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Abstract

In this paper, we prove the existence of inertial manifolds for 2D generalized MHD system under
the spectral gap condition.
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1. Introduction

In [1], Yuan, Guo and Lin prove the existence of global attractors and dimension estimation of a 2D genera-
lized magnetohydrodynamic (MHD) system:
Zt—u+(u V)u —(V-V)v+7(—A)2“ u=f(x)

S (uV)u-(v-V)usn(-a)" v=g(x) (L)
Vu=Vv=0

(u,v)(%,0) = (ug, Vo ) (X)
u(xt), =v(xt), =0.

where u is the fluid velocity field, v is the magnetic field, y is the constant kinematic viscosity and 7 is constant

magnetic diffusivity. Q < R" is a bounded domain with a sufficiently smooth boundary 0Q, y,n>0,a,f > g
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More results about inertial manifolds can be founded in [2]-[11].
In this paper, we consider the following 2D generalized MHD system:

Z—l:+(u~V)u—(v-V)v+7(—A)2" u=f(x)

%+(u-v)v—(v-v)u+7<—A>“V= 9(x) (L.2)
Vu=Vv=0
(u,v)(X,O) = (uO’VO)(X)

u(x,t)|m =v(x,t)|m =0.

where u is the fluid velocity field, v is the magnetic field, y is the constant kinematic viscosity and 7 is the

constant magnetic diffusivity. Q < R" is a bounded domain with a sufficiently smooth boundary 0Q,
n
>0, >—.
4 2

This paper is organized as follows. In Section 2, we introduce basic concepts concerning inertial manifolds. In
Section 3, we obtain the existence of the inertial manifolds.

2. Preliminaries

We rewrite the problem (1.2) as a first order differential equation, the problem (1.2) is equivalent to:

U, +AU = F(U), t>0,
{U (0)=U0’ @1)

u U,
where U = , U = ,and
v A

A:(y(—A)Z“ 0 za} F(U):[f(x)—(u-V)u+(v-V)v]'

g(x)=(u-V)v+(v-V)u
Let H is a Banach space, H =L*(Q)xL*(Q), |-| isnormofH, () is inner product of H,

I =[ulf +v]*; V.= D((—A)“ )>< D((—A)“), for any solution U eV, of the problem (2.1),

[ ey

1
« 22 .
VI, :(H(_A) u ‘ j . |l isnormof V.
Definition 2.1. Suppose S(t) denote the semi-group of solutions to the problem (2.1) in V, x[0,T](T >0),
subset M is an inertial manifolds of the problem (2.1), that is M satisfying the following properties:
1. M is a finite dimensional Lipshitz manifold;

2. M is positively invariant under S(t), thatis, S(t)M <M forall t>0;
3. M is attracts every trajectory exponentially, i.e., for every U, €V,,

dist(S(t)Uy, M) —> 0,t — 4.

We now recall some notions. Let A is a closed linear operator on H satisfying the following Standing
Hypothesis 2.2.
Standing Hypothesis 2.2. We suppose that A is a positive definite, self-adjoint operator with a discrete
u.
spectrum, A compacts in H . Assume w; :[VJJ is the orthonormal basis in H consisting of the
i
corresponding eigenfunctions of the operator A . Say

Aw, =AW, j=12,-, (2.2)

1
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0< A <4, <., each with finite multiplicity and  lim 2, = +oo.

J—>+0

Let now 4, and A, be two successive and different eigenvalues with A, < 4,,,. let further P be the
orthogonal projection onto the first N eigenvectors of the operator A.

Let the bound absorbing set B, cV,, we define a smooth truncated function by setting 6:R" —>[0,1] is

defined as
0(£)=1 0<¢&<y,
0(£)=0, £22,
lo'(¢é)|<2, £=0, (2.3)
r
Qp (r) = 6(;)
1
Suppose that F, (U):Hp[AZU JF(U), the problem (2.1) is equivalent to the following preliminary
equation:
WY au- F,(U),t>0,
dt (2.4)
U (0)=U,
Denote by P, is the orthogonal projection of H onto H:= span{wl,---,wN} ,and Qy =1-PR, . Set
p=PRU,q=0Q,U , then Equation (2.4) is equivalent to
d
d—i)+Ap:PNFg(p+q), (2.5)
d
d—?+Aq:QNFH(p+q). (2.6)

Lemma 2.3. Defined by F(U) of the problem (2.1) on the bounded set of V, is a Lipschitz function, for

u u
every U, = (Vlj,uz = (VZJ €V, there exist a constant C >0 such that

1 2

||F(U1)—F(U2)||SC AZ (U, -U, ), (2.7)

where C=Cyk.

Proof. Assume U,,U, €V, and let U =U, -U, :(:j use the fact that |U ||V1 <M, and using Poincare
inequality U] < k"Al/zU || , We have
(Fo)- )
<|(—, VU, + U, VU, V9V, =V, W, U)|+[(<U, VY, + U, VY, 3, VU =, VU, V)|
< CoM, [ul + €M, Jull V] + C,My V[ < (€M, +C,M, )| +(C,M, +C,M, ) v (28)
AU

1
<c, (||u||2 + ||v||2) = C,|u|? < C.k| A2U

lb=c

VI

where C; =max{C,M, +C,M;,C;M, +C,M, }, so we can get
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1
|F(u,)-F(u,)|<c|Auj. (2.9)
Lemma 2.3 is proved. O
Lemma2.4.Let T >0 be fixed, forany N andall te[0,T], thereexist ¢ >0 such that
|Qu (UL (D) -U, ()] < [Py (Ui (1)-U, (V)] (2.10)

otherwise, there exist constants C, :exp(CzT) and C; :—g—zexp(—CzT) are dependent on ¢,M,,T
¢ +1
such that
U, (t)-U, (t)] < C, exp(~CsAy1t) |U: (0) U, (0)), (2.11)
and
UL (1)U, (1)) < exp(C?t)]u, (0)-U, (0)]. (2.12)

forall U [ulj u (UZJ V.
= s = c .
1 V1 2 Vz 1

Proof. Let U,,U, with initial values U,(0),U,(0)eV,, respectively, are two different solutions of the
problem (2.1), we have the fact that |U ||V1 <M,, Vte[0,T].Put U(t)=U,(t)-U,(t),so we obtain that

du

Putting
EN 1o
A2U (t) (AZU , AZUJ
p(t)= - (2.14)
© Ju (U.V)
For te [O,T], taking the derivative of Equation (2.14) with respect to t,we have
d L
®_ [" I [AZU AZUJ AU (u’,u)]
at ol (2.15)
2 , '
=S ((UAU) - p(H)(ULY))
Vi
From Equation (2.13) and Equation (2.15), we have
‘;'l'i’ "Ji (AU ~(F(U,)~F(U,)), AU - p(t)U). (2.16)
We notice that Equation (2.14)
1 1
(pU,AU - pU) = p(AZU,AZU]— p’(U,U)=0,
so we have
(AU, AU —p(t)U)=(AU - p(t)U, AU - p(t)U)=]AU - p(t)U| . (2.17)

By Equation (2.16) and Equation (2.17), and use the Cauchy-Schwarz inequality, we obtain
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(:j_fs ||U "2 " -p(t) ||2 = ”UZ"Z (( ( 1)—F(U2)) AU — p(t)U)
< opIFOI-FUliu-s(]
<2 N HCARICH) (2.18)
prl™ PO
c’ A%U

2
SW"AU —p(t)u +

Then using Lemma 2.3,we have

dp _ -2
—<Cp.
dt P

For 0<7<t<T, integrating the above inequality over [r,t] , We obtain

2 2

1

AU (1)

1

AU (z’)

<
2 - 2
el el

where C isgivenasin Lemma 2.3.
By multiplying (2.13) by U , using Cauchy-Schwarz inequality and Lemma 2.3, we have

exp(C? (t-7)), (2.19)

1d LI z
U +[A2U| =(F(U,)-F(U,).U)<|FU,)-FU,)|u]<c|Aaufju]. (2.20)
22wl
Using Holder inequality, from Equation (2.20) we have
1 2
; AU
In Equation (2.19) setting 7 =t,t =t,, we obtain
1 2 1 2
AU (1) [|A%U(t,)
> exp(—-C?(t, —t)) > sexp(-C°t, ), (2.22)
Y R
where
1 2
A?U (t,)
E=r. (2.23)
Ju )l
By Equation (2.21) and Equation (2.22), we have
S +Juf (sexe(-c7,)-c?) <o 2.24)

Integrating Equation (2.24) between 0 and t,, we obtain
Ju ) <Ju ) exp(—gto exp(~C?t, ) +C%, ) (2.25)
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To complete the proof of Lemma 2.4, we consider the following two cases,

[ ()] > <R (8 )] (2.26)
and
[ ()] <R (& )] (2.27)
We only consider Equation (2.26), in this case,
2 2 2
MUY RAU (L) QA (L)

B IO GOy R Y

1 2 (2.28)
QuAU () e
> > z +1/1N+1,

where A, isN + 1 eigenvector of the operator A. By Equation (2.25) and Equation (2.28), we obtain

2
"U (to )"2 < "U (0)"2 exp(—ﬁ Analo eXp(—CZt0 ) + CZtOj
2 - (2.29)
<|u (0)] exp(—ml,MT exp(-C°T)+C°T J

since t, <T, in Equation (2.29) setting t=t,, which proves Equation (2.11), where C, =exp(C2T) and

2
C, =- §§+lexp(—CZT) . Using again Equation (2.20), we have
d 1P 1 1P
Y I +2|A2u| <2c|Aaufju]<2|Au| +C?|ulf,
then we obtain
S <l (2.30)
Integrating Equation (2.30) between 0 and t,, which proves Equation (2.12). Lemma 2.4 is proved. O

3. Inertial Manifolds

In this section we will prove the existence of the inertial manifolds for solutions to the problem (2.1). We
suppose that A satisfies Standing Hypothesis 2.2 and recall that P is the orthogonal projection onto the first N

orthonormal eigenvectors of A.
1

Let constants b,l >0 be fixed, we define F = Fb?, and denote the collection of all functions @ : PV, — Q,V,

satisfies
< 2,0},

<b, VpePV,, (3.1)

1

suppcl)c{pePNV, AZp

1

A2 (p)

1

A? ((D(pl)—d)(pz))

1

Az(pl_pz)

<l , Vp,p, eV
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Note that

d(®,,®,)= psgNQ/
ePnVy

A% (@, (p)-@,( p))H (3.2)

1
is the distance of F =F3.So F iscompletely space.

Forevery @ e Fb% and the initial data p, € P,V,, the initial value problem

d
d—f+Ap: P F, (p+@(p)),

(33)
p(O) = Po,
possesses a unique solution p(t)=p(t;®, p,).
d
S Ag=Q,F,(p+®(p)), (3.4)

dt
where QNFH(p+d)(p))e L”(RxR;H) and the unique solution q:q(t;cl), po) in Equation (3.4) is a

successive bounded mapping acts from RxR into Q,V,. Particularly, the function

P € PV, = q(0;®@, py) €QyV,. (3.5)

1
by ®eF2,notethat T®: p, — q(0;®, p, ), we have

To(py) = [ e*QuF, (p(r)+®(p(r)))dz =q(0:®, py). (3.6)
We need to prove the following two conclusions:
1 1 1 1 1

1.For 42 and A2,-A2 aresufficiently large, T:F2 — F2 isa contraction.

2. @, isaunique fixed pointinT, M = Graph(d)o) is a inertial manifold of 2D generalized MHD system.

So we give the following Lemmas.
1

Lemma 3.1. Let V® e F2, so we have

1

supp® < { pePV,,[A2p

< Zp}. (3.7

Proof. The proof is similar to Temam [3]. O
1

Lemma 3.2. Let V@ eF2,for U, = p,+®(p;)(i=12), there exists constant M,,M, >0 such that

"Fe (Ul)" <M,, (3.8)
and
1
A2 ( p1 - pz)

IF, (U)-F, (U,)] < My (1+1) ., Vp,p,ePV,. (3.9)

1

Proof. For any ®eF?, and p;,p, eP\V,, we denote U, = p,+®(p,)(i=12), using Lemma 2.3 and
see ([3], Chapter 8: Lemma 2.1 and Lemma 2.2), we derive that there exists constant M,, M, >0 such that

|7, (U] <M, (3.10)

and
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1
"Fa(ul)_':e(uz)”SMa A? (Ul_UZ) ) (3.11)
1
which proves Equation (3.8). We now prove Equation (3.9), by the definition of F3 , we have
1 1
A (D(p,)-D(p,))|<I{A2(p—p,)|- (3.12)
And we have
1 1 1 1
A? (U, -U,)| <[ A2(p—p, )|+ A% (@(p,)-D(p,))| < (1+1)|A% (p,— p,)|. (3.13)
Substituting Equation (3.13) into Equation (3.11) we obtain Equation (3.9). Lemma 3.2 is proved. O
1 1 1
Lemma 3.3. Let p, P,V,, one has T®(p,)eQ,V, and [A?(Td(p,))|<b, where by =6e 2M,4,2,

for A, issufficiently large one has b, <b.

Proof. Let p, € PV, , according to the definition of T, we have T(D( po) € Q,V,, from Equation (3.6) and
Equation (3.10), we have

dr

0
<
-0

<

p2 (To(p,)) A Q,F, (p(r)+@(p(7)))

. H)“Fg(p(r)+d)(p(r)))udr (3.14)

dr.
L(QuH)

1
<M, j"wH(AQN )2 e

Let R and <0, supposethat K,(5)=5%" and

1 o <0,
K,(5)= K
+(9) e’ +ﬁ5”, 0<65<1.
1-6
So we obtain
K, (8)e[*, —="—=<r<0,
[(rQuy | - (3.15)
L(QNH) ﬂ,g_'_ledNﬂl T<— 5 .
))‘N+l
Further more, for 6 <1, we have
0 S - 5
[ I(AQy) et L Kq(8) 402 (3.16)

Setting 5:% in K, (%j,Ka (%) then substituting K, Gj,& (%j into Equation (3.15) and Equation
(3.16), and from Equation (3.14) we can derive that

1 1 1 1
A2 (TD(p,)) <3K, (%j/lNile <64,2M,e 2. (3.17)
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Lemma 3.3 is proved. O
Lemma 3.4. Let
1

ty = (A= Ay ) =M, (1+1) 42 >0, (3.18)

1
so for every @ e F3, one has

1 1
A? (TCD( p01)_T(D( poz)) < |1 A? ( Por — poz) ) Vpov Po, € PNvl! (3-19)
here
21 N
l, = M3(1+|)1N3{E+(1—;N§N) 1} 2 exp(%), (3.20)
A
oy =2 (3.21)
" ﬂlN‘Fl
1
&y =1+ My (1+1) 22 (3.22)
1
Proof. For any given ® < F2, let p, = p,(t),p, = p,(t) are the solutions of the following initial value
problem,
dp,
—+Ap, =P,F, (U,),
AL (3.23)
p1(0): Poz
and
dp,
=24 Ap, =P,F, (U,),
a HAP = RE (V) (3.24)
P, (0) = Pozs
here U, =p,+®(p;),i=12. Supposethat p(t)=p,(t)—p,(t),sowe have
dp
24 ap=P,(F,(U,)-F,(U,)),
gt HAP= PR (V1) =Fo (U2)) (3.25)

p(O) = Po1 — Pp2-
Multiplying the first equation in Equation (3.25) by Ap, using Equation (3.9) in Lemma 3.2, we obtain

2

1d| 5 =
SaclAeel +ael ==, ()= F, (U.)]l4p] > -M, (1+1) A2 pl | Ap]| (3.26)
So we have
dll ER
m AZp +[/1N+M3(1+I)/1§] AZp|>0. (3.27)
For t<0, from Equation (3.27) we have
1 1 1
AZp(t)|<[A2p(0) exp{—t[ﬂN +M, (1+1) 42 H (3.28)

By Lemma 2.3, to do the following estimate,using Equation (3.11) and Equation (3.28) we obtain
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A2 (T () T () < at

I

"FH (Ul)_ Fy (Uz)"dt

AZeA‘Q( »(U)-F,(U,))

sf‘;HmQN e

L(QuH)
1
M, (D) [ (AQ, Jee AZpldt
L(QuH)
1 1
<M, (L+1)[AZp(0)| [ [(AQy )2 e™ e et
L(QuH)

1

here &, =1+M,(1+1)4,2. From Equation (3.15), we have

I 2/1N+1

1t 1 H
SJ' 2/1N+11§+1e“““dtSAN2+1—eXp(— N J,
—00 /’l

11
e Nt gt < J. 2/1N+l/1’\2‘+1e1N+1te—iN iNtgt

(AQ, )z

L(QuH)

N 2ﬂ‘N +1

here 14y = Ay — Ay :ﬂ’N+1(1_§N§N)I§N =

Hence,

ﬂ’N +1

1

(AQy )i

I UNA
L(QuH)
Then from Equation (3.15) we have

0 Lo
J._L (AQy)ze

22N

—A t 0 1 = = t
NN dtSI—le[EjM 2 e MNéntdt

L(QuH) 2iN4

s(2e)’% exp(gﬂjj It 2 dt< (2¢) 2 lNilexp(gNéN]

N+1

ZAN 1

Combining Equation (3.31) and Equation (3.32), we obtain

0 1 11 5 1 é/ 6

~l(AQy)z e et < A 2e 2| (1-¢\ &) +2 2 exp( N2 N J
L(QH)

Substituting Equation (3.33) into Equation (3.29), we obtain
1

AZ (TCD( p01)_TcD( Po2 )) <

1

A? (o~ Pos )|

Lemma 3.4 is proved.

1
Lemma3.5. Let x4, >0 isdefined asin Lemma 3.4, forall ®,,®, e R7,

1

A? (TCD1( P)-T®, ( po))

<Kod (@, @,), VP, € BV,

1 1 1

1
e,AN gNtdt < /’ngleii (l— gN ‘/;:N )’l exp (%j

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

here K, =M, [6/1N31e2 +2N2I1J, l, is defined by Equation (3.20), d(®,,®,) is defined by Equation (3.2).

Proof. Let p,=p,(t;®;,p,) U, =p+D(p;),i=12 and let p=p,—p, is the solution of the initial
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value problem (3.25), then by the same way as in Lemma 3.2 we can prove that

in-ote

AE(®1(D1)_®1(p2))

1
F,(U,)-F, (u2)||s M, [AZ (U, -U,)
||

1

A2 (q)l(pl)_q)Z(pZ))

+M3[
1

A%(p,—p,)

1
Az(pl_pZ) +

1

3[|A (P —Py)

1

+ Ai(d)l(pz)—d)z(pz))

£M3_(1+I)

From the first inequality of Equation (3.26) and the following estimate, we have

+d(d)l,d)2)}.

11

A2AZp

1 1

< 22||A2p|,

Al =

then from the last inequality of Equation (3.35), we obtain
2 2
1d| 5
—2]A2
2 dt P

From Equation (3.36), we have

df 2 :
+{/1N + M3(1+I)/1,§j

112

1
AZp| —M,A2d (D, ®,)

1

+ 2 ||A2p

1

1
>-M, (1+1)42 AZp

1

AZp

1
o A2 >-M,22d (D, D,).

i=]

Dueto p(0)=0, integrating Equation (3.37) over [0,t <0], we have

A2 < MyAg (&g ) (exp(~tAyéy ) -1)d (@, @,).

From Equation (3.6), Equation (3.35) and Equation (3.38), we have
< jo

"Fa (Ul)_ Fy (Uz)"dt
L(H)

A% (T, (py)-T®,(py)) A%eA‘QN (F,(Uy)-F,(U,))|dt

s .[OOOH( AQy )% e

1

1
< M3J.OOOH(AQN )E e A? ( P - pz)

l:(1+ )

+d(d>1,d)2)}dt

L(H)

<M,d(@,,®, )jOwH( AQ, )% At

1
{1+ (1+1) M 4, 2e e }dt.

L(H)

Then using Equation (3.16), Equation (3.33) and x, >0, we have

A% (TCDl(pO)—TQDZ ( Po ))

1 1 1 1
<M, {62;3@_2 + M, (1+1) A2, 42 (%Jr(l—gN & )'1Hd (@, ®,)

1 1 1
=M, (azNzlez +/1N2I1Jd (@, @,)=K,d(D,,®,).

|

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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Lemma 3.5 is proved. O
Lemma 3.6. Suppose that 0 <1 <1,
1 1
Ada—A2 =K, (3.41)
1
A2 =K,, (3.42)

we have g, >0l <l and K, <%, where K, is defined as in Lemma 3.5,

a1
K1=2M3(1+I)I‘1,K2=2M3[6e 2+|J. (3.43)

1
Proof. From 1 = (A, — Ay )—M;(1+1)42 >0 is equivalent to

1=¢yéy >0, (3.44)

where ¢, and &, are defined as in Lemma 3.4. To find a sufficient condition of Equation (3.44), suppose
that Equation (3.44) hold, so we have

1 1 dnen

l, =M, (1+1) A %e 2e 2 {%+(1—CN§N)1}

. (3.45)
=11 -1
<M, (1+1) A% | —=+(1- .
(a6
Tomake |, <I,ifand only if it satisfies
1
M, (1+1) 4% SIE, (3.46)
B
M3(1+|)1N31£§(1_§N§N)- (3.47)
Equation (3.46) is equivalent to
1
K, <A2,,, K, = 2M  (1+ 1)1, (3.48)
1
If Equation (3.48) is satisfied, so Equation (3.47) is equivalent to Kl/lNgl <1-¢ &, orisequivalent to
1 11
KAz —1+ &y + M, (1+1) 4245 <0. (3.49)
Suppose that Equation (3.41) is equivalent to
1 1
KA+ <1, (3.50)
Hence,
Lt 1
K2 +¢y <6 (351)
Hence,
1 Lt 1 1
K2 =1+ & + My (1+1) 4248 < K42 + (2 —-1<0. (3.52)

Therefore Equation (3.49) follows from Equation (3.52). From Equation (3.41) we conclude that g, >0,
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Equation (3.48) follows from Equation (3.41), Equation (3.46) follows from Equation (3.48), Equation (3.46)
follows from Equation (3.49), and from Equation (3.46) and Equation (3.47) we have |, <I. The last we need

to proveis K, <%, from Lemma 3.5, we obtain
I
K, = Ms[G/INile 2 +AN2I1J <E, (3.53)

1 1 1 1
we notice that 1, <I,42,, 2 42,K; < Mg[se 2 +IJAN2 <%. Lemma 3.6 is proved.

From Lemma 3.1 to Lemma 3.6,we can obtain the following conclusions.
1 1
Theorem 3.1. Suppose that F2(b>0,1>0) is Lipschitz mapping space. ®eFR2, @:R\V,—>Q.V,
satisfy Equation (3.1) and Equation (3.2), p, RV, and q(O;(D, po)eQNVl is the unique solution of
1 1
Equation (3.3) and Equation (3.4) for t=0, respectively. Hence the transformation T:F? —» F3 is a

1
contraction, and T exists a unique fixed point ®; e F?3, M =Graph(®,) is inertial manifolds of the

problem (2.1).
Theorem 3.2. Suppose that M = Graph(®,) is the mapping of @, for any U, €V,, there exists t; >0
such that, for t =1,

dist (S (t)U,, M) < dist(U,, M )exp(—lznthj, (3.54)

0

where t; = min{lcr;—zz%}, C is defined as in Lemma 2.3.

Proof. Let U,,U, with initial value U,(0),U,(0)eV,, respectively, be two solutions of the problem (2.1).
For any arbitrary N and for t<[0,T], and use the fact ||U1|L/1 < M1,||U2|Lvl <M,, there exists a constant
¢ >0 such that Equation (2.10) or Equation (2.11) is satisfied. From Equation (2.12), we have

U, (t)-U, (1)) < 2|u, (0)-U, (0))|, t<2t,. (3.55)
1 In(2C,) . )
Assume gzg, and for N >Ny, 24y ;2 , therefore Equation (2.10) and Equation (2.11) can
50
rewrite
@ (U (1)U, (V)] S%HPN CAGEAG)H (3.56)
U (6)-U; (9] < 5 U (0)-U; (0)] (357)

Let U,(0),U,(0)eV,,t,<t<2t,B, cV, is absorbing set, the orbital solution U(t) satisfies
1

AU (t) < p,t e[0,+0). Let U,(0)=Ug, € M, Uy, = PyUy, + Dy (PUy,) such that

dist(Uy, M) =[U, (0)-U, (0)]. (3.58)
Substituting S(t,)U,(0) and S(t)U,(0) into Equation (3.56) and Equation (3.57), we have
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dist(S(t,)Uy, M) = inf S (t,)U,(0)-U,||<[s (t,)U, (0)-S (t,)U, (0)]
s_||u1(o)_u2(o)||:idist(uo,|v|). 59
2 2
If Equation (3.56) is satisfied, assume I:% <t, <2t,, so we have the cone property
dist (S (6,)Us, M) = inf.[5(t,)U, (0)=(RuS (1)U, (0)+ @ (RS (1)U, (0)))]
S||QN (6)V:(0)- @ (RS (1)U, (0))]
<LJp, (s(0),(0)-5 (1), 0) oo

s%||ul(o)—u2 o) =%dist(uo, M).

In a word, for t, <t <2t,, whenever dist(S(ti)UO, M ) S%dist(Uo, M). By the properties of semigroups,

for t, <t <2t,, we have

dist(s(ntl)uo,M)s@j dist(Uo,M)sexp[_ﬂ%zjdlst(UO,M)
(3.61)
tin2) ..
<exp| - - dist(Uy,M)—0(n—> o, t >t)).
0
Theorem 3.2 is proved. O
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