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Abstract 
This paper presents discontinuous Legendre wavelet Galerkin (DLWG) approach for solving one- 
dimensional advection-diffusion equation (ADE). Variational formulation of this type equation and 
corresponding numerical fluxes are devised by utilizing the advantages of both the Legendre 
wavelet bases and discontinuous Galerkin (DG) method. The distinctive features of the proposed 
method are its simple applicability for a variety of boundary conditions and able to effectively ap-
proximate the solution of PDEs with less storage space and execution. The results of a numerical 
experiment are provided to verify the efficiency of the designed new technique. 
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1. Introduction 
The advection-diffusion equation arises in many important applications, such as fluid dynamics, heat transfer 
and mass transfer etc. [1]-[9]. In this paper, we shall consider the one-dimensional convection-diffusion equation, 
which takes the form 

2

2 , 0 1, 0u u ua x t T
t x x

µ∂ ∂ ∂
+ = ≤ ≤ ≤ ≤

∂ ∂ ∂
,                        (1.1) 

where a  and µ  are the speed of advection and diffusion coefficients respectively, and the function u  is 
unknown. The initial and boundary conditions are 
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( ) ( )0,0u x u x= ,                                   (1.2) 

and the boundary conditions satisfy 

( ) ( ) ( ) ( )0, , 1,u t g t u t h t= = ,                              (1.3) 

where 0u , g and h are known functions. 
There has been little progress in obtaining analytical solution to the advection-diffusion equation when initial 

and boundary conditions are complicated, even with constant coefficients a and ν [7]. This is the reason why 
numerical solution of Equation (1.1) is very important. It is pointed out that a lot of numerical techniques for 
Equation (1.1) are by now well developed such as finite differences, finite elements, spectral procedures, Wave-
let-Galerkin (WG) methods, DG methods and Graphical methods etc. [9]-[25]. Among these approaches, we 
need to emphasize on Wavelet Galerkin method, especially, Legendre Wavelet Galerkin technique and DG ap-
proach for solving partial differential equations (PDEs) because these methods are applied to constructing the 
DLWG approach proposed in this article. 

Firstly, the DG method has emerged as an attractive tool for simulating the convection-diffusion problem 
[9]-[14]. The main advantage of the DG method lies in its accuracy and flexibility thanks to its high degree of 
locality. Secondly, the reason for such fast development of the WG approach may be the fact that many nonli-
near PDEs have solutions containing local phenomena and interactions among several scales, which can be 
well-represented in wavelet bases owing to their nice properties, such as compact support and vanishing moment 
[15]-[22]. However, their main limitations are the difficulties to adapt them to non-periodic geometries and to 
append specific boundary conditions. Thirdly, what most interests us is that the Legendre wavelet approach is 
widely implemented to solve PDEs because of its rich properties, for example, expressions in closed form, or-
thogonality, compact support and vanishing moments [14]-[25]. 

In this paper, the DLWG technique is constructed by borrowing the idea of the DG method. The DLWG ap-
proach is based on the variational formulation for the solution of Equation (1.1) and takes advantage of an ele-
mentwise discontinuous Legendre wavelet approximation, where numerical information only communicates lo-
cally via numerical fluxes, to cope with complicated geometries and to represent the dynamics and structure of 
highly complex solutions. Especially, compared with the LWG method, the discontinuity of Legendre wavelet 
functions at interfaces of element to element and the boundary conditions are easy to be solved by using the nu-
merical fluxes. Furthermore, the rich properties of Legendre wavelet bases and the use of the discontinuous 
elements can produce block-diagonal, sparse and lower dimensional mass matrices, which can be easily inverted 
by hand and stored efficiently in computer-memory compared with the WG method. Of course, the stability and 
approximate error of the DLWG approach are also addressed in this article. Finally, the DLWG approach utiliz-
es the discontinuous feature at nodes of the Legendre wavelet bases combined with discontinuous finite ele-
ments to discretize the space variable and the spacial derivatives to produce a system of first-order ODEs in time 
for Equation (1.1). We solve this system by using the TVD Runge-Kutta method [11], and obtain good numeri-
cal results, illustrating that this scheme is very simple and computationally efficient. 

This paper is organized as follows: in Section 2, descriptions of the Legendre wavelet and its rich properties 
are given. Section 3 obtains the variational form of Equation (1.1) by the DLWG method. Section 4 derives the 
computations of the derivative operator and the numerical fluxes. Through these calculations, Equation (1.1) is 
transformed into an ODE system with time. Section 5 addresses the stability analysis of the DLWG approach. In 
Section 6, the results of a numerical experiment are presented to demonstrate the efficiency of the DLWG me-
thod. Conclusions of the proposed method and some suggestions for future research are given at the end of Sec-
tion 7. 

2. Legendre Wavelet 
In this section, we briefly review the Legendre wavelet bases, and introduce our notations and some auxiliary 
results that will be used later [22]-[24]. Let ( )kL x  denote the Legendre polynomial of degree k, which is in-
ductively defined as follows: 

( ) ( )

( ) ( ) ( )

0 1

2 1

1, ,
2 3 1 .

2 2k k k

L x L x x
k kL x xL x L x

k k+ +

= =

+ +
= −

+ +

                      (2.1) 
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Let ( )k xφ  denote the Legendre scale function defined as 

( ) ( ) [ ]
[ ]

2 1 2 1 , 0,1 ,

0, 0,1 .
k

k

k L x x
x

x
φ

 + − ∈= 
∉

                          (2.2) 

For 0,1, 2,n = , and 0,1,2, , 2 1nl = − , define the interval ( ))2 ,2 1n n
nlI l l− −= + . For 1, 2,p = , define 

,p nV  as a subspace of piecewise polynomial functions, ,p nV = { :
nlIf f  is a polynomial of degree strictly less 

than p; and f vanishes elsewhere}. 
The whole set { } 1

0

p
k k
φ −

=
 forms an orthonormal basis for ,0pV . Generally, the subspace ,p nV  is spanned by 

2n p  functions which are obtained from 0 1 1, , , pφ φ φ −  by dilations and translations, i.e., 

, ,:p n p nlV V=  spa ( ) ( ){ }/2
, 2 2 , 0 1, 0 2 1n n n

k nl kx x l k p lφ φ= − ≤ ≤ − ≤ ≤ −  

which forms an orthonormal basis and 

,0 ,1 ,p p p nV V V⊂ ⊂ ⊂ ⊂ .                              (2.3) 

In order to intuitively understand the Legendre scale functions, we let the scale level 2n =  and 3p = , re-
spectively. Figure 1 plots the scale functions. 

The approximation of a function [ ]( )2 0,1f L∈  in ,p nV  is represented by only scale functions as follows 

( ) ( )
12 1

, ,
0 0

n p

n k nl k nl
l k

f x s xφ
−−

= =

Ρ = ∑ ∑ ,                             (2.4) 

where nΡ  is the finest scale projection and ,k nls  are scale coefficients. Furthermore, the approximate estima-
tion satisfies 

( ) ( )
12 1

, ,
0 0 2

~ 2
n p

np
k nl k nl

l k
f s x Oφ

−−
−

= =

− ∑ ∑ ,                          (2.5) 

which demonstrates the approximation error exponentially convergences with the level n of resolution and the 
order p of the Legendre wavelet bases [22]. The above nice properties demonstrate that the Legendre wavelet 
bases can be very efficiently applied to the numerical solution of Equation (1). 

3. Discontinuous Legendre Wavelet Galerkin Variational Form 
In this section, we derive the weak formulation of Equation (1.1) by the DLWG technique in detail. The compu-
tational domain [ ]0,1  is firstly divided into 2nN =  elements, i.e., subintervals nlI  as described in Section 2,  

 

 
Figure 1. Legendre scale functions with 2n =  and 3p = . 
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so the size of each element is 2 nh −= . Secondly, the spaces of the approximation solutions and the test func-
tions are defined as the Legendre wavelet functions spaces , ,:p hl p nlV V=  introduced in Section 2. Thirdly, for a 
specific l , the numerical solution for nlx I∈  in space ,p hlV  can be approximated by 

( ) ( ) ( ) ( ) ( )
1

T
, ,

0
,

p

n k nl k nl hl l
k

u x t c t x C t xφ
−

=

Ρ = = Φ∑ ,                      (3.1) 

where ( ) ( ) ( ) ( ) ( ) T
0, 1, 1,, , ,hl l nl nl p nlC t C t c t c t c t− = =    is unknown time-dependent quantity to be determined 

from the initial conditions and the weak solution form of Equation (1.1), and 

( ) ( ) ( ) ( ) T
0, 0, 1,, , ,l nl nl p nlx x x xφ φ φ − Φ =    

is the vector of the Legendre wavelet bases at the finest decomposition level n. 
Now we utilize lu+  and lu−  to denote the values of u at 2 n

lx l−= , 1, 2, , 2 1nl = −  from right and left, 
respectively, 

( ) ( )
0 0

lim , liml l l lu u x u u x
ε ε

ε ε+ −

→ + → +
= + = − . 

We also let the usual notations { } ( ) 2u u u+ −= +  and [ ]u u u+ −  = −   represent the mean and the jump of 
function u at each element nlI  boundary point, respectively. Then the semi-discrete i.e., space discretization, 
the DLWG approach is applied to Equation (1.1) and the corresponding initial and the boundary conditions, 

( ) ( ) ( ) ( ) ( ) ( )0,0 , 0, , 1, .u x u x u t g t u t h t= = =                       (3.2) 

In order to determine the approximate solution ,h p hlu V∈ , we implement a weak formulation to multiply Eq-
uation (1.1) and (3.2) by all test functions, that is to say, Legendre wavelet functions for any ,h p hlv V∈  and in-
tegrate over each element nlI , and then obtain the following 

2

2d d d
nl nl nl

h h h
h h hI I I

u u u
v x a v x v x

t x x
µ

∂ ∂ ∂
+ =

∂ ∂ ∂∫ ∫ ∫ ,                     (3.3a) 

( ) ( )0,0 d d
nl nl

h h hI I
u x v x u x v x=∫ ∫ ,                               (3.3b) 

where 0,1,2, , 2 1nl = − . After a simple formal integration by parts over Equation (3.3), we have 

( ) ( ) ( )
1

1d d
nl nl l l

h h h
h h h hl h h lI I x x

u u v
v x au x au q v au q v

t x x
µ

+

+
+

∂ ∂ ∂ − − = − − − ∂ ∂ ∂ 
∫ ∫          (3.4) 

for each element nlI . The functions hau  and q  in Equation (3.4) are convection and diffusion numerical 
fluxes, respectively, which are single-valued functions defined at the element interfaces and in general depend 
on the values of numerical solution hu  or its derivatives from both sides of the interfaces. Since the function 

hu  is discontinuous at the points lx , we must also replace the nonlinear convection and diffusion fluxes by the 
numerical fluxes hau  and q , which appear from integration by parts. A suitable choice for these numerical 
fluxes is the key ingredient for the stability of the DLWG scheme. 

There are two types of numerical fluxes: one is the convection numerical flux hau ; the other is the diffusion 
numerical flux q . In this work, the convection flux hau  is chosen to be the local Lax-Friedrichs flux [11] 

( ) ( )1 1 1
2h h hau a a u a u+ − = − + +  .                        (3.5) 

In addition, the diffusion flux q  is chosen as [11] 

[ ]
2

0 1 22 2
l

n nh h
x h

u u
q u

x x
β µ µ β µ−   ∂ ∂  = + +       ∂ ∂     

.                 (3.6) 

We note that the choice of numerical fluxes follows the same principle as those for the LDG method. Howev-
er, numerical experience suggests that as the degree k of the approximate solution increases, the choice of the 
numerical fluxes does not have significant impact on the quality of the approximations [11]. 
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4. Computation of the Variational Form 
In this section, we concretely evaluate each term of Equation (3.4) obtained in Section 3 by taking advantage of 
the characteristics of the Legendre wavelet bases. 

4.1. Calculating the Matrix of Derivatives 
Since the Legendre basis functions are discontinuous at nodes lx  when the order of the bases is odd, represen-
tations of derivative operators do not exist in the usual sense. The proposed approach by Beylkin et al. [22] is 
based on defining weak representations of the derivative operator. The transition matrices have large dimensions 
2 2n np p× , although they have block diagonal structures. In this subsection, we can adopt another calculation 
technique of the differential operator, i.e., computing on each element nlI  other than whole interval [ ]0,1 . 
This approach consists of the DG method for solving the PDEs and avoids the discontinuity of the Legendre 
wavelet bases at interfaces. Furthermore, the interactions of the adjacent elements are jointed by using the con-
vection and diffusion fluxes. As we shall show below, this representation of the derivative on each element is an 
important advantage of the lower dimension transition matrices p p× . 

We now let D denote the derivative operator and consider , , ,:p n p n p nD V V→  (the projection , ,p n p nP DP  of D 
on ,p nV ) for some fixed resolution level n. Then let us consider solution u and , , ,,p n p n p nP u D u V∈  with expan-
sions by the Legendre scale functions, 

( )( ) ( )
12 1

, , ,
0 0

n p

p n j nm j nm
m j

P u x s xφ
−−

= =

= ∑ ∑ ,                            (4.1) 

( )( ) ( )
12 1

, , ,
0 0

n p

p n i nl i nl
l i

D u x s xφ
−−

= =

= ∑ ∑ .                             (4.2) 

Our goal is to find the p p×  transition matrices nlmr  for , 0,1, , 2 1nl m = − , which satisfy 

[ ]
12 1

, ,
0 0

n p

i nl nlm j nmij
m j

s r s
−−

= =

= ∑ ∑ .                                (4.3) 

Then the coefficient [ ]nlm ij
r  would necessarily be given by 

[ ] ( ) ( ) [ ] ( ) ( )( ) [ ]1 2 1
, ,0 2

d d 2
n

n

l n
l i j nlm i nl j nm l mij ij ijl

r x D x l x r x D x x rφ φ φ φ
−

−

+

′ −′= + = =∫ ∫ ,         (4.4) 

where  

[ ] ( ) ( )1

0
dl i jij

r x D x l xφ φ′ ′= +∫  

is the representation of D on the coarsest scale ,0pV . Also, because we compute the transition matrices on each 
element nlI , only the same element is involved, that is 0l′ = . Consequently, the matrix in (4.4) is replaced by 

[ ] ( ) ( )1
0 0

d d
di jij

r x x x
x

φ φ= ∫ ,                              (4.5) 

which again is a formal expression at this point, where , 0,1, , 1i j p= −  and 0r  is a p p×  matrix. Addi-
tionally, the representation of transition matrix on the decomposition level n can be found on each element nlI  
by rescaling 

,0 02n
nr r= .                                     (4.6) 

We now return to how to provide explicit calculation for each element of the matrix in (4.4) for the Legendre 
scale bases. Using a relation for the Legendre polynomials 

( ) ( ) ( ) ( )1 12 1 j j jj L x L x L x+ −′ ′+ = − ,                           (4.7) 

we obtain for the first derivative 
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( ) ( ) ( )
( )
( )

0
1 3

1

, odd,
2 1 2 5

2 2 1 3 , even.
j

j j

x jx
j x j x

j x j

φφ
φ φ

φ
− −

′ = − + − + + 
+ 

                 (4.8) 

Substituting (4.8) into (4.4), we find that the (i + 1, j + 1)-th element of the matrix ( ) [ ]0 01, 1i j ij
r r

+ +
=  satisfies 

( )0 1, 1
2 ij iji j

r v
+ +

= Γ ,                                   (4.9) 

where 2 1 2 1ij i jΓ = + +  and 
1, 1,3,5, ,
0, otherwise.ij

j i
v

− =
= 



                               (4.10) 

For example, let p = 3, we can obtain 

0

0 3 0

2 0 0 15
0 0 0

r

 
 
 =
 
 
 

.                                (4.11) 

The transition matrix ,0nr  derived above is applied to numerical solution of Equation (1.1). They can also be 
used to solve problems such as calculus of variations, differential equations, optimal control and integral equa-
tions. 

4.2. Transformation PDE into ODE and Time Discretization 
In this subsection, we use the matrix of differential operator and the fluxes proposed in above subsections to 
transform Equation (1.1) into a system of ODEs in time. 

For any test function ( ), ,k nl p nlx Vφ ∈ , 0,1, , 1k p= − , we firstly substitute (3.1) into the first term in (3.4) 
and then have 

( ) ( ) ( )T
,

,

dd d
d dnl

k nll
l k nlI

c tC x x x
t t

φΦ =∫ .                          (4.12) 

Secondly, taking advantage of the result of (4.6), we obtain the concrete calculation of the second term in (3.4) 
satisfying 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

, ,T
0

T T T
0 0 0

d 2 :, 1 d

2 :, 1 4 :, 1 ,

nl nl

k nl k nlnh h
h lI I

n n
l l

x xu uau x aC t r k x
x x x x

a C t r k C t r r k

φ φ
µ µ

µ

∂ ∂∂ ∂ − = + − ⋅ ∂ ∂ ∂ ∂ 
= + − +

∫ ∫          (4.13) 

where ( )T
lC t  are the presentation coefficients of the numerical solution on a certain subinterval nlI , and 

( )0 :, 1r k +  denotes the (k + 1)-th column of the derivative transition matrix 0r . 
Up to present, we need to compute the convection and diffusion fluxes, i.e., the third and fourth terms in (3.4). 

According to the definitions of the fluxes (3.5) and (3.6), we must first evaluate the approximate values of u+  
and u−  with needed accuracy at notes lx . We use the following properties of the Legendre polynomials 

( ) ( ) ( )1 1, 1 1 ,k
k kL L= − = −                            (4.14) 

and obtain the corresponding results of the Legendre basis functions such that 

( ) ( ) ( )0 1 2 1, 1 2 1k
k kk kφ φ= − + = + .                      (4.15) 

Thus, for 1, 2, , 2 2nl = − , we have 

( ) ( ) ( ) ( )( )
( ) ( ) ( )

( ) ( )

T
1 1

T12 T

2 T
1

1 2

2 1, 3, , 1 2 1, , 1 2 1

2 ,kc

n
l l l l l

k pn
l

n
l

u x u x C t x l

C t k p

C t

+ +
+ +

−

−

= = Φ = +

 = − − + − − 
= Φ

              (4.16) 
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where we let 
( ) ( ) ( )

T1

1
1, 3, , 1 2 1, , 1 2 1kc

k pk p−

−
 Φ = − − + − −   . Similarly, we obtain 

( ) ( ) ( ) ( )
T2 T 2 T

1 2 1, 3, , 2 1, , 2 1 2n n
l l l l cu x u x C t k p C t− −

+
 = = + − = Φ   .       (4.17) 

Additionally, for 0l =  and 2 1nl = − , the boundary conditions (1.3) are subsituted into these computations. 
Using (4.16) and (4.17), we have 

( ) ( ) ( )

( )( ) ( )

1 1

1

3 2 T T 3 2 T T
0 01

2 2 25 2 T T
02 2 1

2 , 2 ,

2 ,

kc

l l l l

kc

l l

n nh h h h
l l c

x x x x

nh h
l

x x

u u u uC t r C t r
x x x x

u u C t r
x x

+ +

+

+ + − −

−

+ +

−

∂ ∂ ∂ ∂
= = Φ = = Φ

∂ ∂ ∂ ∂

∂ ∂
= = Φ

∂ ∂

        (4.18) 

( )( )
1

2 2 25 2 T T
02 2 2 .

l l

nh h
l c

x x

u u C t r
x x

+

− −∂ ∂
= = Φ

∂ ∂
                                    (4.19) 

Now, using (3.5) and (3.6), we can obtain the computations of the fluxes satisfying 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ) ( )

( )

1 1 11 1

2 T 2 T
1

T

1 1 2 1 2 1 1 2 1
2

, ,

kc

h l hl l h l l h l hl l lh l h l

kn n
l l c

l

au x v x au x v x au x v x v x

a C t a C t k

AC k t

+ − + −
+ + ++ +

−

 − = − 
   = − Φ + + Φ ⋅ − − +    

=

                    (4.20) 

( ) ( )

( )( ) ( )( ) ( ) ( )( ) ( )

( )

1

2
1 1

23 2 T T T T T
0 0 1 01 1 1

3 2 T
0

2 1 1 2 1

2 1 1 2 1

2 , , .

ll l l l

k k kc c c

kn
x l x l x l l x

kn
l c l c l c

n
l

q v q v q v v q k

C C r C r k

uC k t r

µ β β

+

+ − + −
+ +

− − −

 − = − = − − + 
   = Φ −Φ + Φ +Φ + Φ −Φ − − +    

=

 (4.21) 

With (4.20) and (4.21), we obtain 

( ) ( ) ( ) ( ) ( )
1

T 3 2 T
01 , 2 , ,

l l

n
h hl h l lh lx x

au q v au q v AC k t C k t rµ
+

+ −
+− − − = − .               (4.22) 

Finally, we use (4.12), (4.13) and (4.22) to obtain the ODE systems from the DLWG space discretization. For 
each k and l, 0,1 1, 0,1, 2 1nk p l= − = − , , , we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ), T T T T 3 2 T
0 0 0 0

d
2 :, 1 4 :, 1 , 2 , ,

d
k nl n n n

l l l l

c t
a C t r k C t r r k AC k t C k t r

t
µ µ+ + − + = − .       (4.23) 

In addition, the initial condition (1.2) is represented as 

( ) ( )
1

, ,
0

,0 0
p

h k nl k nl
k

u x c φ
−

=

= ∑ ,                               (4.24) 

where ( ), 0k nlc  are the coefficients of the initial numerical solution. When l = 0 and 2 1nl = − , each term in 
(4.23) can be computed by using the boundary conditions (1.3). We now rewrite the p ODE systems (4.23) to a 
short-handed ODE system of the form 

( ) ( ) ( )
d

, , in 0,
d
h

h

U t
L U k t t T

t
= ∈ .                            (4.25) 

where ( ) ( )h hlU t C t=  is the vector of the coefficients of the numerical solution hu  on the subinterval nlI  of 
Equation (1.1) by using the DLWG method proposed in this paper. 

In the current work, the ODE system (4.25) is discretized over time by using the total variation diminishing 
(TVD) high-order Runge-Kutta method as follows [11] 
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( ) ( )1 ,m m
h h h mU U tL U t= + ∆ , 

( ) ( ) ( )( )2 1 13 1 1 ,
4 4 4

m
h h h h mU U U tL U t t= + + ∆ + ∆ , 

( ) ( ) ( )1 2 21 2 2 1,
3 3 3 2

m m
h h h h mU U U tL U t t+  = + + ∆ + ∆ 

 
,                     (4.26) 

where 0,1,m =  denotes the time discretization step, and t∆  is the time step. 
Solving (4.25) by the above time discretization approach, we can obtain the finest resolution scale coefficients 
( )hlC t  on each subinterval nlI  in space ,p nV . Consequently, for all l, the numerical approximate solution to 

Equation (1.1) is obtained on the n resolution. In comparison with the WG method, we do have more equations 
to solve. However, the reason why our technique is valid is that we do not try to solve a large 2n p  system but 
solve effectively 2n  small p systems. This results in a dimensional reduction, which is quite appealing for h-p 
adaptivity. If the resolution level n is large enough, the lower dimensional matrices would remarkably reduce the 
storage and time cost complexity needed to solve the full system. 

5. Stability Analysis 
In this section, we shall address the stability property of the DLWG scheme we just proposed. For simplicity of 
discussion, we shall only consider the case of µ  being positive from now on, and only consider periodic 
boundary conditions, which is the type of boundary conditions analyzed in this article. For general boundary 
conditions, the choice of the numerical fluxes should be adjusted at the boundary. See [11] for details. 

Theorem 1. The numerical scheme (3.4) with the fluxes choices (3.5) and (3.6), respectively, is 2L  stable, 
i.e. 

( ) ( )0h hu t u≤ . 

Proof. According to the Equation (1.1), we let ( )G u au=  and ( ) ( )dK u G u u= ∫ . In (3.4), we let h hv u=  
and sum over l to obtain 

2 2 1
2

0

d 1 1d d 0
d 2 2

n

h
h lI I

l

u
u x x

t x
µ

−

=

∂ + + Θ = ∂ 
∑∫ ∫ ,                      (5.1) 

where ( ) [ ] [ ]1
2l h h h

l

K u G u q u       Θ = − +        
, G  is the numerical flux for the function ( )G u . It is now  

easy to show that ( ) [ ] 0h hK u G u    − ≥      following the proof of the cell entropy inequality in [11], using the  

fact that G  is a monotone flux. Consequently, 

[ ]

2 2 1
2

0

2 2 1

0

d 1 1d d
d 2 2

1 1d ,
2 2

n

n

h
h lI I

l

h
hI

l

uu x x
t x

u x q u
x

µ

µ

−

=

−

=

∂ = − − Θ ∂ 

∂   ≤ − −   ∂ 

∑∫ ∫

∑∫
                    (5.2) 

Choosing suitable parameters 0β , 1β  of the flux q  in (3.6), following the same argument as the literature 
[11], we have 

[ ]
2 1

0

1 0
2

n

h
l

q u
−

=

 − ≤ ∑ .                                (5.3) 

Thus, we can obtain in (5.2) 

2d 1 d 0
d 2 hI

u x
t

≤∫ ,                                  (5.4) 

which finishes the proof. 
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6. Numerical Experiment 
In this section, we provide numerical experiment for numerically solving Equation (1.1) to illustrate the perfor-
mance of the DLWG approach. 

The values of various used parameters are 1 m sa = , 20.01 m sν = , respectively. This means that we con-
sider the equation 

2

2+ 0.01u u u
t x x

∂ ∂ ∂
=

∂ ∂ ∂
                                 (6.1) 

defined on 0 1x≤ ≤ , 0 1t≤ ≤ . The exact solution is taken by [7] and given as 

( ) ( )20.50.025, exp
0.00125 0.040.000625 0.02

x t
u x t

tt

 + −
= − 

++   
.                   (6.2) 

The corresponding initial and boundary conditions are decided by (6.1). Because the exact solution of the 
Equation (6.2) is known, we can compute the error between numerical solution and exact solution. 

We calculate the solution up to 1t = . The parameters of the numerical flux q  in (3.6) are chosen as 
0 4β = , 1 1 11β = . We list the computational results in Table 1 and Table 2 at time 0.5t =  and 0.9t = , re-

spectively. 
In the tables, Column 1 indicates the spatial order k, Column 2 shows the finest scale n used, and Column 3 

contains the size of time steps t∆ . In Column 4, we evaluate the L∞  error of the solution on 100 × 100 points 
and comparing it with the exact solution in (6.2). Additionally, in order to describe the evolution at desired ac-
curacy, Figure 2 describes the numerical solution of Equation (6.1) at different time and on the decomposition 
level 3n =  and 3p = , respectively. 

As shown in the numerical experiment, the numerical solution from the DLWG method is in good agreement 
with the exact one and illustrates the accuracy and capacity of the DLWG approach proposed in this article. 

7. Conclusion 
In this paper, the numerical method has been used to solve the advection-diffusion equation with specified initial 
and boundary conditions. The numerical experiment is presented to demonstrate the high order accuracy and va-
lidity of this technique. In particular, this method can be generalized to multi-dimensional cases and be applied 
to other kinds of PDEs and integro-differential equations. 

 
Table 1. Results with different parameters at time t = 0.5. 

p n t∆  L∞  error 

2 1 10−2 3.0194 × 10−2 

 2 10−2 4.8795 × 10−3 

3 1 10−2 7.6437 × 10−3 

 2 10−2 1.3529 × 10−5 

 
Table 2. Results with different parameters at time t = 0.9. 

p n t∆  L∞  error 

2 1 10−2 5.0654 × 10−2 

 2 10−3 4.8252 × 10−4 

3 2 10−2 1.2459 × 10−5 

 3 10−3 2.5194 × 10−7 
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Figure 2. The numerical solution of Equation (6.1). 
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