demand of water for the crop, particularly in the Burdekin region and suggested that indus-
try could expand into regions currently considered as marginal owing to the benefits of increased 
transpiration efficiency that are associated with increased CO2. Although this study favoured neu-
tral or positive impacts on sugarcane production, industry should not overlook negative impacts 
when developing a risk management framework in response to a changing climate. 
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1. Introduction 
Sugarcane industries worldwide make a valuable contribution to sustainable development. Sugarcane has been 
grown under many different climates to produce raw and refined sugars. Aside from cereal crops, sugarcane is 
the largest contributor of carbohydrates for human consumption [1]. The conversion of sugarcane to raw sugar 
produces a wide variety of important by-products such as bioenergy, biofuels, bioplastics, paper, animal feed 
and synthetic fertilizers [1]-[5]. Given the challenges of delivering sustainable solutions to employing, feeding 
and fuelling an increasing global population, it is timely and critical to understand that the impact climate change 
will have on sugarcane production, especially since sugarcane is one of the most efficient crops in terms of solar 
radiation capture, photosynthesis and energy production [4]. 

A number of climate change impact studies have been conducted for sugarcane production systems around the 
world. Most studies use the DSSAT-Canegro [6] or the APSIM [7] cropping systems simulators. Using DSSAT- 
Canegro [6], Knox et al. [8] reported 2050 biomass for Swaziland to increase by 15% under the elevated CO2 
A2 emission scenario and only 5% without increases in CO2. The DSSAT-Canegro model has also been used by 
Marin et al., [9] with three harvest dates to project São Paulo stalk fresh matter yields for 2050. Marin et al. [9] 
derived climate scenarios (SRES A2 and B2) from two GCMs, PRECIS and CSIRO. CO2 concentrations were 
fixed at 380 ppm, 500 ppm and 720 ppm for baseline, B2 and A2 simulations, respectively. Stalk fresh matter 
increased by 1% (late harvest, PRECIS, B2) to 54% (early harvest, A2, PRECIS). Another study found yields to 
increase in Australia (Ayr), Brazil (Piracicaba) and South Africa (La Mercy) by 4%, 9% and 20%, respectively 
when they used outputs from GCMs and an elevated CO2 concentration of 734 ppm [10]. 

Several APSIM [7] driven impact studies have been conducted in Australia [11]-[13]. Park et al. [12] simu-
lated Maryborough sugarcane yields for 2030 and 2070. Simulations considered three local soil types and two 
irrigation scenarios. The historic climate data were altered according to the wettest and driest climate change 
projections (with 25 different temperature and rainfall changes being used in their study), as simulated by 15 
global and regional climate models for 2030 and 2070. An atmospheric CO2 concentration of 437 ppm and 610 
ppm was used for 2030 and 2070, respectively. For 2030 the best modelled outcome was an increase in yield of 
approximately 7% and the worst a decrease of around 4%. By 2070 the largest increase was 7% but potential 
reductions of 47% were modelled. 

Webster et al. [13] projected yields for the Tully-Murray catchment in the far northern wet tropical sugarcane 
growing regions of Australia. Future climates for 2030 and 2070 were considered with three rainfall and tem-
perature scenarios that were obtained by multiplying a baseline climatology for Tully with projected extremes 
and averages of these extremes [14]. The same atmospheric CO2 concentrations as in Park et al. [12] were util-
ised (437 ppm and 610 ppm for 2030 and 2070, respectively). A soil type common in the Tully-Murray catch-
ment was used for all simulations. Slight increases in sugarcane yield (maximum of +5 t/ha) for 2030, were pro-
jected for all rain-temperature scenarios. By 2070, only a low temperature increase in conjunction with average 
or high rainfall led to a projected yield improvement (up to +7 t/ha). 

Biggs et al. [11] used APSIM to investigate the impact of different management systems on sugarcane yield 
and nitrogen loss via deep drainage or runoff, under current climates and the different climate change projec-
tions. They derived the future climate change projections from three GCMs, in which an atmospheric CO2 con-
centration of 437 ppm for 2030 was assumed. The projected impacts of these models ranged from weak (mod-
estly warmer and wetter), moderate (mid-range warmer and drier) to strong (significantly warmer and drier) 
climate change. To obtain these scenarios, SRES B1, A1B and A1FI were used, respectively. The GCM projec-
tions were obtained from OzClim at a resolution of about 25 km by 25 km. Median sugarcane yields increased 
by 8% and 4% with weak and moderate climate change, respectively, but were reduced by 10% with strong cli-
mate change. They ran APSIM with and without the effects of rising CO2. Yields under elevated CO2 were 10% 
- 14% larger than those produced with the identical climate scenario but without elevated CO2. 

Santos et al. [15] did not use DSSAT-Canegro or APSIM, instead they used the Agro-Ecological Zone model 



Y. Everingham et al. 
 

 
872 

(AZM) [16]. Their study reported Brazilian sugarcane yields would increase by 51% in Jaboticabal to 82% in 
Aracatuba by 2090. They considered three concentrations of CO2 (440 ppm, 559 ppm and 721 ppm) and attrib-
uted these increases in sugarcane productivity to elevated CO2 and higher temperatures. 

This brief overview of climate impacts on sugarcane yields reflects a range of modelling approaches that in-
corporate different climate scenarios, CO2 levels, cropping systems simulators, climate projections, statistical 
downscaling methods, locations and management strategies. Results have varied markedly from yields losses of 
47% [12] to increases of 82% [15]. Although most studies report the favourable outcome of increased produc-
tivity with elevated CO2 levels (e.g. [8] [9] [13] [15]) there is a need to consider climate change impacts studies 
that simultaneously and robustly integrate across a broad range of cropping systems and climate projections. 

Therefore, the objectives of this paper are to simulate yields generated from 11 GCM scenarios for three ma-
jor sugarcane growing regions in Australia. Ensembles captured for both the agricultural and climate systems 
form part of the dual ensemble agroclimate modelling procedure. Ensembles have been considered favourably 
since they offer the ability to capitalise on the strengths of a collection of simpler models [17]. 

2. Productivity and Climate Data 
2.1. Productivity Data 
The total amount of cane harvested divided by the hectares harvested within a region produced regionally aver-
aged sugarcane yields (t/ha) as, 

( ) ( )
( )

tonnes of cane harvested region, year
yield region, year  

total hectares harvested region, y
 t ha

ear
=                 (1) 

Using Equation (1), regional yields were computed each year from 1971 to 2000 from the Burdekin, Mackay 
and New South Wales (NSW). This period aligned with both observed climate data and climate data that were 
simulated on a grid [18]. Trends in yield productivity were negligible in the Burdekin (r2 < 0.01; p = 0.99), but 
significant in Mackay (r2 = 0.11; p = 0.04) and NSW (r2 = 0.34; p < 0.01). To avoid confounding changes in 
production caused by time trends in Mackay and NSW, yields for these two regions were detrended using the 
“loess” function in R [19]. In 2000 yields from the Burdekin and Mackay were devastated by disease and omit-
ted from the analyses. 

2.2. AWAP Climate Data Used to Model Historical Regional Yields 
Climate data from northern (the Burdekin), central (Mackay) and southern (New South Wales (NSW)) Austra-
lian sugarcane-growing regions were utilised in this study. Daily rainfall and temperatures (maximum and 
minimum) for the years 1970 to 2000 were extracted from the Australian Water Availability Project (AWAP) 
data set [18], which interpolates data on a 0.05˚ × 0.05˚ “pixel” grid. Pixels that represented locations (latitude 
and longitude) where sugarcane was known to be grown were identified. Only climate data for these pixels were 
used in the regional analyses. These rainfall and temperature data were used to estimate radiation [20]. There 
were 64, 133 and 77 pixels for the Burdekin, Mackay and New South Wales, respectively (Figure 1). 

2.3. GCM Generated Climate Data 
General circulation models (GCMs) from the Coupled Model Intercomparison Project (CMIP3) [21] that pro-
duced daily records of rainfall and temperature were used in subsequent analyses (Table 1). These GCMs were 
parameterized according to three different emission scenarios referred herein as “20C3M”, “B1” and “A2”. Un-
der the 20C3M scenario, the GCMs applied 20th century emissions [22]. Outputs for this scenario spanned 1970 
to 2000. The B1 scenario, which has a lower population growth rate and a more rapid technological change than 
the A2 scenario, parameterizes the 11 GCMs to represent a low emissions future [23]. The A2 scenario repre-
sents a higher emission future [23] but is still slightly below the actual observed emissions trajectory to date. 
Outputs for the B1 and A2 scenarios covered 2046 to 2065. 

Statistical downscaling was necessitated as Australia’s sugarcane industry, situated between high mountain 
ranges and the narrow eastern coast, operates under a highly variable geographical domain. The statistical 
downscaling method of [24] was employed as it was found for Australia to be largely unbiased and reproduced 
the main characteristics of the probability density functions of local observed variables. It is simple, flexible and  
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Figure 1. Sugarcane growing regions along the east Australian coast (black), with regions consi-
dered in this study highlighted.                                                             

 
Table 1. Eleven general circulation models with daily rainfall data.                                                  

ID Number ID Code Institute 

GCM1 CCM Canadian Climate Centre 

GCM2 CNRM Metro-France 

GCM3 CSIRO Commonwealth Scientific and Industrial Research Organisation 

GCM4 CSIRO2 Commonwealth Scientific and Industrial Research Organisation 

GCM5 GFDL1 Geophysical Fluid Dynamic Lab 

GCM6 GFDL2 Geophysical Fluid Dynamic Lab 

GCM7 GISSR NASA/Goddard Institute for Space Studies 

GCM8 IPSL Institute Pierre Simon Laplace 

GCM9 MIROC Centre for Climate Research 

GCM10 MPI Max Planck Institute for Meteorology DKRZ 

GCM11 MRI Meteorological Research Institute 
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robust which are important elements for communicating findings to industry. Timbal et al. [25] developed a se-
ries of mathematical equations that related the observed daily synoptic patterns to observed daily rainfall, maxi- 
mum and minimum temperature. These mathematical equations were subsequently applied to the synoptic pat-
terns generated by the 11 GCMs for the 20C3M, B1 and A2 scenarios. This downscaling approach has been ap-
plied with success in several impacts studies [26]-[28]. Daily radiation was estimated from the statistically 
downscaled rainfall and temperature using the method of Liu and Scott [20]. 

2.3. GCM Generated Climate Data 
CO2 levels were computed for the historic period 1970-2000 (345 ppm) and the 2046-2065 period for the B1 
(493 ppm) and A2 (548 ppm) scenarios. These values were obtained by averaging the annual linearly interpo-
lated CO2 values [29] for the time periods in our study. Decadal CO2 concentrations in ppm were extracted from 
http://www.ipcc-data.org/ancilliary/tar-bern.txt for each scenario. Our values are in close agreement with Te-
baldi and Lobell [30] and Semenov and Stratonovitch [31]. 

3. Modelling Sugarcane Yields 
Yields were simulated using a combination of previously published algorithms from Canegro and WaterSense 
sugarcane growth models (Section 3.1) modified to incorporate CO2 effects (Section 3.2). A realistic set of 
management and environmental interactions that represented the regional production conditions were simulated 
using this crop (Section 3.3). An ensemble of crop model outputs that best accounted for historic yields in each 
region was obtained (Section 3.4). The best ensemble for each region was then used with the crop model and 
with downscaled GCM outputs under the 20C3M, B1 and A2 scenarios, to simulate changes in sugarcane yields 
from the present climate to the climate projected for the mid 21st century (Section 3.6). Uncertainty in the cli-
mate ensemble was assessed using bootstrapped confidence intervals (Section 3.7). 

3.1. The Crop Model 
A model for simulating historical yields is needed so that yields can be estimated from projected climates. For this 
study we used WaterSense logic [32] but we replaced the crop coefficient approach with one in which evapotrans- 
piration estimates vary with crop height and leaf area index as reported by [33]. In this procedure latent heat flux is 
derived from the Penman-Monteith (PM) equation (Equation (2)) and functions for wind speed, canopy and 
aerodynamic resistance. This was done to allow estimates of leaf conductance to be scaled up to an estimate of 
canopy conductance of a field crop. WaterSense is a web-based irrigation scheduling system developed from 
concepts embodied in the two internationally available models for sugarcane, APSIM-Sugarcane and Canegro 
[34]. 

Development of the leaf canopy and radiation interception and biomass accumulation in the crop model for this 
paper were based on APSIM-Sugarcane [7] and the water balance is essentially the same as in Canegro [35] before 
incorporation into the DSSAT platform. Leaves emerge as defined by the user in terms of thermal time. Final area 
of successive leaves is also defined by the user as are the number of stalks per square meter and the contribution of 
tillers to total leaf area. Beers law is used to calculate the proportion of radiation captured by leaves using an ex-
tinction coefficient of 0.38 for solar radiation (a higher coefficient is warranted for photosynthetically active ra-
diation). Potential transpiration is obtained from the PM formula as described by Inman-Bamber and McGlinchey 
[33] and Inman-Bamber et al. [35] and evaporation from the soil surface is obtained from the amount of radiation 
reaching the soil surface and the water content of the top layer of soil [32]. The soil is divided into as many as 20 
layers to determine gravitational and capillary vertical flux of water [36] and root water extraction is performed as 
in APSIM-Sugarcane using water extraction coefficients kL, [7] rather than the more complex root length devel-
opment approach used in Canegro [37]. 

3.2. Incorporating CO2 Effects into the Water Sense Crop Model 
Stomatal resistance to gaseous diffusion (rs) was set to increase approximately 12% per 100 ppm increase in CO2 
concentration and potential transpiration (T0) was computed using the PM formula (Equation (2)) 

( )
( )( )

2
0 1

n p a

c a

R G c VPD r
T

r r
ρ

γ λ

∆ − +
=

∆ + +
                                     (2) 

http://www.ipcc-data.org/ancilliary/tar-bern.txt
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where 
cp = specific heat of air at constant pressure (J/kg/K)  
∆ = slope of the vapour pressure curve (kPa/˚C) 
G = soil heat flux density (MJ/m2/day) 
γ = psychrometric constant (kPa/˚C) 
λ = latent heat of vaporization of water (J/kg) 
Rn = net radiation (MJ/m2/d) 
ρ = air pressure (kPa)  
ra = aerodynamic resistance (s/m) 
rc = canopy surface resistance (s/m) = rs/(0.5 × Leaf Area Index) 
rs = stomatal resistance (s/m). 

The year 1965, when CO2 concentration was approximately 325 ppm, was regarded as a benchmark for setting  
rs = 100 s/m because this is when detailed lysimeter work was conducted to validate the PM procedure for de-
termining evapotranspiration from sugarcane [33]. The period 1960 to 2000 represented the ‘present’ period and a 
CO2 concentration of 345 ppm (rs = 102 s/m) was assumed for this period. Daily climate data records obtained 
from the AWAP (Section 2.2) estimated observed climate data for this period. Representative climate data for this 
period were also obtained for 11 downscaled GCM simulations, based on the 20C3M scenario (Section 2.3). For 
the future period 2046 to 2065, CO2 concentrations were assumed to be 493 ppm (rs = 121 s/m) for simulations 
under the B1 scenario and 548 ppm under the A2 scenario (rs = 128 s/m). 

3.3. Defining Management and Environment Interactions 
Within each region sugarcane is grown under a wide variety of management and environmental interactions. 
Harvesting in each region operates continuously from July to October each year and three harvest start dates, 
mid-June, mid-August and mid-October were chosen to represent all crops. Lodging was simulated based on 
crop yield and storm severity following rules developed by [38]. We allowed lodging to have no effect on pho-
tosynthesis (L0), or to reduce photosynthesis by 30% (L1) or by 50% (L2). Two maintenance respiration levels 
were considered—no respiration (R0), and respiration of 0.4% of total dry mass per day (R1) in line with the 
daily maintenance respiration used in the Canegro model [39]. 

Irrigation strategies differ for each region. The Burdekin is a fully irrigated production system. Here growers 
tend to irrigate on a calendar basis rather than using any information about the soil water balance. Irrigation is 
usually applied during germination or regeneration after harvesting and then at 3 or 4 weekly intervals until the 
canopy is well developed. After that, irrigation may be applied at 7 to 14 day intervals unless rain has filled the 
profile. This variety of practices was captured in the simulations by allowing deficits of 20, 40, 60 or 80 mm to 
develop before irrigating with 100 mm, provided 7 days had lapsed since the last irrigation. Irrigation is applied 
on a supplementary basis in the Mackay region normally in the range of 100 to 500 mm total, during periods 
when rainfall is low. The model applied 50 mm of irrigation when the deficit reached 40 mm provided 14 days 
had lapsed since the last irrigation thus acknowledging that most growers in this region do not have the infra-
structure required to irrigate more frequently. Irrigation is not usually applied in the NSW region because of the 
high rainfall and presence of shallow water tables. Growers do not plant when soils are dry and so an irrigation 
of 50 mm was allowed in the simulation to ensure that germination could occur. Another option for a total of 
200 mm irrigation was allowed, to cater for situations where additional water would be available to the crop 
from water tables that may be accessed by the crop during dry periods [40]. 

The main difference between soils pertinent for this study is in their plant available water capacity (PAWC). 
Data for in-situ rooting depth and PAWC is available for a limited number of soils in the sugar industry. We 
used the PAWC values obtained from water retention studies in the laboratory combined with neutron soil 
moisture measurements and stalk elongation measurements [41] to represent poor (PAWC = 88 mm), moderate 
(PAWC = 180 mm) and good (PAWC = 267 mm) soils in regard to their water storage properties. These 
PAWCs are comparable to those measured or used in previous simulation studies representing the Mackay and 
Burdekin regions [11] [42]-[45]. Unfortunately soils in NSW have not been characterized for use in models such 
as APSIM, Canegro or WaterSense as far as we know but the soils in that region are likely to vary from poor to 
good as in all other regions. 

The same generic crop parameters were used for all three regions. While this parameter set was used to rep-
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resent elite sugarcane varieties in general, it most closely resembles the variety Q117 because canopy develop-
ment traits have been characterised the best for this variety [7]. There is insufficient data to characterise indi-
vidual varieties in the detail required for simulating their yield physiology [46]. 

The cropping cycle in sugarcane can be quite complex because the crop can be fallowed and planted at any 
time of year and it can be harvested between June and November (approximately) in Australia. Climate change 
may influence the interaction between these factors and crop yield. As far we know there is no information on 
these interactions for future climates and we expect that these effects will be small compared to the more direct 
effects of rainfall, temperature, radiation and CO2 change on yield. We avoided complex interactions between 
climate, crop planting and harvest dates by “ratooning” a crop each year on a given day. Thus the model simu-
lated 30 years of successive ratoon crops with no fallow period and while this is not normal practice it fits with 
the aim of the study to compare current yields with future yields in a changed climate. 

In total there were 216 crop model parameterisations for the Burdekin, 162 for Mackay and 108 parameterisa-
tions for New South Wales (Table 2). The crop model required climate inputs of daily rainfall, maximum tem-
perature and minimum temperature. Spatially averaging climate data within a region was considered inappropri-
ate owing to the geographical diversity of the regions, so daily atmospheric data were derived for each pixel 
(Figure 1) of the study regions (Sections 2.2 and 2.3). 

3.4. Ensemble Averaging 
Most agroclimate modelling procedures derive ensembles from climate models but not from crop models [47]. To 
better capture uncertainties in the crop growing environment it has been recommended to use multiple sets of crop 
model parameterisations which we refer to as “members” [48]-[52]. Combining several members instead of using 
the “best” individual member as part of an ensemble modelling process produces a more stable and often more 
accurate model than any individual member [53] [54]. However, it can be advantageous to select a smaller number 
of members rather than working with all available members [55]. The forward stage-wise algorithm [55], was used 
for its computational efficiency to select a subset of members. The ensemble members were equally weighted for 
the purpose of stability and simplicity [53] [54]. The ensemble process was fully cross-validated using a leave one 
out approach to compute a predictive correlation. Further, Monte Carlo permutation testing was employed to 
calculate the significance of the predictive correlation and thus, that the ensemble members selected were unlikely 
a consequence of chance [48]. Our ensemble modelling process follows Everingham et al. [48]. 
 
Table 2. Factor and level combiations (treatments) which defined the different crop model parameterisations.                 

Factor 
Level 

Burdekin Mackay NSW 

Start of Harvest (day of year) 
168 
229 
290 

168 
229 
290 

168 
229 
290 

Lodging effect on photosynthesis 
  L0 = no effect 
  L1 = reduce photosynthesis by 30% 
  L2 = reduce photosynthesis by 50% 

 
L0 
L1 
L2 

 
L0 
L1 
L2 

 
L0 
L1 
L2 

Respiration levels 
  R0 = no respiration 
  R1 = respiration of 0.4% of total dry mass/day 

 
R0 
R1 

 
R0 
R1 

 
R0 
R1 

Irrigation: 
deficit (mm)* 
allocation (mm)** 

20* 
40* 
60* 
80* 

100** 
300** 
500** 

50** 
200** 

Soil 
Good 

Moderate 
Poor 

Good 
Moderate 

Poor 

Good 
Moderate 

Poor 

Number of crop model parameterisations 216 162 108 
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3.5. Crop Model Validation 
3.5.1. AWAP Modelled Yields versus Observed Yields 
The leave one out cross-validated predictive correlation (see Section 3.4) was used to measure the strength of the 
association between the actual yields and the yields generated from the AWAP climate data. Cumulative distri-
bution functions (CDFs) of these two sets of yields were inspected visually to check for biases. The cumulative 
distribution function was used to describe the probability (‘density’) that yields were less than or equal to a certain 
value. Different sets of yield data, which have similar shaped CDFs, will have similar yield distributions. These 
checks were performed to gauge the suitability of the model selection procedure, and hence if the crop ensemble 
model could be applied to the GCM-generated climate data produced with 20C3M, B1 and A2 forcings. 

3.5.2. AWAP versus 20C3M Modelled Yields 
Given that sugarcane is a perennial crop and GCM generated data cannot be compared temporally, it is important 
to check the alignment of yield distributions generated from the AWAP climate data and from GCM generated 
data under the 20C3M scenario. Or, if a discrepancy exists it should be consistent so that the relative change in 
yields within each of the GCM models is meaningful. Cumulative distribution functions of yields for each GCM 
were compared visually to that of AWAP generated yields. 

3.6. Comparing Future and Historic Generated Yields from GCM-Generated Climate Data 
Future regional yields were generated by substituting the GCM generated yields into the final model developed 
from the AWAP climate data on observed climate yields (Section 3.4.1). The change in the models’ yield pro-
jections were computed for the B1 and A2 scenarios, relative to the baseline 20C3M scenario. We explain the 
methodology for the B1 scenario. The methodology for the A2 scenario follows similarly. The relative percentage 
change of the paired differences in mean yields ( )region,GCM,scenarioY  for each downscaled GCM were 
calculated as, 

( ) ( )
( )

( ) ( )
( )

( ) ( )
( )

region,GCM1,B1 region,GCM1,20C3M
100%

region,GCM1,20C3M

region,GCM2,B1 region,GCM2,20C3M
100%

region,GCM2,20C3M

region,GCM11,B1 region,GCM11,20C3M
100%

region,GCM11,20C3M

Y Y
Y

Y Y
Y

Y Y
Y

−
× 




− × 



− ×




                    (3) 

A boxplot of the values in Equation (3) for B1 and the equivalent for A2 was produced so that the central dis-
tribution of the differences defined by the 25th, 50th and 75th percentile could be readily detected. Superimposed 
on the boxplot are the individual model projections. Downscaled GCMs that produce large positive values in 
Equation (3) indicate a relative increase (positive change) in yields under B1 forcings compared to 20th century 
forcings (20C3M). Downscaled GCMs that produce large negative values indicate a relative decrease (negative 
change). Values close to zero indicate a neutral change. 

3.7. Assessing the Uncertainty in the Climate Ensemble Using Confidence Intervals 
Equation (3) represents a sample of 11 yields simulated by the 11 downscaled GCMs. We assume this sample to 
be independent and representative of a larger parent population. The eleven models considered form a reason-
able spread across the families of GCMs identified by [56] for rainfall and temperature which derived our yield 
estimates and so we consider this a reasonable assumption for the purpose of generating confidence, especially 
when “there is no guarantee that the level of interdependence will be the same for all variables, for all seasons, 
or for all locations” and “estimates of interdependence based on contrasts in simulations of the climatology very 
likely overestimate interdependence among projections” [57]. 

To identify how the central distribution of yields shifts with climate change, separate 95% confidence inter-
vals for the 25th, 50th and 75th population percentiles of differenced yield projections were computed using boot-
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strapped samples [58]-[60]. We consider increasing yields to be ‘plausible’ when the confidence intervals for the 
50th and hence the 75th percentile were greater than zero, and ‘highly plausible’ if the confidence intervals for the 
25th and hence the 50th and 75th percentiles were all greater than zero [58] [61]. By extension, we consider de-
creasing yields to be “plausible” when the confidence intervals for the 50th and hence the 25th percentiles were 
less than zero, and “highly plausible” if the confidence intervals for the 75th and hence the 50th and 25th percen-
tiles were all less than zero. 

4. Results 
The majority of ensemble members used the poor soil (PAWC = 88 mm) for both the Burdekin and Mackay re-
gions while ensemble members for the NSW region largely used the moderate soil (PAWC = 180 mm). Crop 
ensemble members in the Burdekin region used 20, 40, 60 and 80 mm, the Mackay region favoured an irrigation 
of 100 mm and the NSW region used both 50 mm and 200 mm. Ensemble members for the Mackay and Burde-
kin regions preferred a late (day 290) harvest start date, while models in the NSW region used a mix of harvest 
start dates (days 168, 229 and 290). The Burdekin ensemble members heavily favoured the combination of 
moderate respiration of sucrose (R1) with no to low lodging (L0 and L1). The Mackay ensemble models fa-
voured respiration of sucrose (R1), but had no preference for lodging. The NSW ensemble models had no pref-
erential respiration and higher lodging (L2) was prevalent in the ensemble members. Ensemble members in each 
regional ensemble used climate data from across the region. However, the far west of the Burdekin region was 
largely excluded (Figure 2). The north of the Mackay region and the western central Section of the NSW region 
were also excluded. Across these pixels within each of these regions the mean annual temperatures increased, 
radiation decreased and rainfall was quite variable (Figure 3). 

Cumulative distribution functions (CDFs; see Section 3.5.1) between ensemble predictions generated from the 
AWAP data and observed yields are shown in Figure 4. For example, in the Mackay region (Figure 4(b)) there 
is a 60% chance of obtaining both an observed and modelled yield less than 80 t/ha. Most CDFs showed me-
dium to strong correspondences (Figure 4). This was confirmed by the significant predictive correlations gener-
ated from the permutation tests (see Section 3.4) for the Burdekin, Mackay and NSW: 0.69 (p = 0.030), 0.83 (p 
< 0.001) and 0.70 (p = 0.034), respectively. Thus, the crop ensemble model which utilised the AWAP data was 
deemed appropriate for assessing climate change impacts on yields. The CDFs of yields in Figure 5 produced 
by the downscaled GCMs closely followed the CDF of the AWAP generated yields for the Burdekin, but tended 
to underestimate yields for Mackay and overestimate yields New South Wales. If we assume these biases remain 
consistent into the future, then relative changes in yields may still be investigated. 

Figure 7 shows boxplots of the projected relative changes in yields for each of the downscaled GCMs with 
and without the effect of elevated CO2. Elevated CO2 levels for both the B1 and A2 scenarios produced the 
greatest yield benefits in NSW followed by Mackay (Table 3). The Burdekin region received the smallest bene-
fit from elevated CO2 levels. 

When increased CO2 levels were considered, confidence intervals of the 25th, 50th and 75th percentiles (Figure 
8(a)) indicated an increase in yield performance was “plausible” for all three regions under the low emission 
scenario and “highly plausible” for the NSW region under the high emissions scenario (see Section 3.7). If the 
effect of increased CO2 was ignored (Figure 8(b)) there was insufficient evidence to support a change in yields 
for any region. The confidence interval spread was largest for New South Wales, followed by Mackay and the 
Burdekin. 

5. Discussion 
In the irrigated Burdekin region, rising CO2 is projected to have little effect on yields (Figure 8), but would 
slightly reduce the amount of irrigation required (Figure 6 and Figure 7). In a study on the impact of water 
stress in the Australian sugar industry, water deficits were found to reduce yields in the Burdekin by only 4.4% 
[62] and, provided irrigation supplies remain unlimited in this region, elevated CO2 can help increase yield only 
by reducing this small impact of water stress hence the small positive effect of increased CO2 on projected 
yields with climate change (Figure 8). Projections of Burdekin yields under the B1 scenario were marginally 
higher than yields for the A2 scenario, which was consistent with the greater decline in radiation for the A2 sce-
nario (Figure 3). A higher temperature in a future climate was likely responsible for the projected plausible in-
creased yield in the Burdekin for the B1 scenario (Figure 3). While this temperature increase is projected to be  
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Figure 2. Climate data pixels (white points) selected in crop ensem-
ble members for (a) Burdekin, (b) Mackay and (c) New South Wales.   
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Figure 3. Change in annual mean (a) maximum temperature, (b) minimum temperature, (c) radiation and 
(d) rainfall for the selected climate data pixels used in ensemble members for the Burdekin, Mackay and 
New South Wales. The mean was computed by averaging across time and across the white climate data 
pixels selected in the ensemble (see Figure 2). Boxes mark the first, second (median) and third quartile 
and the “whiskers” mark the maximum and minimum excluding outliers. Outlier GCMs are labelled.          
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Figure 4. Cumulative distribution functions of observed (grey line) and modelled yields (black line) 
for 1971 to 2000 for (a) Burdekin, (b) Mackay and (c) New South Wales. Modelled yields were gener-
ated from AWAP inputs.                                                                   

 

 
Figure 5. Cumulative distribution functions of annual yields across 1971 to 2000 for (a) Burdekin, (b) 
Mackay and (c) New South Wales. Yields were estimated from AWAP inputs (black line) and down-
scaled GCM simulated yields with 20C3M forcings.                                              

 

 
Figure 6. Change in annual mean net irrigation (a) with a CO2 effect and (b) 
without a CO2 effect.                                                   

 
higher for the A2 than the B1 scenario, reduced radiation detracted from the yield increase due to temperature 
particularly for the A2 scenario. Also, additional rainfall with the A2 scenario can only help alleviate water 
stress which is not much of a consideration in the Burdekin (Figure 3(d)). Changes in the annual patterns of  
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Figure 7. Boxplots of simulated yields under 20C3M forcings (a) with 
and (b) without increased CO2 levels. Boxes mark the first, second (me-
dian) and third quartile and the “whiskers” mark the maximum and 
minimum excluding outliers. Outlier GCMs are labelled.                      

 

 
Figure 8. Boxplots of simulated yields under 20C3M forcings (a) with 
and (b) without increased CO2 levels. Boxes mark the first, second (me-
dian) and third quartile and the “whiskers” mark the maximum and 
mini- mum excluding outliers. Outlier GCMs are labelled.                   
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Table 3. Range of projected mean yield changes for B1 and A2 emissions scenarios with and without increased CO2 levels.                     

Region CO2 effect 
Climate Change Scenario 

B1 A2 

Burdekin With −1.15 to 6.19 −3.30 to 3.51 

 Without −2.05 to 5.26 −4.79 to 1.63 
    

Mackay With −0.79 to 6.38 −2.39 to 9.98 

 Without −2.60 to 4.60 −5.51 to 6.67 
    

NSW With −4.07 to 18.40 0.58 to 14.03 

 Without −7.37 to 17.03 −3.09 to 12.11 

 
temperature and radiation are thus important and were captured adequately by the model. 

The impact of the future climates on yield with a CO2 effect was potentially greater for Mackay and NSW re-
gions than for the Burdekin region (Figure 7 and Figure 8). The loss in yield due to lack of water can be de-
fined by a daily water stress index (0 to 1) where 1 is no water stress and 0 is no growth (highly stressed). The 
mean weighted water stress index for Mackay was 0.81 [62] thus total alleviation of water stress could lead to a 
substantial increase in mean yield from the region. Elevated CO2 will almost certainly help to alleviate some of 
this stress by allowing crops to assimilate CO2 while losing less water through transpiration. Thus, there was a 
plausible yield increase projected for Mackay for the B1 scenario when elevated CO2 was simulated but not so 
when the CO2 effect was disabled (Figure 3). The stress index for NSW was not determined by Inman-Bamber 
[62]. 

While the rise in temperature was projected to be similar in all regions, the impact of this rise would be 
greater in NSW than in other regions because NSW currently experiences temperatures well below critical tem-
peratures at times for various growth processes and also experiences frost occasionally. Mean minimum tem-
perature for July in NSW (Grafton) is 6.5˚C compared to 11.6˚C for the Burdekin (Ayr). Leaf extension ceases 
at about 10˚C and photosynthesis at about 5˚C [7] thus a 1˚C increase in temperature is likely to be more effec-
tive in increasing yield in NSW than in the other regions further to the north. 

Rainfall in the Australian sugar industry was thought to become more variable in future climates and atmos-
pheric demand for water was expected to increase thus increasing the need for irrigation where this was avail-
able [63]. When rainfall was averaged across the pixels selected in the crop ensemble (Figure 2) we found pro-
jected increases in mean annual rainfall were just as likely as projected decreases in mean annual rainfall for the 
B1 scenario in all three regions, but increases were more likely for the Burdekin and Mackay for the A2 scenario 
(Figure 3). In all regions we allowed the crop to extract various amounts of water from irrigation or ground wa-
ter if the demand increased. The maximum amounts increased from NSW (200 mm) and Mackay (500 mm) to 
an unlimited amount in the Burdekin. In the Burdekin, our simulations showed less irrigation would be neces-
sary in a future climate (2046 to 2065) because of reduced transpiration in a CO2 enriched atmosphere (Figure 
6). Changes in irrigation requirement given the current supply and infra-structure limitations for Mackay and 
NSW were inconclusive (Figure 6). Demands for irrigation water supply and infrastructure could decrease or 
increase by the same amount for Mackay and NSW without the effects of CO2, but when the effects of CO2 are 
considered, the pressures for irrigation water could decline in Mackay and NSW. Park et al. [63] listed a number 
of options for dealing with increased demand for water including increased irrigation efficiency and construction 
of more water storages. 

The future climate scenarios we considered tended to have positive or neutral rather than negative impacts on 
sugarcane production. This is in contrast to many other crops and regions in Australia, where climate change 
impacts are more likely to be negative (e.g. [64]). Hence, climate adaptation is not just about coping with nega-
tive impacts, but also taking advantage of potential opportunities. For example, our studies indicate the benefits 
of increased transpiration efficiency (TE) mediated by increased CO2 concentration. An increase in TE due to 
genetic improvement will of course have the same benefits even at current CO2 levels provided the improved TE 
trait is not genetically correlated with detrimental traits. The search for variation in TE within the Australian 
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gene pool has begun by [65] who suggest that such variation is indeed substantial. It is also possible that the re-
sponse of stomata (hence TE) to rising CO2 could also vary in the local or worldwide gene pool. It would be 
well worth looking for such variation to introgress not only high TE traits but also high response to elevated CO2 
into the germplasm. Successful introgression of such traits would benefit sugarcane industries worldwide par-
ticularly in future climates. 

6. Conclusions 
Sugarcane is the fastest growing, largest biomass and highest sucrose accumulating agricultural crop today and, 
as such, offers a valuable contribution to delivering a sustainable future [66]. Simulations under a high (slightly 
below the current emissions trajectory) and low emissions scenario suggested it is plausible for industry to plan 
for increases in yields in the medium term (2050), although previous studies caution that risks of negative im-
pacts increase in the longer term (2070) [12] [13]. There was considerable agreement between models on the 
sign of the change however there was evidence for large variability in the magnitude of change between down-
scaled GCMs. This is important to note in the case of the NSW region, which had the highest simulated in-
creases but also the greatest between model variability. The demand for net irrigation decreased when CO2 lev-
els were elevated, especially for the Burdekin and followed by Mackay and to a lesser extent NSW. 

Rötter et al. [67] mention that crop models have been designed to simulate yields at the plot as opposed to the 
regional level and lack important details about the interaction between carbon dioxide and productivity. The au-
thors warn about the dangers of working with a single “best” model and urge climate-crop modellers to provide 
bounds of uncertainty on their projection to better inform policy makers. This paper implemented a dual ensem-
ble methodology to cater for the eleven climate models and multiple crop model parameterisations required to 
capture the complex interactions between the crop’s management and environment. The crop ensemble model 
also factored a calibration that translated simulated potential yields to actual yields. We addressed the need for 
decision makers to have a level of certainty on which to base their decisions by providing confidence intervals 
on yield projections from different downscaled GCMs. In recognition of the need to improve the way crop mod-
els handle elevated CO2 levels [10] [68], our modelling approach adjusted the stomatal resistance rather than 
adjusting transpiration or transpiration efficiency directly.  

Our research dealt mainly with impacts as opposed to adaptation, with the exception of the implicit manage-
ment adjustments in irrigation. The impacts identified serve as the basis for some initial discussion of potential 
adaptation strategies that could simultaneously capitalise on benefits in the short term and prepare for longer- 
term challenges around greater water demand/deficit. Although this study focused on sugarcane production sys-
tems in eastern Australia, the modelling framework can easily be extended to sugarcane and other agricultural 
production systems around the world. 
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