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Abstract 
In the paper, we use the generalized Dirac equation to study the Hawking temperature and entro- 
py of a spherically symmetric spacetime with the dark matter. The results show that the dark 
matter can influence the thermodynamic properties of the black hole. Meanwhile, we find the GUP 
corrected temperature and entropy are not only determined by the nature of black but also re- 
lated to the properties of tunneling particles. Besides, the GUP can slow down the increase of 
Hawking temperature and causes the remnants. 
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1. Introduction 
Based on the quantum effect, people found that the black holes can radiate particles [1]. The radiation of black 
hole got researchers attention, many new methods were presented to study it [2]-[4]. Parikh and Wilzcek put 
forward the quantum tunneling method, which was an effective method to discuss the black hole’s Hawking 
radiation. With the help of the quantum tunneling method, they have calculated the massless scalar particle’s 
tunneling rate and Hawking temperature of the spherically symmetrical spacetime [5]. Then, Kerner and Mann 
developed the quantum tunneling method and studied the fermions tunneling from Schwarzschild (SC) space-
time [6]. Later, the tunneling behavior of particles with 0 spin, 1/2 spin, 1 spin and 3/2 spin from black holes 
were investigated via Hamilton-Jacobi ansatz, which is another quantum tunneling method. However, the results 
obtained in previous work showed that the standard Hawking temperature of black holes was inverse to their 
mass. As Hawking announced, the black hole would emit all their mass as the temperature increase, this process 
causes the black holes evaporate over. In other words, black holes would loss all their information, which was 
called as information paradox of black hole [7] [8].  

In order to solve the information paradox problem, people proposed many kinds of correction theories. Re-
cently, people studied the physical properties of the black hole via the generalized uncertainty principle (GUP) 
[9]-[11]. In quantum gravity theory and string theory, people believe the existence of the minimal observable 
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length, which can be described by the GUP [12] [13]. In [14], based on the associative Heisenberg algebra  
2, 1i j ijx p i pδ β   = +    , where jp  is the momentum operator and ix  is the position operator. One kind of 

GUP is expressed as 

( )21 2,x p p pβ β ∆ ∆ ≥ + ∆ +                                  (1) 

with 2
0 pMβ β −=  is a small value, which represents the effects of quantum gravity, pM  being the Planck  

mass [15]. Adopted GUP, Banerjee and Ghosh investigated the thermodynamics of SC spacetime, their results 
showed that the black hole have remnant mass at the end of evolution [16]. Soon, combining with quantum 
tunneling method and GPU, the Hawking radiation of Schwarzschild black hole was studied by Nozari and 
Saghafi [17].  

On other hand, astronomers predict 27% of the universe is dark matter. It is natural to think how can the dark 
matter influence the properties of black hole and whether different corrected methods deduce different results? 
In this paper, we will apply the GUP to investigate the Hawking temperature and entropy of spherically symme-
tric black hole with dark matter. 

The remainder of the paper goes as follows. In Section 2, we overview of the spherically symmetric black 
hole with dark matter is provided. In Section 3, we corrected the Hawking temperature and entropy via GUP. 
The last section is the discussion and concludes. 

2. The Spherically Symmetric Spacetime with Dark Matter 
In curved space-time, the line element of spherically symmetric black hole with dark matter can be expressed as 
[18] [19]  

( ) ( )2 2 2 2 2 ,r v rds e dt e dr r dµ −= − + + Ω                              (2) 

where  

( ) ( ) ( ) ( )
3 53 3
2 22 22 2 2 ,

4
r f r

e C c r f r dr c r f r dr
r

µ ξ α
 

= − + + 
 

∫ ∫                    (3) 

( ) ( ) 12 2 2
11 2 ,v re r r C rα αξ ξ

−
= − − − −                             (4) 

( ) 2 2 2
11 2 .f r r r C rα αξ ξ= − − − −                              (5) 

In Equation (3)-Equation (5), the α , c , 1C , 2C  are parameters of the spacetime, note that ξ  is a para-
meter of cold dark matter. In order to discuss the tunneling of the black hole, here we let parameter 0c = , 

1 2C M= , 2 4C r= , Equation (3) and Equation (4) become to 
( ) ( ) 2 2 21 2 2 .r v re e M r r rµ α αξ ξ−= = − − − −                          (6) 

Note that Equation (5) and Equation (6) have the same expression. Thus, one can use ( )f r  to replace ( )reµ  

and ( )v re− . Now, the metric of spherically symmetric black hole with dark matter is given by 

( ) ( )2 2 1 2 2 2 2 2( sin ).ds f r dt f r dr r d dθ θ ϕ−= − + + +                      (7) 

The horizons of this black hole are determined by null super-surface equation. Now, assuming ( ) 0f r = , by 
a simple calculate, the roots can be expressed as cr , Hr  and 0r . According to the three roots, ( )f r  can be 
written as 

( ) 2
0( )( )( ) ,H cf r r r r r r r rα= − − − −                            (8) 

where cr  is the cosmological horizon, Hr  is the outer event horizon and 0r  is the inner event horizon. The 
three roots satisfy 0 H cr r r< < . 
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3. The GUP Corrected Hawking Temperature and Entropy of  
Spherically Symmetric Black Hole with Dark Matter  

According to the GUP, Chen et al. have rewritten the original Dirac equation into generalized form. The mass-
less generalized Dirac equation in curved spacetime is [20]  

( ) ( ) ( )0 2 2 2
0 1 1 0.i j i j j

i j i j j
ii i i ieA iµ µ

µ µγ γ γ γ β γ β     ∂ + ∂ + ∂ ∂ ∂ + + ∂ ∂ + Ω + ∂ ∂ Ψ =     
 
 
   

  



      (9) 

In order to discussing the fermions tunneling from black hole, people assume fermions with 1/2 spin have two 
states: spin up state and spin down state. Here we only consider the spin up state. The wave function of the spin 
up state is 

( )
0

exp , , , ,

0

A
i I t r

B
θ φ↑

 
 

  Ψ =     
 
 



                              (10) 

where I  is the action of up spin state of fermions, which can be expanded in powers of  . A , B  are func-
tions of coordinates , , ,t r θ φ . In order to solve Equation (9), one needs to find a tetrad, which can construct a 
gamma matrix. The tetrad is 

( ) ( )( )diag ,1 , , s  i .nae f r f r r rµ θ=                          (11) 

Then, the µγ  matrices are 

( ) ( )
3 1 21

2
3 1 2

0 0 0 0
, , , .

0 0 0 0
t ri

f r f r g g
i

θ θθ φ φφσ σ σ
γ γ γ γ

σ σ σ
−       

= = = =      −       
     (12) 

In Equation (12), 1g rθθ −=  and ( ) 1sing rφφ θ −= , iσ  are Pauli matrices. Substituting Equation (10) 
and Equation (12) into Equation (9), then using WKB approximation and ignoring the higher order of ( ) , 
one gets four Hamilton-Jacobi equations 

( ) ( ) ( )
1
2 K 0,t r rAif r I B f r I B f r Iβ−− ∂ − ∂ + ∂ =                     (13) 

( ) ( ) ( )
1
2 K 0,t r rBif r I A f r I A f r Iβ− ∂ − ∂ + ∂ =                     (14) 

{ }K K 0,A g I g I i g I i g I g I i g Iθθ θθ ϕϕ ϕϕ θθ θθ
θ θ ϕ ϕ θ θβ β β− ∂ + ∂ − ∂ + ∂ − ∂ + ∂ =       (15) 

{ }K K 0,B g I g I i g I i g I g I i g Iθθ θθ ϕϕ ϕϕ θθ θθ
θ θ ϕ ϕ θ θβ β β− ∂ + ∂ − ∂ + ∂ − ∂ + ∂ =       (16) 

where ( ) ( ) ( )222K rr
rg I g I g Iθθ ϕϕ

θ ϕ= ∂ + ∂ + ∂ . For solving the four equations above, one needs to carry out 
separation of variables of I . Adopting the following ansatz for the separation of variables 

( ) ( ), ,I t W rω θ φ= − + +Θ                                 (17) 

where ω  being the energy of this tunneling particle. One finds that Equation (15) and Equation (16) can be 
decoupled into the purely angular equation 

( ) ( ) ( ) ( ){ }222 0.rr
rg i g g W g W g Wθθ φφ θθ ϕϕ

θ φ θ ϕβ  ∂ Θ+ ∂ Θ ∂ + ∂ + ∂ =  
              (18) 

In Equation (18), the β  is a small coefficient associated with quantum gravity effective, it cannot be zero. 
Thus, we get an important relation 

0.g i gθθ φφ
θ φ∂ Θ + ∂ Θ =                                (19) 
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Now, substituting Equation (17) and Equation (19) into Equation (15) and Equation (16), keep the first order 
term of β , yields 

( ) ( )4 2
4 2 0 0,r rP W P W P∂ + ∂ + =                                (20) 

where ( )3
4 2 ,P f rβ= −  ( )2

2 ,P f r=  2
0P ω= − . Neglecting the higher order term of β  and solving Equation 

(20) at the outer event horizon. The result of Equation (20) is 

( ) ( )

( )( )
( )

( ) ( )

2
2

22
0

2 2 22
0 0

1 1
( )

4
1 ( ).

2
c HH

H H c H H c

W r dr
f r f r

r r rri RealPart
r r r r r r r r

ωω β

ωω βπ
α α

 
= ± + 

  
 −
 = ± − +

− −  − − 

∫



            (21) 

The plus (minus) means the outgoing (ingoing) wave. Here we only keep the imaginary part of Equation (24), 
because the real part ( )RealPart  do not contribution to calculate the tunneling rate. The tunneling rate of 
fermions is 

( )
( ) ( )( )

( )
( ) ( )

22
0

2 2 22
0 0

exp 2 I 4
4 1

m
exp 2

.
2Im

c HH

H H

out

in c H H c

r r rr
r r r r r r r r

I
I

ωω βπ
α α

+

−

 −−Γ
 −

−
Γ = = =

Γ − −  − − 
           (22) 

Comparing with the Boltzman factor expression, the GUP corrected Hawking temperature of the black hole 
with dark matter is 

( )
( ) ( )

122
0

0 2 22
0

4
1 .

2
c H

H
H H c

r r r
T T

r r r r

ωβ
α

−
 −
 = −
 − − 

                           (23) 

where ( )( )2
0 0 4H H c HT r r r r rα π= − −  is the semi-classical Hawking temperature of the black hole with 

dark matter. However, the temperature of an object should not depend on what it is emitting. Therefore, 
using the saturated form of the uncertainty principle 2 xω = ∆ , one has 

( )
( ) ( )2

122
0

0 2 22
0

1 .
2

c H
H

H H c

r r r
T T

r r r rx
β
α

−
 −
 = −
 − − ∆



                       (24) 

Then, near the event horizon of the black hole, the position uncertainty of a particle can be expressed [21] 
[22]  

,Hx rε∆ =                                     (25) 

where ε  is a calibration factor and Hr  is the event horizon of the black hole [23]. With the help of Equation 
(25), The temperature can be written as  

( )
( ) ( )

( )
( ) ( )

12 2
0 0

2 20 02 2 2 22 2
0 0

1 1 .
2 2

c H c H
H

H H c H H cH Hr

r r r r r r
T T T

r r r r r r r r r
β β
α α

−
   − −
   = − +
   − − − −   

=       (26) 

In above equation, we set 1ε= =
. Obviously, the GUP corrected temperature is lower than the semi-clas- 

sical case. Besides, it is not only determined by parameters of α , M  and ζ  the β , which belongs to the 
effects of quantum gravity. 

4. Conclusions 
In the previous work, people found that the GUP can cause the remnants of black holes. For calculating the 
remnants, we need neglect the parameters of α , ξ . The metric of SC black hole is recovered, Equation (26) 

becomes to 2

1 1
8 8HT

M M
β

π
 = − 
 

. When considering ( )( )21M dM Mβω− +   with dM ω=  and  

2
0 / pMβ β= , the temperature of black hole will stop increasing. The remnants are  
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2
0

0 0

2 2
, ,

16
p p

res res
p

M M
M T

M
β

β ω πβ
≥ ≤                         (27) 

where 34
0 10β > . Equation (27) implies that the remnant mass and temperature are relate to the Planck mass 

pM  and the dimensionless parameter 0β . 
In this work, with the help of GUP, we corrected the thermodynamic properties of spherically symmetric 

black hole with dark matter. We find that the GUP corrected temperatures is related to the properties of black 
hole (mass of black hole, α  and dark matter ξ ), and β , which represents the effects of quantum gravity. In 
addition, we can obtain the same result when consider the down spin state of fermions. It implies that the GUP 
may solve the information paradox of the black hole. 
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