Inertial Manifolds for 2D Generalized MHD System

Zhaoqin Yuan, Liang Guo, Guoguang Lin*

Department of Mathematics, Yunnan University, Kunming, China
Email: 15925159599@163.com, ${ }^{*}$ yuanzq091@163.com, ${ }^{*}$ gglin@ynu.edu.cn.
Received 5 June 2015; accepted 16 August 2015; published 20 August 2015
Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

In this paper, we prove the existence of inertial manifolds for 2D generalized MHD system under the spectral gap condition.

Keywords

MHD System, Spectral Gap, Inertial Manifolds

1. Introduction

In [1], Yuan, Guo and Lin prove the existence of global attractors and dimension estimation of a 2D generalized magnetohydrodynamic (MHD) system:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+(u \cdot \nabla) u-(v \cdot \nabla) v+\gamma(-\Delta)^{2 \alpha} u=f(x) \tag{1.1}\\
\frac{\partial v}{\partial t}+(u \cdot \nabla) v-(v \cdot \nabla) u+\eta(-\Delta)^{2 \beta} v=g(x) \\
\nabla u=\nabla v=0 \\
(u, v)(x, 0)=\left(u_{0}, v_{0}\right)(x) \\
\left.u(x, t)\right|_{\partial \Omega}=\left.v(x, t)\right|_{\alpha \Omega}=0 .
\end{array}\right.
$$

where u is the fluid velocity field, v is the magnetic field, γ is the constant kinematic viscosity and η is constant magnetic diffusivity. $\Omega \subset R^{n}$ is a bounded domain with a sufficiently smooth boundary $\partial \Omega, \gamma, \eta>0, \alpha, \beta>\frac{n}{2}$.

[^0]More results about inertial manifolds can be founded in [2]-[11].
In this paper, we consider the following 2D generalized MHD system:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}+(u \cdot \nabla) u-(v \cdot \nabla) v+\gamma(-\Delta)^{2 \alpha} u=f(x) \tag{1.2}\\
\frac{\partial v}{\partial t}+(u \cdot \nabla) v-(v \cdot \nabla) u+\gamma(-\Delta)^{2 \alpha} v=g(x) \\
\nabla u=\nabla v=0 \\
(u, v)(x, 0)=\left(u_{0}, v_{0}\right)(x) \\
\left.u(x, t)\right|_{\partial \Omega}=\left.v(x, t)\right|_{\partial \Omega}=0 .
\end{array}\right.
$$

where u is the fluid velocity field, v is the magnetic field, γ is the constant kinematic viscosity and η is the constant magnetic diffusivity. $\Omega \subset R^{n}$ is a bounded domain with a sufficiently smooth boundary $\partial \Omega$, $\gamma>0, \alpha>\frac{n}{2}$.

This paper is organized as follows. In Section 2, we introduce basic concepts concerning inertial manifolds. In Section 3, we obtain the existence of the inertial manifolds.

2. Preliminaries

We rewrite the problem (1.2) as a first order differential equation, the problem (1.2) is equivalent to:

$$
\left\{\begin{array}{l}
U_{t}+A U=F(U), \quad t>0 \tag{2.1}\\
U(0)=U_{0}
\end{array}\right.
$$

where $U=\binom{u}{v}, U_{t}=\binom{u_{t}}{v_{t}}$, and

$$
A=\left(\begin{array}{cc}
\gamma(-\Delta)^{2 \alpha} & 0 \\
0 & \gamma(-\Delta)^{2 \alpha}
\end{array}\right), F(U)=\binom{f(x)-(u \cdot \nabla) u+(v \cdot \nabla) v}{g(x)-(u \cdot \nabla) v+(v \cdot \nabla) u}
$$

Let H is a Banach space, $H=L^{2}(\Omega) \times L^{2}(\Omega),\|\cdot\|$ is norm of $H,(\cdot, \cdot)$ is inner product of H, $\|U\|^{2}=\|u\|^{2}+\|v\|^{2} ; \quad V_{1}=D\left((-\Delta)^{\alpha}\right) \times D\left((-\Delta)^{\alpha}\right)$, for any solution $U \in V_{1}$ of the problem (2.1), $\|U\|_{V_{1}}=\left(\left\|(-\Delta)^{\alpha} u\right\|^{2}+\left\|(-\Delta)^{\alpha} v\right\|^{2}\right)^{\frac{1}{2}},\|\cdot\|_{V_{1}}$ is norm of V_{1}.

Definition 2.1. Suppose $S(t)$ denote the semi-group of solutions to the problem (2.l) in $V_{1} \times[0, T](T>0)$, subset M is an inertial manifolds of the problem (2.l), that is M satisfying the following properties:

1. M is a finite dimensional Lipshitz manifold;
2. M is positively invariant under $S(t)$, that is, $S(t) M \subset M$ for all $t \geq 0$;
3. M is attracts every trajectory exponentially, i.e., for every $U_{0} \in V_{1}$,

$$
\operatorname{dist}\left(S(t) U_{0}, M\right) \rightarrow 0, t \rightarrow+\infty
$$

We now recall some notions. Let A is a closed linear operator on H satisfying the following Standing Hypothesis 2.2.

Standing Hypothesis 2.2. We suppose that A is a positive definite, self-adjoint operator with a discrete spectrum, A^{-1} compacts in H. Assume $w_{j}=\binom{u_{j}}{v_{j}}$ is the orthonormal basis in H consisting of the corresponding eigenfunctions of the operator A. Say

$$
\begin{equation*}
A w_{j}=\lambda_{j} w_{j}, j=1,2, \cdots \tag{2.2}
\end{equation*}
$$

$0<\lambda_{1} \leq \lambda_{2} \leq \cdots$, each with finite multiplicity and $\lim _{j \rightarrow+\infty} \lambda_{j}=+\infty$.
Let now λ_{N} and λ_{N+1} be two successive and different eigenvalues with $\lambda_{N}<\lambda_{N+1}$, let further P be the orthogonal projection onto the first N eigenvectors of the operator A.

Let the bound absorbing set $B_{\rho} \subseteq V_{1}$, we define a smooth truncated function by setting $\theta: R^{+} \rightarrow[0,1]$ is defined as

$$
\left\{\begin{array}{l}
\theta(\xi)=1, \quad 0 \leq \xi \leq 1 \tag{2.3}\\
\theta(\xi)=0, \quad \xi \geq 2 \\
\left|\theta^{\prime}(\xi)\right| \leq 2, \quad \xi \geq 0 \\
\theta_{\rho}(r)=\theta\left(\frac{r}{\rho}\right)
\end{array}\right.
$$

Suppose that $F_{\theta}(U)=\theta_{\rho}\left(\left|A^{\frac{1}{2}} U\right|\right) F(U)$, the problem (2.1) is equivalent to the following preliminary equation:

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} U}{\mathrm{~d} t}+A U=F_{\theta}(U), t>0 \tag{2.4}\\
U(0)=U_{0}
\end{array}\right.
$$

Denote by P_{N} is the orthogonal projection of H onto $H:=\operatorname{span}\left\{w_{1}, \cdots, w_{N}\right\}$, and $Q_{N}=I-P_{N}$. Set $p=P_{N} U, q=Q_{N} U$, then Equation (2.4) is equivalent to

$$
\begin{align*}
& \frac{\mathrm{d} p}{\mathrm{~d} t}+A p=P_{N} F_{\theta}(p+q) \tag{2.5}\\
& \frac{\mathrm{d} q}{\mathrm{~d} t}+A q=Q_{N} F_{\theta}(p+q) \tag{2.6}
\end{align*}
$$

Lemma 2.3. Defined by $F(U)$ of the problem (2.1) on the bounded set of V_{1} is a Lipschitz function, for every $U_{1}=\binom{u_{1}}{v_{1}}, U_{2}=\binom{u_{2}}{v_{2}} \in V_{1}$, there exist a constant $C>0$ such that

$$
\begin{equation*}
\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\| \leq C\left\|A^{\frac{1}{2}}\left(U_{1}-U_{2}\right)\right\| \tag{2.7}
\end{equation*}
$$

where $C=C_{3} k$.
Proof. Assume $U_{1}, U_{2} \in V_{1}$, and let $U=U_{1}-U_{2}=\binom{u}{v}$, use the fact that $\|U\|_{V_{1}} \leq M_{1}$ and using Poincare inequality $\|U\| \leq k\left\|A^{1 / 2} U\right\|$, we have

$$
\begin{align*}
& \left|\left(F\left(U_{1}\right)-F\left(U_{2}\right), U\right)\right| \\
& \leq\left|\left(-u_{1} \nabla u_{1}+u_{2} \nabla u_{2}+v_{1} \nabla v_{1}-v_{2} \nabla v_{2}, u\right)\right|+\left|\left(-u_{1} \nabla v_{1}+u_{2} \nabla v_{2}+v_{1} \nabla u_{1}-v_{2} \nabla u_{2}, v\right)\right| \\
& \leq C_{0} M_{1}\|u\|^{2}+C_{1} M_{1}\|u\|\|v\|+C_{2} M_{1}\|v\|^{2} \leq\left(C_{0} M_{1}+C_{1} M_{1}\right)\|u\|^{2}+\left(C_{1} M_{1}+C_{2} M_{1}\right)\|v\|^{2} \tag{2.8}\\
& \leq C_{3}\left(\|u\|^{2}+\|v\|^{2}\right)=C_{3}\|U\|^{2} \leq C_{3} k\left\|A^{\frac{1}{2}} U\right\|\|U\|=C\left\|A^{\frac{1}{2}} U\right\|\|U\|,
\end{align*}
$$

where $C_{3}=\max \left\{C_{0} M_{1}+C_{1} M_{1}, C_{1} M_{1}+C_{2} M_{1}\right\}$, so we can get

$$
\begin{equation*}
\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\| \leq C\left\|A^{\frac{1}{2}} U\right\| \tag{2.9}
\end{equation*}
$$

Lemma 2.3 is proved.
Lemma 2.4. Let $T>0$ be fixed, for any N and all $t \in[0, T]$, there exist $\zeta>0$ such that

$$
\begin{equation*}
\left\|Q_{N}\left(U_{1}(t)-U_{2}(t)\right)\right\| \leq \zeta\left\|P_{N}\left(U_{1}(t)-U_{2}(t)\right)\right\| \tag{2.10}
\end{equation*}
$$

otherwise, there exist constants $C_{4}=\exp \left(C^{2} T\right)$ and $C_{5}=-\frac{\zeta^{2}}{\zeta^{2}+1} \exp \left(-C^{2} T\right)$ are dependent on ζ, M_{1}, T such that

$$
\begin{equation*}
\left\|U_{1}(t)-U_{2}(t)\right\| \leq C_{4} \exp \left(-C_{5} \lambda_{N+1} t\right)\left\|U_{1}(0)-U_{2}(0)\right\| \tag{2.11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|U_{1}(t)-U_{2}(t)\right\| \leq \exp \left(C^{2} t\right)\left\|U_{1}(0)-U_{2}(0)\right\| \tag{2.12}
\end{equation*}
$$

for all $U_{1}=\binom{u_{1}}{v_{1}}, U_{2}=\binom{u_{2}}{v_{2}} \in V_{1}$.
Proof. Let U_{1}, U_{2} with initial values $U_{1}(0), U_{2}(0) \in V_{1}$, respectively, are two different solutions of the problem (2.1), we have the fact that $\|U\|_{V_{1}} \leq M_{1}, \forall t \in[0, T]$. Put $U(t)=U_{1}(t)-U_{2}(t)$, so we obtain that

$$
\begin{equation*}
\frac{\mathrm{d} U}{\mathrm{~d} t}+A U=F\left(U_{1}\right)-F\left(U_{2}\right) \tag{2.13}
\end{equation*}
$$

Putting

$$
\begin{equation*}
p(t)=\frac{\left\|A^{\frac{1}{2}} U(t)\right\|^{2}}{\|U(t)\|^{2}}=\frac{\left(A^{\frac{1}{2}} U, A^{\frac{1}{2}} U\right)}{(U, U)} \tag{2.14}
\end{equation*}
$$

For $t \in[0, T]$, taking the derivative of Equation (2.14) with respect to t, we have

$$
\begin{align*}
\frac{\mathrm{d} p}{\mathrm{~d} t} & =\frac{2}{\|U\|^{4}}\left(\|U\|^{2}\left(A^{\frac{1}{2}} U^{\prime}, A^{\frac{1}{2}} U\right)-\left\|A^{\frac{1}{2}} U\right\|^{2}\left(U^{\prime}, U\right)\right) \tag{2.15}\\
& =\frac{2}{\|U\|^{2}}\left(\left(U^{\prime}, A U\right)-p(t)\left(U^{\prime}, U\right)\right)
\end{align*}
$$

From Equation (2.13) and Equation (2.15), we have

$$
\begin{equation*}
\frac{\mathrm{d} p}{\mathrm{~d} t}=\frac{-2}{\|U\|^{2}}\left(A U-\left(F\left(U_{1}\right)-F\left(U_{2}\right)\right), A U-p(t) U\right) \tag{2.16}
\end{equation*}
$$

We notice that Equation (2.14)

$$
(p U, A U-p U)=p\left(A^{\frac{1}{2}} U, A^{\frac{1}{2}} U\right)-p^{2}(U, U)=0
$$

so we have

$$
\begin{equation*}
(A U, A U-p(t) U)=(A U-p(t) U, A U-p(t) U)=\|A U-p(t) U\|^{2} \tag{2.17}
\end{equation*}
$$

By Equation (2.16) and Equation (2.17), and use the Cauchy-Schwarz inequality, we obtain

$$
\begin{align*}
\frac{\mathrm{d} p}{\mathrm{~d} t}+\frac{2}{\|U\|^{2}}\|A U-p(t) U\|^{2} & =\frac{2}{\|U\|^{2}}\left(\left(F\left(U_{1}\right)-F\left(U_{2}\right)\right), A U-p(t) U\right) \\
& \leq \frac{2}{\|U\|^{2}}\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\|\|A U-p(t) U\| \\
& \leq \frac{2}{\|U\|^{2}}\|A U-p(t) U\|^{2}+\frac{\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\|^{2}}{\|U\|^{2}} \tag{2.18}\\
& \leq \frac{2}{\|U\|^{2}}\|A U-p(t) U\|^{2}+\frac{C^{2}\left\|A^{\frac{1}{2}} U\right\|^{2}}{\|U\|^{2}} .
\end{align*}
$$

Then using Lemma 2.3, we have

$$
\frac{\mathrm{d} p}{\mathrm{~d} t} \leq C^{2} p
$$

For $0<\tau<t<T$, integrating the above inequality over $[\tau, t]$, we obtain

$$
\begin{equation*}
\frac{\left\|A^{\frac{1}{2}} U(t)\right\|^{2}}{\|U(t)\|^{2}} \leq \frac{\left\|A^{\frac{1}{2}} U(\tau)\right\|^{2}}{\|U(\tau)\|^{2}} \exp \left(C^{2}(t-\tau)\right) \tag{2.19}
\end{equation*}
$$

where C is given as in Lemma 2.3.
By multiplying (2.13) by U, using Cauchy-Schwarz inequality and Lemma 2.3, we have

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\|U\|^{2}+\left\|A^{\frac{1}{2}} U\right\|^{2}=\left(F\left(U_{1}\right)-F\left(U_{2}\right), U\right) \leq\left\|F\left(U_{1}\right)-F\left(U_{2}\right)\right\|\|U\| \leq C\left\|A^{\frac{1}{2}} U\right\|\|U\| . \tag{2.20}
\end{equation*}
$$

Using Holder inequality, from Equation (2.20) we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|U\|^{2}+\|U\|^{2}\left(\frac{\left\|A^{\frac{1}{2}} U\right\|^{2}}{\|U\|^{2}}-C^{2}\right) \leq 0 . \tag{2.21}
\end{equation*}
$$

In Equation (2.19) setting $\tau=t, t=t_{0}$, we obtain

$$
\begin{equation*}
\frac{\left\|A^{\frac{1}{2}} U(t)\right\|^{2}}{\|U(t)\|^{2}} \geq \frac{\left\|A^{\frac{1}{2}} U\left(t_{0}\right)\right\|^{2}}{\left\|U\left(t_{0}\right)\right\|^{2}} \exp \left(-C^{2}\left(t_{0}-t\right)\right) \geq \varepsilon \exp \left(-C^{2} t_{0}\right) \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\varepsilon=\frac{\left\|A^{\frac{1}{2}} U\left(t_{0}\right)\right\|^{2}}{\left\|U\left(t_{0}\right)\right\|^{2}} \tag{2.23}
\end{equation*}
$$

By Equation (2.21) and Equation (2.22), we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|U\|^{2}+\|U\|^{2}\left(\varepsilon \exp \left(-C^{2} t_{0}\right)-C^{2}\right) \leq 0 \tag{2.24}
\end{equation*}
$$

Integrating Equation (2.24) between 0 and t_{0}, we obtain

$$
\begin{equation*}
\left\|U\left(t_{0}\right)\right\|^{2} \leq\|U(0)\|^{2} \exp \left(-\varepsilon t_{0} \exp \left(-C^{2} t_{0}\right)+C^{2} t_{0}\right) . \tag{2.25}
\end{equation*}
$$

To complete the proof of Lemma 2.4, we consider the following two cases,

$$
\begin{equation*}
\left\|Q_{N} U\left(t_{0}\right)\right\|>\zeta\left\|P_{N} U\left(t_{0}\right)\right\| \tag{2.26}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|Q_{N} U\left(t_{0}\right)\right\| \leq \zeta\left\|P_{N} U\left(t_{0}\right)\right\| . \tag{2.27}
\end{equation*}
$$

We only consider Equation (2.26), in this case,

$$
\begin{align*}
\varepsilon & =\frac{\left\|A^{\frac{1}{2}} U\left(t_{0}\right)\right\|^{2}}{\left\|U\left(t_{0}\right)\right\|^{2}}=\frac{\left\|P_{N} A^{\frac{1}{2}} U\left(t_{0}\right)\right\|^{2}+\left\|Q_{N} A^{\frac{1}{2}} U\left(t_{0}\right)\right\|^{2}}{\left\|P_{N} U\left(t_{0}\right)\right\|^{2}+\left\|Q_{N} U\left(t_{0}\right)\right\|^{2}} \\
& \geq \frac{\left\|Q_{N} A^{\frac{1}{2}} U\left(t_{0}\right)\right\|^{2}}{\left(1+\frac{1}{\zeta^{2}}\right)\left\|Q_{N} U\left(t_{0}\right)\right\|^{2}} \geq \frac{\zeta^{2}}{\zeta^{2}+1} \lambda_{N+1} \tag{2.28}
\end{align*}
$$

where λ_{N+1} is $N+1$ eigenvector of the operator A. By Equation (2.25) and Equation (2.28), we obtain

$$
\begin{align*}
\left\|U\left(t_{0}\right)\right\|^{2} & \leq\|U(0)\|^{2} \exp \left(-\frac{\zeta^{2}}{\zeta^{2}+1} \lambda_{N+1} t_{0} \exp \left(-C^{2} t_{0}\right)+C^{2} t_{0}\right) \\
& \leq\|U(0)\|^{2} \exp \left(-\frac{\zeta^{2}}{\zeta^{2}+1} \lambda_{N+1} T \exp \left(-C^{2} T\right)+C^{2} T\right) \tag{2.29}
\end{align*}
$$

since $t_{0}<T$, in Equation (2.29) setting $t=t_{0}$, which proves Equation (2.11), where $C_{4}=\exp \left(C^{2} T\right)$ and $C_{5}=-\frac{\zeta^{2}}{\zeta^{2}+1} \exp \left(-C^{2} T\right)$. Using again Equation (2.20), we have

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\|U\|^{2}+2\left\|A^{\frac{1}{2}} U\right\|^{2} \leq 2 C\left\|A^{\frac{1}{2}} U\right\|\|U\| \leq 2\left\|A^{\frac{1}{2}} U\right\|^{2}+C^{2}\|U\|^{2}
$$

then we obtain

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\|U\|^{2} \leq C^{2}\|U\|^{2} \tag{2.30}
\end{equation*}
$$

Integrating Equation (2.30) between 0 and t_{0}, which proves Equation (2.12). Lemma 2.4 is proved.

3. Inertial Manifolds

In this section we will prove the existence of the inertial manifolds for solutions to the problem (2.1). We suppose that A satisfies Standing Hypothesis 2.2 and recall that P is the orthogonal projection onto the first N orthonormal eigenvectors of A.
Let constants $b, l>0$ be fixed, we define $F=F_{b, l}^{\frac{1}{2}}$ and denote the collection of all functions $\Phi: P_{N} V_{1} \rightarrow Q_{N} V_{1}$ satisfies

$$
\left\{\begin{array}{l}
\text { supp } \Phi \subset\left\{p \in P_{N} V_{1},\left\|A^{\frac{1}{2}} p\right\| \leq 2 \rho\right\}, \tag{3.1}\\
\left\|A^{\frac{1}{2}} \Phi(p)\right\| \leq b, \quad \forall p \in P_{N} V_{1}, \\
\left\|A^{\frac{1}{2}}\left(\Phi\left(p_{1}\right)-\Phi\left(p_{2}\right)\right)\right\| \leq l\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\|, \quad \forall p_{1}, p_{2} \in V_{1} .
\end{array}\right.
$$

Note that

$$
\begin{equation*}
d\left(\Phi_{1}, \Phi_{2}\right)=\sup _{p \in P_{N} V_{1}}\left\|A^{\frac{1}{2}}\left(\Phi_{1}(p)-\Phi_{2}(p)\right)\right\| \tag{3.2}
\end{equation*}
$$

is the distance of $F_{1-}=F_{b, l}^{\frac{1}{2}}$. So F is completely space.
For every $\Phi \in F_{b, l}^{\overline{2}}$ and the initial data $p_{0} \in P_{N} V_{1}$, the initial value problem

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} p}{\mathrm{~d} t}+A p=P_{N} F_{\theta}(p+\Phi(p)) \tag{3.3}\\
p(0)=p_{0}
\end{array}\right.
$$

possesses a unique solution $p(t)=p\left(t ; \Phi, p_{0}\right)$.

$$
\begin{equation*}
\frac{\mathrm{d} q}{\mathrm{~d} t}+A q=Q_{N} F_{\theta}(p+\Phi(p)) \tag{3.4}
\end{equation*}
$$

where $Q_{N} F_{\theta}(p+\Phi(p)) \in L^{\infty}(R \times R ; H)$ and the unique solution $q=q\left(t ; \Phi, p_{0}\right)$ in Equation (3.4) is a successive bounded mapping acts from $R \times R$ into $Q_{N} V_{1}$. Particularly, the function

$$
\begin{equation*}
p_{0} \in P_{N} V_{1} \rightarrow q\left(0 ; \Phi, p_{0}\right) \in Q_{N} V_{1} \tag{3.5}
\end{equation*}
$$

by $\Phi \in F_{b, l}^{\frac{1}{2}}$, note that $T \Phi: p_{0} \rightarrow q\left(0 ; \Phi, p_{0}\right)$, we have

$$
\begin{equation*}
T \Phi\left(p_{0}\right)=\int_{-\infty}^{0} \mathrm{e}^{A \tau} Q_{N} F_{\theta}(p(\tau)+\Phi(p(\tau))) \mathrm{d} \tau=q\left(0 ; \Phi, p_{0}\right) \tag{3.6}
\end{equation*}
$$

We need to prove the following two conclusions:

1. For $\lambda_{N}^{\frac{1}{2}}$ and $\lambda_{N+1}^{\frac{1}{2}}-\lambda_{N}^{\frac{1}{2}}$ are sufficiently large, $T: F_{b, l}^{\frac{1}{2}} \rightarrow F_{b, l}^{\frac{1}{2}}$ is a contraction.
2. Φ_{0} is a unique fixed point in $T, M=\operatorname{Graph}\left(\Phi_{0}\right)$ is a inertial manifold of 2D generalized MHD system.

So we give the following Lemmas.
Lemma 3.1. Let $\forall \Phi \in F_{b, l}^{\frac{1}{2}}$, so we have

$$
\begin{equation*}
\operatorname{supp} \Phi \subset\left\{p \in P_{N} V_{1},\left\|A^{\frac{1}{2}} p\right\| \leq 2 \rho\right\} . \tag{3.7}
\end{equation*}
$$

Proof. The proof is similar to Temam [3].
Lemma 3.2. Let $\forall \Phi \in F_{b, l}^{\frac{1}{2}}$, for $U_{i}=p_{i}+\Phi\left(p_{i}\right)(i=1,2)$, there exists constant $M_{2}, M_{3}>0$ such that

$$
\begin{equation*}
\left\|F_{\theta}\left(U_{1}\right)\right\| \leq M_{2} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right\| \leq M_{3}(1+l)\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\|, \quad \forall p_{1}, p_{2} \in P_{N} V_{1} \tag{3.9}
\end{equation*}
$$

Proof. For any $\Phi \in F_{b, l}^{\frac{1}{2}}$, and $p_{1}, p_{2} \in P_{N} V_{1}$, we denote $U_{i}=p_{i}+\Phi\left(p_{i}\right)(i=1,2)$, using Lemma 2.3 and see ([3], Chapter 8: Lemma 2.1 and Lemma 2.2), we derive that there exists constant $M_{2}, M_{3}>0$ such that

$$
\begin{equation*}
\left\|F_{\theta}\left(U_{1}\right)\right\| \leq M_{2}, \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right\| \leq M_{3}\left\|A^{\frac{1}{2}}\left(U_{1}-U_{2}\right)\right\|, \tag{3.11}
\end{equation*}
$$

which proves Equation (3.8). We now prove Equation (3.9), by the definition of $F_{b, l}^{\frac{1}{2}}$, we have

$$
\begin{equation*}
\left\|A^{\frac{1}{2}}\left(\Phi\left(p_{1}\right)-\Phi\left(p_{2}\right)\right)\right\| \leq l\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\| . \tag{3.12}
\end{equation*}
$$

And we have

$$
\begin{equation*}
\left\|A^{\frac{1}{2}}\left(U_{1}-U_{2}\right)\right\| \leq\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\|+\left\|A^{\frac{1}{2}}\left(\Phi\left(p_{1}\right)-\Phi\left(p_{2}\right)\right)\right\| \leq(1+l)\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\| . \tag{3.13}
\end{equation*}
$$

Substituting Equation (3.13) into Equation (3.11) we obtain Equation (3.9). Lemma 3.2 is proved.
Lemma 3.3. Let $p_{0} \in P_{N} V_{1}$, one has $T \Phi\left(p_{0}\right) \in Q_{N} V_{1}$ and $\left\|A^{\frac{1}{2}}\left(T \Phi\left(p_{0}\right)\right)\right\| \leq b_{1}$, where $b_{1}=6 \mathrm{e}^{-\frac{1}{2}} M_{2} \lambda_{N+1}^{-\frac{1}{2}}$, for λ_{N+1} is sufficiently large one has $b_{1}<b$.

Proof. Let $p_{0} \in P_{N} V_{1}$, according to the definition of T, we have $T \Phi\left(p_{0}\right) \in Q_{N} V_{1}$, from Equation (3.6) and Equation (3.10), we have

$$
\begin{align*}
\left\|A^{\frac{1}{2}}\left(T \Phi\left(p_{0}\right)\right)\right\| & \leq \int_{-\infty}^{0}\left\|A^{\frac{1}{2}} \mathrm{e}^{A \tau} Q_{N} F_{\theta}(p(\tau)+\Phi(p(\tau)))\right\| \mathrm{d} \tau \\
& \leq \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A \tau}\right\|_{L\left(Q_{N} H\right)}\left\|F_{\theta}(p(\tau)+\Phi(p(\tau)))\right\| \mathrm{d} \tau \tag{3.14}\\
& \leq M_{2} \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A \tau}\right\|_{L\left(Q_{N} H\right)} \mathrm{d} \tau .
\end{align*}
$$

Let $\delta \in R$ and $\tau<0$, suppose that $K_{2}(\delta)=\delta^{\delta} \mathrm{e}^{-\delta}$ and

$$
K_{3}(\delta)=\left\{\begin{array}{lc}
1, & \delta<0, \\
\mathrm{e}^{-\delta}+\frac{K_{2}(\delta)}{1-\delta} \delta^{1-\delta}, & 0 \leq \delta<1 .
\end{array}\right.
$$

So we obtain

$$
\left\|\left(A Q_{N}\right)^{\delta} \mathrm{e}^{A Q_{N} \tau}\right\|_{L\left(Q_{N} H\right)}=\left\{\begin{array}{lc}
K_{2}(\delta)|\tau|^{-\delta}, & -\frac{\delta}{\lambda_{N+1}} \leq \tau<0 \tag{3.15}\\
\lambda_{N+1}^{\delta} \mathrm{e}^{\tau \lambda_{N+1}}, & \tau<-\frac{\delta}{\lambda_{N+1}}
\end{array}\right.
$$

Further more, for $\delta<1$, we have

$$
\begin{equation*}
\int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\delta} \mathrm{e}^{A Q_{N} \tau}\right\|_{L\left(Q_{N} H\right)} \mathrm{d} \tau \leq K_{3}(\delta) \lambda_{N+1}^{\delta-1} . \tag{3.16}
\end{equation*}
$$

Setting $\delta=\frac{1}{2}$ in $K_{2}\left(\frac{1}{2}\right), K_{3}\left(\frac{1}{2}\right)$, then substituting $K_{2}\left(\frac{1}{2}\right), K_{3}\left(\frac{1}{2}\right)$ into Equation (3.15) and Equation (3.16), and from Equation (3.14) we can derive that

$$
\begin{equation*}
\left\|A^{\frac{1}{2}}\left(T \Phi\left(p_{0}\right)\right)\right\| \leq 3 K_{3}\left(\frac{1}{2}\right) \lambda_{N+1}^{-\frac{1}{2}} M_{2} \leq 6 \lambda_{N+1}^{-\frac{1}{2}} M_{2} \mathrm{e}^{-\frac{1}{2}} . \tag{3.17}
\end{equation*}
$$

Lemma 3.3 is proved.
Lemma 3.4. Let

$$
\begin{equation*}
\mu_{N}=\left(\lambda_{N+1}-\lambda_{N}\right)-M_{3}(1+l) \lambda_{N}^{\frac{1}{2}}>0, \tag{3.18}
\end{equation*}
$$

so for every $\Phi \in F_{b, l}^{\frac{1}{2}}$, one has

$$
\begin{equation*}
\left\|A^{\frac{1}{2}}\left(T \Phi\left(p_{01}\right)-T \Phi\left(p_{02}\right)\right)\right\| \leq l_{1}\left\|A^{\frac{1}{2}}\left(p_{01}-p_{02}\right)\right\|, \quad \forall p_{01}, p_{02} \in P_{N} V_{1}, \tag{3.19}
\end{equation*}
$$

here

$$
\begin{gather*}
l_{1}=M_{3}(1+l) \lambda_{N+1}^{-\frac{1}{2}}\left[\frac{1}{\sqrt{2}}+\left(1-\zeta_{N} \xi_{N}\right)^{-1}\right] \mathrm{e}^{-\frac{1}{2}} \exp \left(\frac{\zeta_{N} \xi_{N}}{2}\right) \tag{3.20}\\
\zeta_{N}=\frac{\lambda_{N}}{\lambda_{N+1}} \tag{3.21}\\
\xi_{N}=1+M_{3}(1+l) \lambda_{N}^{-\frac{1}{2}} \tag{3.22}
\end{gather*}
$$

Proof. For any given $\Phi \in F_{b, l}^{\frac{1}{2}}$, let $p_{1}=p_{1}(t), p_{2}=p_{2}(t)$ are the solutions of the following initial value problem,

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} p_{1}}{\mathrm{~d} t}+A p_{1}=P_{N} F_{\theta}\left(U_{1}\right), \tag{3.23}\\
p_{1}(0)=p_{01}
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} p_{2}}{\mathrm{~d} t}+A p_{2}=P_{N} F_{\theta}\left(U_{2}\right), \tag{3.24}\\
p_{2}(0)=p_{02},
\end{array}\right.
$$

here $U_{i}=p_{i}+\Phi\left(p_{i}\right), i=1,2$. Suppose that $p(t)=p_{1}(t)-p_{2}(t)$, so we have

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} p}{\mathrm{~d} t}+A p=P_{N}\left(F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right) \tag{3.25}\\
p(0)=p_{01}-p_{02}
\end{array}\right.
$$

Multiplying the first equation in Equation (3.25) by $A p$, using Equation (3.9) in Lemma 3.2, we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|A^{\frac{1}{2}} p\right\|^{2}+\|A p\|^{2} \geq-\left\|F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right\|\|A p\| \geq-M_{3}(1+l)\left\|A^{\frac{1}{2}} p\right\|\|A p\| \tag{3.26}
\end{equation*}
$$

So we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|A^{\frac{1}{2}} p\right\|+\left(\lambda_{N}+M_{3}(1+l) \lambda_{N}^{\frac{1}{2}}\right)\left\|A^{\frac{1}{2}} p\right\| \geq 0 \tag{3.27}
\end{equation*}
$$

For $t \leq 0$, from Equation (3.27) we have

$$
\begin{equation*}
\left\|A^{\frac{1}{2}} p(t)\right\| \leq\left\|A^{\frac{1}{2}} p(0)\right\| \exp \left[-t\left(\lambda_{N}+M_{3}(1+l) \lambda_{N}^{\frac{1}{2}}\right)\right] \tag{3.28}
\end{equation*}
$$

By Lemma 2.3, to do the following estimate, using Equation (3.11) and Equation (3.28) we obtain

$$
\begin{align*}
& \left\|A^{\frac{1}{2}}\left(T \Phi\left(p_{01}\right)-T \Phi\left(p_{02}\right)\right)\right\| \leq \int_{-\infty}^{0}\left\|A^{\frac{1}{2}} \mathrm{e}^{A t} Q_{N}\left(F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right)\right\| \mathrm{d} t \\
& \leq \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L\left(Q_{N} H\right)}\left\|F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right\| \mathrm{d} t \\
& \leq M_{3}(1+l) \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L\left(Q_{N} H\right)}\left\|A^{\frac{1}{2}} p\right\| \mathrm{d} t \tag{3.29}\\
& \leq M_{3}(1+l)\left\|A^{\frac{1}{2}} p(0)\right\| \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L\left(Q_{N} H\right)} \mathrm{e}^{-\lambda_{N} \xi_{N} t} \mathrm{~d} t
\end{align*}
$$

here $\xi_{N}=1+M_{3}(1+l) \lambda_{N}^{-\frac{1}{2}}$. From Equation (3.15), we have

$$
\begin{align*}
& \int_{-\infty}^{-\frac{1}{2 \lambda_{N+1}}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L\left(Q_{N} H\right)} \mathrm{e}^{-\lambda_{N} \xi_{N} t} \mathrm{~d} t \leq \int_{-\infty}^{-\frac{1}{2 \lambda_{N+1}}} \lambda_{N+1}^{\frac{1}{2}} \mathrm{e}^{\lambda_{N+1} t} \mathrm{e}^{-\lambda_{N} \xi_{N} t} \mathrm{~d} t} \tag{3.30}\\
& \leq \int_{-\infty}^{-\frac{1}{2 \lambda_{N+1}}} \lambda_{N+1}^{\frac{1}{2}} \mathrm{e}^{\mu_{N} t} \mathrm{~d} t \leq \lambda_{N+1}^{\frac{1}{2}} \frac{1}{\mu_{N}} \exp \left(-\frac{\mu_{N}}{2 \lambda_{N+1}}\right),
\end{align*}
$$

here $\mu_{N}=\lambda_{N+1}-\lambda_{N} \xi_{N}=\lambda_{N+1}\left(1-\zeta_{N} \xi_{N}\right), \zeta_{N}=\frac{\lambda_{N}}{\lambda_{N+1}}$.
Hence,

$$
\begin{equation*}
\int_{-\infty}^{-\frac{1}{2 \lambda_{N+1}}}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L\left(Q_{N} H\right)} \mathrm{e}^{-\lambda_{N} \xi_{N} t} \mathrm{~d} t \leq \lambda_{N+1}^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}}\left(1-\zeta_{N} \xi_{N}\right)^{-1} \exp \left(\frac{\zeta_{N} \xi_{N}}{2}\right) \tag{3.31}
\end{equation*}
$$

Then from Equation (3.15) we have

$$
\begin{align*}
& \int_{-\frac{1}{2 \lambda_{N+1}}}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L\left(Q_{N} H\right)} \mathrm{e}^{-\lambda_{N} \xi_{N} t} \mathrm{~d} t \leq \int_{-\frac{1}{2 \lambda_{N+1}}}^{0} K_{2}\left(\frac{1}{2}\right)|t|^{-\frac{1}{2}} \mathrm{e}^{-\lambda_{N} \xi_{N} t} \mathrm{~d} t \\
& \leq(2 \mathrm{e})^{-\frac{1}{2}} \exp \left(\frac{\lambda_{N} \zeta_{N}}{2 \lambda_{N+1}}\right) \int_{-\frac{1}{2 \lambda_{N+1}}}^{0}|t|^{-\frac{1}{2}} \mathrm{~d} t \leq(2 \mathrm{e})^{-\frac{1}{2}} \lambda_{N+1}^{-\frac{1}{2}} \exp \left(\frac{\zeta_{N} \xi_{N}}{2}\right) . \tag{3.32}
\end{align*}
$$

Combining Equation (3.31) and Equation (3.32), we obtain

$$
\begin{equation*}
\int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L\left(Q_{N} H\right)} \mathrm{e}^{-\lambda_{N} \xi_{N} t} \mathrm{~d} t \leq \lambda_{N+1}^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}}\left[\left(1-\zeta_{N} \xi_{N}\right)^{-1}+2^{-\frac{1}{2}}\right] \exp \left(\frac{\zeta_{N} \xi_{N}}{2}\right) \tag{3.33}
\end{equation*}
$$

Substituting Equation (3.33) into Equation (3.29), we obtain

$$
\left\|A^{\frac{1}{2}}\left(T \Phi\left(p_{01}\right)-T \Phi\left(p_{02}\right)\right)\right\| \leq l_{1}\left\|A^{\frac{1}{2}}\left(p_{01}-p_{02}\right)\right\|
$$

Lemma 3.4 is proved.
Lemma 3.5. Let $\mu_{N}>0$ is defined as in Lemma 3.4, for all $\Phi_{1}, \Phi_{2} \in F_{b, l}^{\frac{1}{2}}$,

$$
\begin{equation*}
\left\|A^{\frac{1}{2}}\left(T \Phi_{1}\left(p_{0}\right)-T \Phi_{2}\left(p_{0}\right)\right)\right\| \leq K_{0} d\left(\Phi_{1}, \Phi_{2}\right), \forall p_{0} \in P_{N} V_{1} \tag{3.34}
\end{equation*}
$$

here $K_{0}=M_{3}\left(6 \lambda_{N+1}^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}}+\lambda_{N}^{-\frac{1}{2}} l_{1}\right), \quad l_{1}$ is defined by Equation (3.20), $d\left(\Phi_{1}, \Phi_{2}\right)$ is defined by Equation (3.2).
Proof. Let $p_{i}=p_{i}\left(t ; \Phi_{i}, p_{0}\right), U_{i}=p_{i}+\Phi_{i}\left(p_{i}\right), i=1,2$, and let $p=p_{1}-p_{2}$ is the solution of the initial
value problem (3.25), then by the same way as in Lemma 3.2 we can prove that

$$
\begin{align*}
& \left\|F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right\| \leq M_{3}\left\|A^{\frac{1}{2}}\left(U_{1}-U_{2}\right)\right\| \\
& \leq M_{3}\left(\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\|+\left\|A^{\frac{1}{2}}\left(\Phi_{1}\left(p_{1}\right)-\Phi_{2}\left(p_{2}\right)\right)\right\|\right) \\
& \leq M_{3}\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\|+M_{3}\left(\left\|A^{\frac{1}{2}}\left(\Phi_{1}\left(p_{1}\right)-\Phi_{1}\left(p_{2}\right)\right)\right\|+\left\|A^{\frac{1}{2}}\left(\Phi_{1}\left(p_{2}\right)-\Phi_{2}\left(p_{2}\right)\right)\right\|\right) \tag{3.35}\\
& \leq M_{3}\left[(1+l)\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\|+d\left(\Phi_{1}, \Phi_{2}\right)\right] .
\end{align*}
$$

From the first inequality of Equation (3.26) and the following estimate, we have

$$
\|A p\|=\left\|A^{\frac{1}{2}} A^{\frac{1}{2}} p\right\| \leq \lambda_{N}^{\frac{1}{2}}\left\|A^{\frac{1}{2}} p\right\|
$$

then from the last inequality of Equation (3.35), we obtain

$$
\begin{equation*}
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\left\|A^{\frac{1}{2}} p\right\|^{2}+\lambda_{N}\left\|A^{\frac{1}{2}} p\right\|^{2} \geq-M_{3}(1+l) \lambda_{N}^{\frac{1}{2}}\left\|A^{\frac{1}{2}} p\right\|^{2}-M_{3} \lambda_{N}^{\frac{1}{2}} d\left(\Phi_{1}, \Phi_{2}\right)\left\|A^{\frac{1}{2}} p\right\| \tag{3.36}
\end{equation*}
$$

From Equation (3.36), we have

$$
\begin{equation*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left\|A^{\frac{1}{2}} p\right\|+\left(\lambda_{N}+M_{3}(1+l) \lambda_{N}^{\frac{1}{2}}\right)\left\|A^{\frac{1}{2}} p\right\| \geq-M_{3} \lambda_{N}^{\frac{1}{2}} d\left(\Phi_{1}, \Phi_{2}\right) \tag{3.37}
\end{equation*}
$$

Due to $p(0)=0$, integrating Equation (3.37) over $[0, t<0]$, we have

$$
\begin{equation*}
\left\|A^{\frac{1}{2}} p\right\| \leq M_{3} \lambda_{N}^{\frac{1}{2}}\left(\lambda_{N} \xi_{N}\right)^{-1}\left(\exp \left(-t \lambda_{N} \xi_{N}\right)-1\right) \mathrm{d}\left(\Phi_{1}, \Phi_{2}\right) \tag{3.38}
\end{equation*}
$$

From Equation (3.6), Equation (3.35) and Equation (3.38), we have

$$
\begin{align*}
& \left\|A^{\frac{1}{2}}\left(T \Phi_{1}\left(p_{0}\right)-T \Phi_{2}\left(p_{0}\right)\right)\right\| \leq \int_{-\infty}^{0}\left\|A^{\frac{1}{2}} \mathrm{e}^{A t} Q_{N}\left(F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right)\right\| \mathrm{d} t \\
& \leq \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L(H)}\left\|F_{\theta}\left(U_{1}\right)-F_{\theta}\left(U_{2}\right)\right\| \mathrm{d} t \\
& \leq M_{3} \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L(H)}\left[(1+l)\left\|A^{\frac{1}{2}}\left(p_{1}-p_{2}\right)\right\|+d\left(\Phi_{1}, \Phi_{2}\right)\right] \mathrm{d} t \tag{3.39}\\
& \leq M_{3} d\left(\Phi_{1}, \Phi_{2}\right) \int_{-\infty}^{0}\left\|\left(A Q_{N}\right)^{\frac{1}{2}} \mathrm{e}^{A t}\right\|_{L(H)}\left[1+(1+l) M_{3} \lambda_{N}^{-\frac{1}{2}} \mathrm{e}^{-t \lambda_{N} \xi_{N}}\right] \mathrm{d} t
\end{align*}
$$

Then using Equation (3.16), Equation (3.33) and $\mu_{N}>0$, we have

$$
\begin{align*}
& \left\|A^{\frac{1}{2}}\left(T \Phi_{1}\left(p_{0}\right)-T \Phi_{2}\left(p_{0}\right)\right)\right\| \\
& \leq M_{3}\left[6 \lambda_{N+1}^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}}+M_{3}(1+l) \lambda_{N+1}^{-\frac{1}{2}} \lambda_{N}^{-\frac{1}{2}}\left(\frac{1}{\sqrt{2}}+\left(1-\zeta_{N} \xi_{N}\right)^{-1}\right)\right] d\left(\Phi_{1}, \Phi_{2}\right) \tag{3.40}\\
& =M_{3}\left(6 \lambda_{N+1}^{-\frac{1}{2}} e^{-\frac{1}{2}}+\lambda_{N}^{-\frac{1}{2}} l_{1}\right) d\left(\Phi_{1}, \Phi_{2}\right)=K_{0} d\left(\Phi_{1}, \Phi_{2}\right)
\end{align*}
$$

Lemma 3.5 is proved.
Lemma 3.6. Suppose that $0<l<1$,

$$
\begin{gather*}
\lambda_{N+1}^{\frac{1}{2}}-\lambda_{N}^{\frac{1}{2}} \geq K_{1}, \tag{3.41}\\
\lambda_{N}^{\frac{1}{2}} \geq K_{2} \tag{3.42}
\end{gather*}
$$

we have $\mu_{N}>0, l_{1}<l$ and $K_{0}<\frac{1}{2}$, where K_{0} is defined as in Lemma 3.5,

$$
\begin{equation*}
K_{1}=2 M_{3}(1+l) l^{-1}, K_{2}=2 M_{3}\left(6 \mathrm{e}^{-\frac{1}{2}}+l\right) \tag{3.43}
\end{equation*}
$$

Proof. From $\mu_{N}=\left(\lambda_{N+1}-\lambda_{N}\right)-M_{3}(1+l) \lambda_{N}^{\frac{1}{2}}>0$ is equivalent to

$$
\begin{equation*}
1-\zeta_{N} \xi_{N}>0 \tag{3.44}
\end{equation*}
$$

where ζ_{N} and ξ_{N} are defined as in Lemma 3.4. To find a sufficient condition of Equation (3.44), suppose that Equation (3.44) hold, so we have

$$
\begin{align*}
l_{1} & =M_{3}(1+l) \lambda_{N+1}^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}} \mathrm{e}^{\frac{\zeta_{N} \xi_{N}}{2}}\left[\frac{1}{\sqrt{2}}+\left(1-\zeta_{N} \xi_{N}\right)^{-1}\right] \tag{3.45}\\
& \leq M_{3}(1+l) \lambda_{N+1}^{-\frac{1}{2}}\left[\frac{1}{\sqrt{2}}+\left(1-\zeta_{N} \xi_{N}\right)^{-1}\right]
\end{align*}
$$

To make $l_{1}<l$, if and only if it satisfies

$$
\begin{gather*}
M_{3}(1+l) \lambda_{N+1}^{-\frac{1}{2}} \leq \frac{l}{2} \tag{3.46}\\
M_{3}(1+l) \lambda_{N+1}^{-\frac{1}{2}} \leq \frac{l}{2}\left(1-\zeta_{N} \xi_{N}\right) . \tag{3.47}
\end{gather*}
$$

Equation (3.46) is equivalent to

$$
\begin{equation*}
K_{1} \leq \lambda_{N+1}^{\frac{1}{2}}, K_{1}=2 M_{3}(1+l) l^{-1} \tag{3.48}
\end{equation*}
$$

If Equation (3.48) is satisfied, so Equation (3.47) is equivalent to $K_{1} \lambda_{N+1}^{-\frac{1}{2}} \leq 1-\zeta_{N} \xi_{N}$ or is equivalent to

$$
\begin{equation*}
K_{1} \lambda_{N+1}^{-\frac{1}{2}}-1+\zeta_{N}+M_{2}(1+l) \lambda_{N+1}^{-\frac{1}{2}} \lambda_{N}^{\frac{1}{2}} \leq 0 \tag{3.49}
\end{equation*}
$$

Suppose that Equation (3.41) is equivalent to

$$
\begin{equation*}
K_{1} \lambda_{N+1}^{-\frac{1}{2}}+\zeta_{N}^{\frac{1}{2}} \leq 1 \tag{3.50}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
K_{1} \lambda_{N+1}^{-\frac{1}{2}} \zeta_{N}^{\frac{1}{2}}+\zeta_{N} \leq \zeta_{N}^{\frac{1}{2}} \tag{3.51}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
K_{1} \lambda_{N+1}^{-\frac{1}{2}}-1+\zeta_{N}+M_{3}(1+l) \lambda_{N+1}^{-\frac{1}{2}} \lambda_{N}^{\frac{1}{2}} \leq K_{1} \lambda_{N+1}^{-\frac{1}{2}}+\zeta_{N}^{\frac{1}{2}}-1 \leq 0 \tag{3.52}
\end{equation*}
$$

Therefore Equation (3.49) follows from Equation (3.52). From Equation (3.41) we conclude that $\mu_{N}>0$,

Equation (3.48) follows from Equation (3.41), Equation (3.46) follows from Equation (3.48), Equation (3.46) follows from Equation (3.49), and from Equation (3.46) and Equation (3.47) we have $l_{1}<l$. The last we need to prove is $K_{0}<\frac{1}{2}$, from Lemma 3.5, we obtain

$$
\begin{equation*}
K_{0}=M_{3}\left(6 \lambda_{N+1}^{-\frac{1}{2}} \mathrm{e}^{-\frac{1}{2}}+\lambda_{N}^{-\frac{1}{2}} l_{1}\right)<\frac{1}{2}, \tag{3.53}
\end{equation*}
$$

we notice that $l_{1}<l, \lambda_{N+1}^{\frac{1}{2}} \geq \lambda_{N}^{\frac{1}{2}}, K_{0}<M_{3}\left(6 \mathrm{e}^{-\frac{1}{2}}+l\right) \lambda_{N}^{-\frac{1}{2}}<\frac{1}{2}$. Lemma 3.6 is proved.
From Lemma 3.1 to Lemma 3.6, we can obtain the following conclusions.
Theorem 3.1. Suppose that $F_{b, l}^{\frac{1}{2}}(b>0, l>0)$ is Lipschitz mapping space. $\Phi \in F_{b, l}^{\frac{1}{2}}, \quad \Phi: P_{N} V_{1} \rightarrow Q_{N} V_{1}$ satisfy Equation (3.1) and Equation (3.2), $p_{0} \in P_{N} V_{1}$ and $q\left(0 ; \Phi, p_{0}\right) \in Q_{N} V_{1}$ is the unique solution of Equation (3.3) and Equation (3.4) for $t=0$, respectively. Hence the transformation $T: F_{b, l}^{\frac{1}{2}} \rightarrow F_{b, l}^{\frac{1}{2}}$ is a contraction, and T exists a unique fixed point $\Phi_{0} \in F_{b, l}^{\frac{1}{2}}, M=\operatorname{Graph}\left(\Phi_{0}\right)$ is inertial manifolds of the problem (2.1).

Theorem 3.2. Suppose that $M=\operatorname{Graph}\left(\Phi_{0}\right)$ is the mapping of Φ_{0}, for any $U_{0} \in V_{1}$, there exists $t_{0}>0$ such that, for $t \geq t_{0}$,

$$
\begin{equation*}
\operatorname{dist}\left(S(t) U_{0}, M\right) \leq \operatorname{dist}\left(U_{0}, M\right) \exp \left(-\frac{\ln 2}{2 t_{0}} t\right) \tag{3.54}
\end{equation*}
$$

where $t_{0}=\min \left\{\frac{\ln 2}{C^{2}}, \frac{T}{2}\right\}, C$ is defined as in Lemma 2.3.
Proof. Let U_{1}, U_{2} with initial value $U_{1}(0), U_{2}(0) \in V_{1}$, respectively, be two solutions of the problem (2.1). For any arbitrary N and for $t \in[0, T]$, and use the fact $\left\|U_{1}\right\|_{V_{1}} \leq M_{1},\left\|U_{2}\right\|_{V_{1}} \leq M_{1}$, there exists a constant $\zeta>0$ such that Equation (2.10) or Equation (2.11) is satisfied. From Equation (2.12), we have

$$
\begin{equation*}
\left\|U_{1}(t)-U_{2}(t)\right\| \leq 2\left\|U_{1}(0)-U_{2}(0)\right\|, \quad t<2 t_{0} \tag{3.55}
\end{equation*}
$$

Assume $\zeta=\frac{1}{8}$, and for $N>N_{0}, \lambda_{N_{0}+1} \geq \frac{\ln \left(2 C_{4}\right)}{C_{5} t_{0}}$, therefore Equation (2.10) and Equation (2.11) can rewrite

$$
\begin{gather*}
\left\|Q_{N}\left(U_{1}(t)-U_{2}(t)\right)\right\| \leq \frac{1}{8}\left\|P_{N}\left(U_{1}(t)-U_{2}(t)\right)\right\|, \tag{3.56}\\
\left\|U_{1}(t)-U_{2}(t)\right\| \tag{3.57}
\end{gather*}
$$

Let $U_{1}(0), U_{2}(0) \in V_{1}, t_{0} \leq t \leq 2 t_{0}, B_{\rho} \subset V_{1} \quad$ is absorbing set, the orbital solution $U(t)$ satisfies $\left\|A^{\frac{1}{2}} U(t)\right\| \leq \rho, t \in[0,+\infty)$. Let $U_{2}(0)=U_{02} \in M, U_{02}=P_{N} U_{02}+\Phi_{0}\left(P_{N} U_{02}\right)$ such that

$$
\begin{equation*}
\operatorname{dist}\left(U_{0}, M\right)=\left\|U_{1}(0)-U_{2}(0)\right\| \tag{3.58}
\end{equation*}
$$

Substituting $S\left(t_{1}\right) U_{1}(0)$ and $S\left(t_{1}\right) U_{2}(0)$ into Equation (3.56) and Equation (3.57), we have

$$
\begin{align*}
\operatorname{dist}\left(S\left(t_{1}\right) U_{0}, M\right) & =\inf _{U_{1} \in M}\left\|S\left(t_{1}\right) U_{1}(0)-U_{2}\right\| \leq\left\|S\left(t_{1}\right) U_{1}(0)-S\left(t_{1}\right) U_{2}(0)\right\| \\
& \leq \frac{1}{2}\left\|U_{1}(0)-U_{2}(0)\right\|=\frac{1}{2} \operatorname{dist}\left(U_{0}, M\right) . \tag{3.59}
\end{align*}
$$

If Equation (3.56) is satisfied, assume $l=\frac{1}{8}, t_{0} \leq t_{1} \leq 2 t_{0}$, so we have the cone property

$$
\begin{align*}
\operatorname{dist}\left(S\left(t_{1}\right) U_{0}, M\right) & =\inf _{U_{1} \in M}\left\|S\left(t_{1}\right) U_{1}(0)-\left(P_{N} S\left(t_{1}\right) U_{2}(0)+\Phi\left(P_{N} S\left(t_{1}\right) U_{2}(0)\right)\right)\right\| \\
& \leq\left\|Q_{N} S\left(t_{1}\right) U_{1}(0)-\Phi\left(P_{N} S\left(t_{1}\right) U_{2}(0)\right)\right\| \\
& \leq \frac{1}{8}\left\|P_{N}\left(S\left(t_{1}\right) U_{1}(0)-S\left(t_{1}\right) U_{2}(0)\right)\right\| \tag{3.60}\\
& \leq \frac{1}{2}\left\|U_{1}(0)-U_{2}(0)\right\|=\frac{1}{2} \operatorname{dist}\left(U_{0}, M\right)
\end{align*}
$$

In a word, for $t_{0} \leq t_{1} \leq 2 t_{0}$, whenever $\operatorname{dist}\left(S\left(t_{1}\right) U_{0}, M\right) \leq \frac{1}{2} \operatorname{dist}\left(U_{0}, M\right)$. By the properties of semigroups, for $t_{0} \leq t_{1} \leq 2 t_{0}$, we have

$$
\begin{align*}
\operatorname{dist}\left(S\left(n t_{1}\right) U_{0}, M\right) & \leq\left(\frac{1}{2}\right)^{n} \operatorname{dist}\left(U_{0}, M\right) \leq \exp \left(-\frac{t \ln 2}{t_{1}}\right) \operatorname{dist}\left(U_{0}, M\right) \\
& \leq \exp \left(-\frac{t \ln 2}{2 t_{0}}\right) \operatorname{dist}\left(U_{0}, M\right) \rightarrow 0\left(n \rightarrow \infty, t \geq t_{0}\right) \tag{3.61}
\end{align*}
$$

Theorem 3.2 is proved.

Supported

This work is supported by the National Natural Sciences Foundation of People’s Republic of China under Grant 11161057.

References

[1] Yuan, Z.Q., Guo, L. and Lin, G.G. (2015) Global Attractors and Dimension Estimation of the 2D Generalized MHD System with Extra Force. Applied Mathematics, 6, 724-736. http://dx.doi.org/10.4236/am.2015.64068
[2] Lin, G.G. (2009) An Inertial Manifold of the 2D Swift-Hohenberg Equation. Journal of Yunnan University, 31, 334340.
[3] Temam, R. (1988) Infinite Dimensional Dynamical Systems in Mechanics and Physics. Springer, New York. http://dx.doi.org/10.1007/978-1-4684-0313-8
[4] Constantin, P., Foias, C., Nicolaenko, B. and Temam, R. (1989) Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Springer, New York. http://dx.doi.org/10.1007/978-1-4612-3506-4
[5] Lin, G.G. (2011) Nonlinear Evolution Equations. Yunnan University, Kunming.
[6] Babin, A.V. and Vishik, M.I. (1992) Attractors of Evolution Equations. North-Holland, Amsterdam.
[7] Chow, S.-N. and Lu, K. (1988) Invariant Manifolds for Flows in Banach Spaces. Journal of Differential Equations, 74, 285-317. http://dx.doi.org/10.1016/0022-0396(88)90007-1
[8] Chueshov, I.D. (1992) Introduction to the Theory of Inertial Manifolds, (Lecture Notes). Kharkov Univ. Press, Kharkov (in Russian).
[9] Chueshov, I.D. (1999) Introduction to the Theory of Infinite-Dimensional Dissipative Systems. Acta, Kharkov (in Russian) (English Translation, 2002, Acta, Kharkov).
[10] Henry, D. (1981) Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math. 840. Springer, BerlinHeidelberg and New York.
[11] Leung, A.W. (1989) Systems of Nonlinear Partial Differential Equations: Applications to Biology and Engineering. MIA, Kluwer, Boston.

[^0]: *Corresponding author.

