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Abstract

We propose in this paper a test procedure to determine whether two series proceed from inde-
pendent systems or not. Our starting point is a multivariate extension of the methodology called
Recurrence Quantification Analysis (RQA). We derive the test procedure from the probability dis-
tribution of the number of joint recurrences of both series under the null hypothesis of indepen-
dence. The behavior of the test is evaluated by means of a large set of simulations, carried out with
different types of dynamical systems: random, deterministic chaotic, deterministic non-chaotic,
systems affected by noise and coupled systems. We obtain satisfactory results in all cases. Finally,
the methodology is used to study two questions, on which the bulk of the existing economic lit-
erature agrees: 1) the relationship between the nominal interest rate and the inflation rate; and 2)
the relationship between the gross domestic product and the employment. The results suggest
that our test can be a suitable tool for detecting linear and nonlinear dependence between real se-
ries.
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1. Introduction

In Economics, when working with time series we understand that they are the result of an unknown generating
process, and alternative methods to ascertain the properties of the underlying dynamics are necessary. This is
particularly relevant when it comes to analyzing the possible interrelation between two (or more) variables,
which is a primary research topic in Economics. Different procedures have been proposed in the literature to test
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the interrelations or statistical dependencies among time series: these include the widely used Pearson, Spear-
man, and Kendall correlation coefficients, Hoeffding D-measure, methods based on mutual information, and a
good number of more recent contributions: distance correlation [1], the maximal information coefficient [2], the
Heller-Heller-Gorfine measure [3], Copula-based methods®, and more.

The best known is the Pearson correlation coefficient, which is also simple to obtain and interpret. Neverthe-
less, this tool only serves to detect linear dependencies. The Spearman and the Kendall rank correlation coeffi-
cients work well in identifying linear and monotonic nonlinear relationships, but they are less than adequate in
detecting other kinds of nonlinearities. Besides, if the data set is large, assigning ranks to long series is costly in
calculation terms, and using rank correlation measures is problematic when the series have a large number of
repeated values (which is common with the value zero in many financial series). In this case, the results being
obtained can be deceptive. The other methods being mentioned are valid, in principle, for the detection of all
types of relationships, although some are also computationally complex and others, like those based on Copula
functions, are also difficult to implement. All these approaches are valid only in asymptotic terms, since the ex-
act probability distributions of the corresponding test statistics are unknown. A comparative study of some of
these methods is found in [5].

In this work, we propose a method to test for the existence of statistical dependence (linear or nonlinear) be-
tween two time series whose data-generating processes are unknown. We wish to emphasize that, as we will
show later, our test procedure presents two advantages: its simplicity of implementation and interpretation, and
its basis in an exact probability distribution.

Our starting point is the methodology based on the so-called Recurrence Plots, RP, (Eckmann et al. 1987) [6],
and more specifically on the Recurrence Quantification Analysis, RQA, (Zbilut and Webber, 1992 [7] and
Webber and Zbilut 1994 [8]). Both RP and RQA have been used to analyze the properties of dynamical systems
in Physics, Chemistry, Biology, and, more recently, in Economics. Some references from the field of Economics
are [9]-[18]. A review of the applications of this technique to different fields can be found in [19], where its in-
creasing use in Economics is noted, particularly in the study of Financial Markets.

The analysis of the recurrences provides very useful information, as much about the structure of the underly-
ing systems as about the possible links or interrelations among them. This last is studied through the multivariate
extensions of the RQA: the so-called “cross recurrences” and “joint recurrences”. Our test procedure is specifi-
cally based on these latter.

The rest of the paper is structured as follows. In Section 2, we give a brief explanation of the methodology
used. In Section 3, we choose a measure of the joint recurrences and obtain its probability distribution under the
hypothesis of independence. In Section 4, a statistical test using this distribution is defined. Sections 5 and 6 deal
with the application of the proposed method to simulated and economic series respectively. Finally, Section 7
provides a summary of our main conclusions.

2. The Recurrence Plot and the Recurrence Quantification Analysis

As we have indicated in the previous section, the starting point of this work is the so-called Recurrence Plot, a
graphic tool that displays the recurrences of a data series (x), constructed using the Recurrence Matrix, RM:

R, =0(r =[x -x[). i.i=1-n, M

where © is the Heaviside function, r is a predefined distance threshold (or “radius™), and x;, x; are observations,
or system states. Clearly, the Recurrence Matrix, RM, is a symmetric n x n matrix?, with the values “1” of this
matrix being the RP points. The aim of this tool is to detect patterns of recurrence in the data, one of the most
important characteristics of dynamical systems.

In order to improve the quality of the information provided by the RPs, Zbilut and Webber (1992) [7] and
Webber and Zbilut (1994) [8] quantify the information underlying the RP by means of a series of indicators
based on the point density and on the structures that form certain lines in the plot. This methodology is called
“Recurrence Quantification Analysis” (RQA). More recently, two extensions of this same methodology have

!Although the theoretical fundamentals of this methodology are found in Sklar (1959) [4], their application to the field of economics (spe-
cifically to finances) has not been relevant until recent years.

2It would also be possible to use a variable radius, different for each x;. In this case, the recurrence matrix would not be symmetrical. In [20],
different procedures to determine the radius are proposed.
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been proposed to analyze the relationship between different systems. The first of these is the Cross Recurrence
Plot (CRP), designed by Zbilut et al. (1998) [21] to analyze dependencies between two systems by comparing
their states. To do this, the Cross Recurrence Matrix (CRM) is used, defined as:

CRM, | =O(r =[x —y[), i=1-n; j=1-n,, @)

where x; are the observations from the first system and y; are the observations from the second system. The CRP
is obtained from this matrix and shows the recurrences of each of the states of one of the systems with each of
the states of the other.

The second extension is the Joint Recurrence Plot (JRP), proposed by Romano (2004) [22] to analyze the in-
terrelation between two systems. The starting point in this case is the individual recurrences of the observations
of each system, from which the Joint Recurrence Matrix (JRM) is constructed, defined as:

RM,; =0(r =[x =x|)-0(r, =y - ;). i, =1--n 3)

The JRM is a symmetric matrix, since both RMs are symmetric. The values “1” of this matrix correspond to
the simultaneous recurrences of both systems, hence being the points of the JRP. So, if both systems are related
in some way, they must present a high number of joint recurrences. On the contrary, if they are not, or if the re-
lationship is very weak, the number of joint recurrences should be small.

Marwan et al. (2007) [23] study and compare the CRP and the JRP, concluding that “CRPs are more appro-
priate to investigating relationships between the parts of the same system... On the other hand, JRPs are more
appropriate for the investigation of two interacting systems that influence each other”.

Our main goal in this article is to obtain a criterion that enables us to distinguish whether two dynamical sys-
tems are independent or not. To do this, we use a measure obtained from the joint recurrences, the “Joint Per-
centage of Recurrence” or “Joint Recurrence Rate”, JREC, which summarizes the most relevant information of
the JRP.

This same approach is adopted in two recent works, [24] and [25], in which the joint recurrences are used to
test interrelations and connectivity between real series. The authors introduce an indicator that they denominate
“Recurrence-Based Measure of Dependence”, from which they construct a simple statistical test to determine
whether both series are (or are not) connected. This statistical test is carried out using surrogate data sets, so its
probability distribution is not exact, having only asymptotic validity. Our test procedure is based on the same
methodology, it is equally easy to apply and interpret, and it is based on an exact probability distribution, which
implies that it can be used for data series of any length.

3. The JREC Statistic and Its Probability Distribution

As mentioned above, the JRP shows the joint recurrences of two series, x and y. Given that its construction re-
quires that both recurrence matrices have the same order, the series that we will use to build the JRP must be of
equal size, n. Since individual recurrence matrices are symmetric and all points on their main diagonal are tri-
vially recurrent, the same will occur with the JRM matrix. Thus, from now on, only the upper (or lower) trian-
gular part of these matrices, excluding the main diagonal, will be used. In the rest of the paper, when we refer to
RM and JRM, it should be understood that we are dealing with their corresponding triangular parts.

The main indicator that summarizes the information contained in the JRP is the JREC, defined as JREC = 100
(NJR/NP), where NJR is the number of recurrence points of the JRP, or number of 1s of the JRM, and NP is the
total of the elements of the JRM. Obviously, NP = n(n — 1)/2.

We denote by NR, and NRy the number of recurrence points of each series (x and y), and REC, and REC, their
corresponding recurrence rates. Hereafter, if individual recurrence ratios are different, subindex 1 will be as-
signed to the RP with the smaller recurrence, and subindex 2 to the RP with the larger recurrence. It is then evi-
dent that 0 < JREC < REC; < REC,.

The greater the JREC value, the larger the percentage of simultaneous recurrences. Consequently, in general
terms, if both series have been generated from systems with a high degree of dynamical similarity, the JREC
value will be close to the maximum (REC,)®. By contrast, if both series have been generated from independent

®According to Romano (2004) [22] and Marwan et al. (2007) [23], it could be said that the systems are “synchronized”.
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systems, the JREC value would be small. Although in principle one could think that, in this case, JREC should
be equal to zero, this is not necessarily true. Even in series coming from completely independent systems, joint
recurrences can appear by chance.

However, in practice, we do not have a proximity criterion. Additionally, for intermediate values, this indica-
tor would not lead us to conclusive results. Consequently, a statistical test providing a cut-off point that allows
us to establish whether both series are independent or not, would be necessary.

In order to construct this test, we will obtain the probability distribution of the random variable NJR for a JRP
built from two series generated in independent processes (for example, two purely random series), which will
give a structure and a number of points of the JRP that are absolutely random. This assumption of independence
will be the null hypothesis of the test.

Under the null, the probability that a point of the first recurrence plot, RP4, is also a point of the second one,
RP,, is NRo/NP. And, obviously, the probability that a point of the RP; is not a point of the RP, is (NP-NR,)/NP.
Consequently, the probability that no point of the RP; is a point of the RP,, and hence P(NJR = 0), is given by
the expression:

(NRy-1)

[T (NP-NR,-i)

P(NJR=0) =~ )
(NP-i)

i=0

The probability that only one point of the RP; is also a point of the RP,, i.e. P(NJR = 1), is given by the prod-
uct of three terms:

(NR-2)
NR, 1

[ (NP-NR,-i)
i=0
NP

) 'NRl
(NP-1)

P(NJR=1)=

NR;

[

i=1
The first term is the probability that a point of the RP; is also a point of the RP,. The second term is the prob-
ability that the remaining points of the RP; are not points of the RP,. The result is multiplied by NRy, the number
of different cases that can appear. After rearranging, we obtain:
(NRi-2)
[T (NP—NR,-i)

P(NJR =1) = —=0 ‘NR, -NR,

Reasoning in a similar way, the probability that there are two points in the JRP would be:
(NRy-3)
NP -NR, —i
NR, NR,-1) 1) ( 2 1) NR,
NP NP-1 (NR. 1) 2
IT (NP-i)

i=2

P(NJR:Z):[

The first term is the probability that two points of the RP; are also points of the RP,. The second term is the
probability that the remaining points of the RP; are not points of the RP,. The third term is the number of possi-
ble different combinations of pairs of recurrent points of the RP;. Rearranging terms, we obtain:

(NRy-3)
(NP—NR, i) NR,
P(NJR=2)= ':(ENer) ‘NR, -(NR, —1)-( ) j

[T (NP—i)

i=0

In general terms for NJR = k (0 < k < NR;) we would obtain the following expression:
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(NRy—k-1)

o (NP=NR,=i) ~\n
P(NJR=k) =] (NR, —i) —=F—; ( klj, 5)

0 [T (NP-i)
for k=12,3,---,NR 1.
Finally, for NJR = NR; the resulting probability would be:

(NRi-1)

(NR, i)
P(NJR:NRi)z(h";f_l)—. (6)

(NP—i)

i=0

This probability distribution is the key tool that will enable us to test whether, in a JRP obtained from two real
series, the number of points differs significantly from the expected if both series had been generated from inde-
pendent processes (the null hypothesis of our test). Hence, rejecting the null hypothesis would be evidence, for
the chosen significance level, that both series are related, presenting a certain degree of statistical dependence or

dynamical similarity.

4. Testing Procedure

Our test procedure is based on a comparison of the JREC value of the chosen series with the expected value of
the JREC, E(JREC), of two series generated from independent systems. E(JREC) can be trivially obtained from
E(NJR), i.e. the mathematical expectation of the probability distribution derived in the previous section. Note
that, even under independence, points in the JRP may appear (“false non-independences”). In general terms, the
number of these false non-independences will be greater, the greater the number of recurrence points in the indi-
vidual RPs. Hence, the existence of a high number of points in the JRP does not necessarily mean statistical de-
pendence. This would only be accepted if the number of points of the JRP is significantly greater than the num-
ber we would expect if both series were independent. In this case, we would conclude that there is evidence to
reject the null hypothesis, that is to say, to accept that there exists a relationship (of some kind) between the se-
ries.

In order to apply our test procedure, the following five steps must be performed:

1) Select the two-series object of study, which can be simulated or real. In previous analyses, we have verified
that the existence of trend (deterministic or stochastic) in the series may give rise to trivial recurrences. To avoid
these “spurious” recurrences the real series should be detrended.

2) Construct the RPs of both series. In order to do this, it is necessary to set the value of the radius r. This ra-
dius is a threshold, or distance, that determines the criterion of proximity. Schinkel et al. (2008) [20] state that,
“for JRPs the threshold should be chosen in a fashion that the recurrence point density is the same in the indi-
vidual RPs”. As in our previous work ([14], [15] and [16]), we choose a value of r to achieve a portion of recur-
rence points equal to 10%. Thus, in all cases, REC, = REC, = 10,

3) Construct the JRP and compute the number of recurrence points, NJR.

4) Obtain the probability distribution of NJR, using expressions (4), (5) and (6). As it has already been dem-
onstrated, the only required data are NP, NR; and NR,.

5) Calculate the p-value of the test, i.e. the lowest significance level for which the null hypothesis should be
rejected.

To illustrate the procedure described above, we will apply it initially to the two following cases:

First, the series x and y obtained from a simulation of the Henon chaotic system®; as both were generated in
the same system, we expect the result of our test to show a clear relationship.

Second, two series obtained respectively from the Henon and the Ikeda chaotic systems; these series come
from two different systems, so the results of the test should reflect their independence.

The results obtained, for n = 200, 500, and 1000, are shown in the following table.

“Nevertheless, in numerous experiments, we have confirmed that our results are very robust to the choice of the radius value.
*The equations of the dynamical systems used in this work are included in Appendix.
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Table 1. Results of the application of the test to two pairs of simulated series.

Series n NJR E(NJR) JREC E(JREC) p-value
Henon x - Henony 200 764 199 3.8391 1 0.0000
500 4962 1247 3.9775 1 0.0000
1000 19,904 4995 3.9848 1 0.0000
Henon - lkeda 200 178 199 0.89 1 0.9564
500 1148 1247 0.92 1 0.9993

1000 4735 4995 0.95 1 1

Table 1 shows:

e The number of points (NJR), and the percentage of recurrence (JREC) of the JRP;

¢ The expected average values of NJR and JREC if both systems were independent, E(NJR) and E(JREC);

e The p-values associated with each of the tests.

The results obtained are conclusive:

For the two series generated from the Henon system, the NJR and JREC values are approximately four times
greater than would have been expected if both series were independent. The p-values are equal to zero, so that
the null hypothesis is clearly rejected. This occurs in all three sample sizes. For the series generated from dif-
ferent systems, Henon and Ikeda, the values of the indicators are very close to those expected under the null hy-
pothesis. The large p-values obtained in this case provide no evidence against the null hypothesis for the three
sample sizes, at any level of significance.

These results can be considered an illustration of the good behavior of the test procedure in two extreme cases.
Next, in order to better study its performance, we will use the same systems transformed in the following way:

First, we apply the test procedure to the series x and y of the Henon system, affected in this case with different
levels of additive noise (as a percentage of the standard deviation of the series). As is obvious, noise distorts the
structure of the system, so the higher the level of noise, the weaker should be the relationship between the series.
This would have to be reflected in the results of our test.

Second, we apply the test procedure to the unidirectionally coupled Henon and Ikeda systems. Specifically,
we consider the Ikeda system to be driven by the Henon system, with different levels of coupling. Each value of
the coupling strength parameter reflects the amount of coupling between the systems. Our test should reflect the
fact that the greater the value of this strength parameter, the greater will be the NJR and JREC values, and thus
the greater the interdependence between both systems.

The results obtained, with a sample size n = 500 are shown in Table 2:

The results displayed in Table 2 show that, in the case of the Henon system, if the noise level increases, the
joint recurrences decrease. As could be expected, the interdependence between both series is maintained for
small levels of noise, and diminishes as the noise level increases, until it is completely lost when the series are
strongly distorted by noise. This last happens for a level of noise close to 80%.

For the Henon - Ikeda coupled system, the results also agree with what we could expect: if the strength para-
meter increases, so does the interdependence between both systems. For small values of the strength parameter,
both systems behave as independent (the null hypothesis could not be rejected). This is the situation until this
parameter reaches a value of about 0.1, when we fail to reject the null hypothesis at a significance level of 0.05.
From this parameter value onwards, the level of dependence between the systems increases continuously,
reaching, for greater values of the parameter, p-values equal to zero. In these cases, when the null hypothesis
cannot be rejected at any level of significance, we can state that our test concludes that both systems are totally
coupled.

Obviously, only a few systems and one simulation in each instance are not sufficient to evaluate the adequacy
of the testing procedure. Thus, more systems and a greater number of replicas should be used. This will be done
in the next section.

5. Application of the Test Procedure to Simulated Series

In order to analyze the reliability of the proposed method, the previous examples should be extended in two ways:
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Table 2. Results of the application of the test to the series of the Henon system affected by noise, and to a pair
of series of the Henon - lkeda coupled system [E(NJR) = 1247, E(JREC) = 1].

Henon x - Henony Henon - Ikeda

% Noise NJR JREC p-value Strength NJR JREC p-value
0 4853 3.89 0.0000 0 1148 0.92 0.9993
0.01 4819 3.86 0.0000 0.001 1190 0.95 0.9666
0.1 3307 2.65 0.0000 0.01 1270 1.02 0.2439
0.2 2370 1.90 0.0000 0.1 1295 1.04 0.0702
0.5 1539 1.23 0.0000 05 1370 1.10 0.0001
0.8 1292 1.04 0.0836 1 1374 1.10 0.0000
0.9 1263 1.01 0.3176 2 1401 1.12 0.0000

1 1183 0.0095 0.9801 3 1406 113 0.0000

1) Use a wide set of systems that permit more situations of both interrelation and independence to be covered;

2) Repeat each experiment many times.

In this section, the test procedure is applied to simulated series from the following systems:

e Two chaotic deterministic systems (Henon and lkeda);

 One non-chaotic deterministic system with strange attractor (Gopy)®;

e Two periodic deterministic systems (Sine and Cosine);

¢ Two random systems (Normal and Uniform).

Different combinations of these systems allow us to obtain pairs of series on which a priori independence
could be expected, and other pairs in which a relationship would exist.

In the simulations arising from the systems of Henon, Ikeda, and Gopy (the three bi-dimensional) one of the
two variables has been selected, except in those denoted “Henon x - Henon y” and “lkeda x-lkeda y”, in which
we apply the test procedure to two series coming from the same system. In one of the experiments, we attempt
to determine whether our test is capable of detecting the relationship existing between series of the same system,
but with different embedding dimension’. In the experiment we denote as “Linear transformation”, a series ob-
tained from the distribution N(0, 1) and a linear combination from this same series is used. Finally, as in the pre-
vious Section, we will use the series x and y of the Henon system affected by noise, and the series generated
from the Henon - Ikeda coupled system.

Table 3 and Table 4 summarize the results obtained for the set of simulations, presenting the percentages of
rejection of the null hypothesis of independence at the 5% significance level, and the average p-value.

Table 3 has been structured in two groups. The first corresponds to six pairs of systems in which a priori in-
dependence could be expected, while the second contains another six in which a relationship clearly exists.

The results obtained allow us to establish the following conclusions:

1) For the first group, the percentage of rejection is very small in all cases, always less than 8%. This indicates
a good performance; when the null hypothesis of independence is true, it is rejected only a very small percentage
of times. The average p-values are high in all cases, being in the range that would lead us to fail to reject the null
hypothesis for any level of significance. The results are quite similar for the three sample sizes considered (the
larger sample sizes improve the results of the test in some cases, but not all).

2) For the second group, the percentage of rejection is 100%, except in one case, in which it is 97.2%. In other
words, the null hypothesis (which in this case is false) is rejected in practically all cases. Clearly, the average
p-values obtained lead us to the same conclusion. These results provide clear evidence of interrelation between
the pairs of series of this second group.

Table 4 shows, first, that our test is capable of detecting that the dependence between the series generated
by the same system decreases when the noise level increases. Specifically, the result of the test shows that this
bSee [26].

"That is, applying the Time Delay Method proposed by Packard et al. (1980) [27]. This method transforms the original series into a series
formed by m-tuples, m being the so-called embedding dimension. As is shown in Takens (1981) [28], under certain conditions, both systems

would be topologically equivalent.
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Table 3. Percentages of rejection of the null hypothesis of independence (o = 5%) and average p-values for
the systems selected. Number of replicas = 500.

n =200 n =500 n = 1000
% reject. pf\/\élgl'Je % reject. pﬁ;ﬂ‘je % reject. pf\/\élgl'Je
Sine - Henon 0.8 0.9141 0.2 0.9430 0.2 0.9262
Henon - lkeda 7.4 0.5361 6.9 0.5581 0.4 0.9510
Ikeda - GOPY 5.8 0.5637 4.6 0.5990 0 0.9938
Normal - Uniform 42 0.5234 3.4 0.5167 4.8 0.6882
Normal - Sine 6.8 0.5194 2.2 0.7875 0 0.9847
Uniform - Henon 5.2 0.5029 6.4 0.5010 6.6 0.5115
Linear Transformation 100 0.0000 100 0.0000 100 0.0000
Henon 1 - 3 embed. dim. 100 0.0000 100 0.0000 100 0.0000
Sine-Cosine 100 0.0000 100 0.0000 100 0.0000
Sine-Sine squared 100 0.0000 100 0.0000 100 0.0000
Henon x - Henon y 100 0.0000 100 0.0000 100 0.0000
lkeda x-lkeda y 97.2 0.0059 100 0.0000 100 0.0000

Table 4. Percentages of rejection of the null hypothesis of independence (a = 5%) and average p-values for
the series of the Henon system affected by noise and the series of the Henon - Ikeda coupled system. Number
of replicas = 500.

Henon x - Henony Henon - lkeda
% Noise % reject. pﬁl\élgllje Strength % reject. pf\/\;?ﬂe
0 100 0 0 6.9 0.5581
0.01 100 0 0.001 13.0 0.4763
0.1 100 0 0.01 96.6 0.0241
0.2 100 0 0.1 100 0
0.5 100 0 0.5 100 0
0.8 81 0.0515 1 100 0
0.9 63.6 0.1366 2 100 0
1 33.8 0.3718 3 100 0
15 8.2 0.5653 4 100 0
2 6.4 0.5913 5 100 0

relationship is maintained until the level of noise is high (more than 80%). Second, for the coupled system, when
the strength parameter increases, the percentage of rejections of the null hypothesis also increases. It is observed
that, even for small levels of coupling, the existence of a relationship is detected in almost 100% of the cases.

These results suggest that our test procedure is robust in all studied situations. This good performance for si-
mulated series indicates that it can be a useful tool for detecting possible interrelations or dependence between
real series. This is the objective of the following section, in which we illustrate the application of our test pro-
cedure to some examples with economic series.

6. Application of the Test Procedure to Economic Series

In this Section, we use this methodology to analyze the possible interdependence between certain economic se-
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ries. Specifically, we focus on two issues that have been dealt with through different approaches in the economic
literature, on which there is consensus:

1) The relationship between inflation rate and nominal interest rates;

2) The relationship between employment and GDP.

We emphasize that we do not intend to study either of these questions in depth, which would require a broad-
er and more thorough examination; our objective here is only to exemplify some of the possibilities and utilities
offered by our test procedure.

6.1. The Relationship between Nominal Interest Rates and Inflation Rate

This relationship is widely studied in the literature, and has been dealt with from multiple points of view, for a
broad range of variables. Regarding interest rates, different approaches have been used: nominal and real,
ex-post and ex-ante, different maturity terms, diverse time frequencies... Similarly, the inflation rate can be the
actual or the expected rate. In the case of considering the expected variables, questions associated with the for-
mation of expectations also appear.

From among all the cases studied in the empirical literature, there is consensus on the existence of a positive
relationship between the nominal interest rate and the actual inflation rate.

We now apply the methodology described in this work to monthly series of the US economy, to check wheth-
er or not this relationship is detected.

Specifically, we use the following series:

1) Nominal interest rates:

—Secondary market rate of the 3-month Certificate of Deposit, chosen as an example of a short-term interest
rate. Period: January 1934 to March 2015.

—One year Treasury Constant Maturity Rate, a medium-term interest rate. Period: April 1953 to March 2015.

—NMoody’s Seasoned AAA Corporate Bond Yield, representative of long-term interest rates. Period: January
1919 to March 2015°,

2) Inflation rate: rate of the interannual variation of the CPI-U (Consumer Price Index for All Urban Consum-
ers) published by the US Bureau of Labor Statistics.

Table 5 presents our results, clearly confirming the existence of a relationship between the three series of in-
terest rates and the inflation rate for the chosen periods. The three p-values are zero, which means that the null
hypothesis should be rejected for any level of significance.

We could consider whether this strong relationship would be maintained for certain sample sub-periods: a
first period up to 1953, which includes the Great Depression and the two World Wars; a second period from
1953 to 1980; and a third period from 1980 to 2015. We consider that this third sub-period corresponds to a
greater development of the financial markets, the appearance of new instruments, an increase in the level of in-
formation accessible to agents, and a high mobility of capital among countries.

The obtained results are shown in Table 6:

We observe that the existence of a relationship between the two variables is maintained for all the sub-periods
considered. Nevertheless, we see a noticeable variability in the percentage of recurrence among the different se-
ries, as well as among the different sub-periods. In all cases, this indicator is somewhat higher in the second sub-
period than in the other two. Additionally, if we discount the first sub-period, from which there is only informa-
tion for one of the series, in general we notice that the relationship is greater for long-term interest rates. It is gen-
erally assumed that this is the rate that best responds to market forces, so it is reasonable that the relationship to
the inflation rate is stronger. In any case, to study the causes of these results in depth, which we understand

Table 5. Application of the test to series of nominal interest rates against the series of the inflation rate.

Series n NREC E(NREC) REC E(REC) p-value

Short term rate—Inflation rate 975 6707 4748 141 1 0.0000
Medium term rate—Inflation rate 744 4831 2764 1.75 1 0.0000
Long term rate—Inflation rate 1155 11,122 6664 1.67 1 0.0000

®The three interest rates series are available on the Economic Research section of the Federal Reserve Bank of St Louis’s website.
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Table 6. Application of the test to series of nominal interest rates against the series of the inflation rate for
sample sub-periods.

Series n JREC E(JREC) JREC E(JREC) p-value

1P 231 380 265 1.43 1 0.0000

Short term rate—Inflation rate 2P 321 1348 513 2.62 1 0.0000
3P 423 1601 893 1.79 1 0.0000

2P 321 1511 513 2.94 1 0.0000

Medium term rate—Inflation rate

3P 423 1611 893 181 1 0.0000

1P 411 1511 843 1.79 1 0.0000

Long term rate—Inflation rate 2P 321 2557 513 4.98 1 0.0000
3P 423 1844 893 2.07 1 0.0000

would be of great interest, would require a much more detailed analysis. As we have previously mentioned, such
an analysis lies beyond the scope of the present work.

6.2. The Relationship between Employment and GDP

This relationship is connected with the aggregate production function, which relates aggregate output to physical
inputs or factors of production. Many theoretical and empirical works have been devoted to ascertaining the
properties of the production function, and a broad agreement exists on some empirical relationships that this
function must display. A widely accepted property of this function is that there is a nonlinear relationship be-
tween the quantities of productive factors and the amount of aggregate output obtained (i.e. that this function is
nonlinear).

Next, we will apply our test procedure to check if this property is fulfilled in the US economy for labor input,
and provide new empirical evidence. To do that, we will use the quarterly series of the real Gross Domestic
Product (GDP), published by the US Bureau of Economic Analysis, and the series of the All Employees (total
nonfarm), produced by the US Bureau of Labor Statistics® (period: first quarter of 1960 to first quarter of 2015).

In the first row of Table 7, together with the results of our test, we also present the p-value of the Pearson
correlation coefficient. This coefficient is a widely used tool to detect linear relationships between two variables.
Its p-value (last column) is the probability of obtaining a correlation as large as the observed value by random
chance, when the true correlation is zero.

We observe that both tests display the same result, both p-values are zero, which means the rejection of the
null hypothesis for any significance level, and hence empirical evidence in favor of the existence of a relation-
ship between GDP and employment.

In the second row, we present the results of the tests after filtering the linear component of the relationship.
To do that, we fit a simple linear regression of the GDP on employment, and analyze the relationship between
the residuals of this regression and employment. We observe that, in this case, the p-value of the correlation
coefficient is equal to 1. This result is obvious, because if a regression model is computed correctly, the correla-
tion coefficient between the residuals and the independent variable is zero.

However, the p-value of our test is still very small, so small as to reject the null hypothesis of independence
for any usual significance level. Considering that one property of the regression models is that “the residuals
have a nonlinear association with X if and only if the original observations of Y have a nonlinear association
with X”, the conclusion will be that a nonlinear relationship exists between GDP and employment®.

This example is useful to show that our procedure can detect nonlinear dependence between variables, while
other tests, such as the Pearson correlation coefficient cannot.

7. Conclusions

The main objective of this paper is to design a criterion that allows us to determine whether two series come

°To eliminate the trend, we will take both series in differences.
In our case, the GDP is clearly the dependent variable (Y) while the Employment is the independent variable (X).
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Table 7. Application of the test to the series GDP and Employment.

Series n NJR E(NJR) JREC p-value G
p-value
GDP-Employment 221 313 243 1.29 0.0000 0.0000
GDP-Employment (residuals of the LRM) 221 287 243 1.18 0.0010 1

from independent dynamical systems. We develop our procedure on the basis of the Joint Recurrence Plot, and
more specifically on its main quantitative indicator, the percentage of recurrence points. This indicator measures
the level of dependence or synchronization existing between the series. The values of this indicator have a clear
interpretation when they are extreme (very high or very low), but they are not so obvious for intermediate values.
To solve this problem, we derive the probability distribution of the variable “number of recurrence points in the
JRP” under the null of independence. This (exact) probability distribution allows us to determine a cut-off point
from which determines whether the series present statistical dependence or not.

The performance of our procedure is analyzed through a simulation study for a broad set of systems in which,
a priori, the existence, or not, of independence is evident. We have also applied it to series affected by increasing
levels of noise, and to a pair of coupled systems with different degrees of coupling. The obtained results are very
satisfactory and confirm the efficacy of the proposed method.

Finally, we use this methodology to study the empirical relationship between the nominal interest rate and the
inflation rate, and between the GDP and the employment. In both cases, the results are clear, in line with the
consensus on these issues in the existing literature. Moreover, in this latter case we have shown that our test is
capable of detecting both linear and nonlinear relationships.
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Appendix: A Brief Description of the Dynamic Systems Employed

This Appendix provides details of the equations that generate the dynamic systems used in our study.

Henon System: Henon - Ikeda Coupled System:
X =1-14-X+y, X =1-14-X +Y,
Yin =03-% Xops = 0.3- %,
6
: t=04-———F
Ikeda System: 1%, 4%,

6 .
t:O.A—W X, =1+0.9:[ X, -cos(t) =X, -sin(t) ] +&-x,
X, =1+0.9:[ x -cos(t) -y, -sin(t)] X,a =0.9:[x,,sin(t) +x,, -cos(t) ]
Yo =0.9:[ x-sin(t)+y, -cos(t) ]

GOPY System:
X, = 2.8-tanh(x)-cos(y,)
Yor =Y +2-TC~@

As can be seen, in the unidirectionally-coupled Henon - Ikeda System, the Henon and Ikeda systems behave
respectively as drive and response. Specifically, the variable x; of the Henon system is coupled into the second

equation of the lkeda system, with ¢ being the “coupling strength”. Obviously, for ¢ = 0, drive and response
would be independent.
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