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Abstract 
The effect of Pasternak foundation and non-homogenity on the axisymmetric vibrations of polar 
orthotropic parabolically varying tapered circular plates has been analyzed on the basis of clas-
sical plate theory. Ritz method has been used to find the numerical solution of the specified prob-
lem. The efficiency of the Ritz method depends on the choice of basis function based upon deflec-
tion of polar orthotropic plates. The effects of different plate parameters viz. elastic foundation, 
non-homogeneity, taper parameter and that of orthotropy on fundamental, second and third mode 
of vibration have been studied for clamped and simply-supported boundary conditions. Mode 
shapes for specified plates have been drawn for both the boundary conditions. Convergence and 
comparison studies have been carried out for specified plates. 
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1. Introduction 
The increasing use of composite materials in modern aerospace structures has necessitated studying the vibra-
tional characteristics of plate-type components fabricated by these materials. Orthotropic circular plates are ex-
tensively used as structural components for diaphragms and deck plates in launch vehicles. A number of studies 
dealing with axisymmetric vibrations of plates possessing polar orthotropy (a special case of anisotropic) are 
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available in the literature and few of them are reported in references [1]-[13]. The consideration of the thickness 
variation together with orthotropy in structural components not only ensures reduction in size and weight whilst 
maintaining high strength but also meets the desirability of economy [14]-[17]. The use of such plates as struc-
tural elements in various technological situations, particularly in high-speed aircrafts, missile technology and 
space shuttle etc., demands that the material non-homogeneity should be taken into account for the analysis of 
plate vibrations [18]-[20]. 

This work presents an analysis for axisymmetric vibration of polar orthotropic non-homogeneous circular 
plate of parabolically varying thickness resting on Pasternak foundation. A linear type variation in Young’s 
moduli and density has been taken into account. This class of orthotropy and non-homogeneity arises during fi-
bre-reinforced plastic structure which uses fibres with different moduli and strength properties. Ritz method has 
been employed to obtain approximate solution of the problem, where basis functions based upon the static def-
lection for orthotropic plates have been used. The choice of this method has the advantages of high accuracy and 
computational efficiency [21] which greatly depend upon the nature of admissible functions. Here, fundamental, 
second and third modes of frequencies have been obtained for different values of plate parameters viz. taper pa-
rameter, density parameter, non-homogeneity parameter, foundation stiffness parameters and rigidity parameter. 
Normalized transverse displacements of the specified plates for fundamental, second and third modes of vibra-
tion for clamped and simply-supported boundary condition have been shown. The comparison results are re-
ported which establish the accuracy of the present method. 

2. Mathematical Formulation 
Consider a circular plate of radius a, thickness ( )h r , density ( )rρ  and resting on a Pasternak foundation with 
spring and shear stiffness parameters Kf and Gf, respectively, elastically restrained against rotation by springs of 
stiffness kφ, referred to cylindrical polar coordinate ( ), ,r zθ , where the axis of the plate is taken as the line r = 0 
and its middle surface as the plane z = 0. 

The maximum kinetic energy and potential energy of the plate are given by: 
2π
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3. Method of Solution: Ritz Method 
Ritz method requires that the following functional be minimized. 

( ) max max

2 22π 2 2
2

2 2
0

2 22π
2 2

0

0

2

0

π

0

1 1 12
2

1 ( , ) 1d d d d d
2 2

a

r f

a

f

J W U T

W W W WD v D K W
r r r rr r

W W aG r r ak hW r r
r r

θ θ

ϕ
θθ θ ρω θ

= −

   ∂ ∂ ∂ ∂    = + + +      ∂ ∂∂ ∂       

∂ ∂   + + −   ∂ ∂   

∫ ∫

∫ ∫ ∫

            (3) 

Now, transverse deflection W has been approximated in terms of a set of linearly dependent coordinate func-
tions, which satisfy the boundary conditions of the problem. The choice of function to approximate the deflec-
tion using Ritz method has its significance. The deflection function assumed here is based upon the static deflec-
tion for polar orthotropic plates. 
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Introducing the non-dimensional variables WW
a

=  and rR
a

=  along with relations ( )1 1rE E Rµ= + ,  

( )2 1E E Rθ µ= + , ( )0 1 Rρ ρ η= +  and considering the thickness variation as ( )2
0 1h h Rα= + , where h0 is 

thickness of plate at its centre, the functional ( )J W  given by Equation (3) becomes 
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θ=  and iα , iβ  are unknown constants. 

As each coordinate function has to satisfy the elastically restrained against rotation condition at the boundary 
(i.e. R = 1) [22], we have the following two boundary conditions (deflection and displacement conditions at 
boundary) 
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The minimization of the functional ( )J W  given by (9) requires, 
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which leads to a system of homogeneous equations in , 0,1, ,iA i m=  , whose non-trivial solution leads to the 
frequency equation 

2 0,A B−Ω =                                        (11) 
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for 0,1, ,i m=  ; 0,1, ,j m=  . 

4. Numerical Results and Discussion 
The frequency Equation (11) has been solved to obtain the frequency parameter Ω for non-homogeneous polar 
orthotropic circular plate of parabolically varying thickness resting on a Pasternak foundation for various values 
of plate parameters. The first three natural frequencies for clamped and simply-supported boundary conditions 
have been computed for non-homogeneity parameter µ (= −0.5, 0.0, 1.0); density parameter η (= −0.5, 0.0, 1.0); 
rigidity ratio p2 (= 0.75, 1.0, 2.0, 5.0); taper parameter α (= −0.5(0.2)0.5); spring stiffness parameter K (= 
0(100)500) and shear stiffness parameter G (= 0(5)25). The Poisson’s ratio υθ has been fixed as 0.3. The value of 
Kφ has been taken as 1020 and 0.0 for clamped and simply-supported boundary, respectively. 

To choose the appropriate number of terms for the evaluation of frequency parameter Ω, a computer program 
was developed which was run for m = 5(1)20 for different sets of parameters. Figure 1(a), Figure 1(b) present 
the convergence of normalized frequency parameter Ω/Ω* for specified plate parameters µ = 1.0, η = 1.0, α = 0.5, 
K = 500, G = 25, p2 = 2.0 for clamped and simply-supported plates, respectively. A consistent improvement is 
observed in value of Ω with the increase in number of terms. In all the computations, the number of terms m has 

 

 
Figure 1. Convergence of the normalized frequency parameter Ω/Ω* for (a) clamped plate (b) simp-
ly-supported plate with number of terms m used for the first three modes of vibration for µ = 1.0; η = 
1.0; α = 0.5; K = 500; G = 25, p2 = 2. Ω*: the results using 20 terms.  : fundamental mode;  : 
second mode;  : third mode. 
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been fixed as 13, since further increase in m does not improve the results except in the fourth or fifth place of 
decimal. 

Figure 2 presents the graphs of frequency parameter Ω versus rigidity ratio p2 for non-homogeneous circular 
plate resting on Pasternak foundation i.e., µ = −0.3, η = −0.3, K = 500, G = 25 and α = 0.3. The value of fre-
quency parameter Ω is found to increase with increasing values of p2 (i.e. as the plate becomes more and more 
tangentially stiff). The rate of increase of frequency parameter Ω with p2 is higher for clamped plate than that for 
simply-supported plate, keeping all other plate parameters fixed. This rate of increase gets pronounced as we 
move towards higher modes. 

Figures 3(a)-(c) show the effect of non-homogeneity parameter µ on frequency parameter Ω for α = −0.3, 0.3; K 
= 500, G = 25; η = −0.5 and p2 = 1.0, 5.0 for clamped and simply-supported plates for first three modes of vibra-
tion, respectively. It is observed that the values of frequency parameter Ω increases linearly with increasing  
 

 
Figure 2. Frequency parameter Ω for first three modes of vibration for α = 0.3, η = −0.5, µ = −0.5, K = 500, G = 
25. - - - - - - - - - simply-supported plate; 

 
 clamped plate.  : fundamental mode,  : second 

mode,  : third mode. 
 

 
Figure 3. Frequency parameter Ω for (a) fundamental (b) second and (c) third mode for K = 500, G = 25, η = 
−0.5.  ,  : p2 = 5;  ,  : p2 = 1;  ,  : α = 0.3;  ,  : α = −0.3; - - - - - - - - - simply-supported plate; 

 
 clamped plate. 
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values of µ. The rate of increase of Ω with µ is higher for clamped plates than that for simply-supported plates. 
The rate of increase gets pronounced as the plate becomes tangentially stiff. Also, this rate of increase of fre-
quency parameter Ω gets increased by increasing taper parameter α. Furthermore, the rate of increase of Ω with 
µ increases with increasing number of modes. 

Figures 4(a)-(c) depict the variation of frequency parameter Ω versus density parameter η for α = −0.3, 0.3, K 
= 500, G = 25; µ = −0.5 and p2 = 1.0, 5.0 for both clamped and simply-supported plates vibrating in fundamental, 
second and third modes, respectively. The frequency parameter Ω is found to decrease with increasing values of 
density parameter η. The rate of decrease of frequency parameter Ω is higher for simply-supported plate than 
that for clamped plate vibrating in fundamental mode, while for second and third modes the rate of decrease is 
higher for clamped plate than that for simply-supported plate. It has also been observed that this rate for tangen-
tially stiffened plates (p2 = 5) is higher than that for isotropic plates (p2 = 1). Also, the rate of decrease of fre-
quency parameter Ω gets increased by increasing taper parameter α, except for isotropic clamped plate vibrating 
in fundamental mode and isotropic as well as orthotropic simply-supported plate vibrating in second mode. 

Figures 5(a)-(c) show the behavior of spring stiffness parameter K for µ = −0.5, η = −0.5, G = 25, α = −0.3, 
0.3 and p2 = 1.0, 5.0 for clamped and simply-supported plates for first three modes of vibration, respectively. 
The value of frequency parameter Ω increases by increasing the values of foundation parameter K. The rate of 
increase of frequency parameter Ω with K increases by decreasing the value of taper parameter α. This rate of 
increase is higher for isotropic plates than that for tangentially stiffened plates. Also, the rate of increase is high-
er for simply-supported plate as compared to clamped plate. This rate of increase reduces as we move towards 
higher modes. 

Figures 6(a)-(c) present the plots of frequency parameter Ω versus shear stiffness parameter G for µ = −0.5, η 
= −0.5, K = 500, α = −0.3, 0.3 and p2 = 1.0, 5.0 for clamped and simply-supported plates vibrating in fundamen-
tal, second and third mode, respectively. The frequency parameter Ω is found to increase by increasing the shear 
stiffness parameter G. This rate of increase is higher for α = −0.3 than that for α = 0.3. The rate of increase of 
frequency parameter Ω is lower for p2 = 5.0 than that for p2 = 1.0. Also, this rate of increase is higher for simp-
ly-supported plate as compared to clamped plate except when plate vibrates in fundamental mode. In this case, 
the rate of increase is higher for clamped plate as compared to simply-supported plate. 

Figure 7(a) shows the effect of taper parameter α on frequency parameter Ω for plates vibrating in funda-
mental mode. It is found that for clamped plate with µ = η = 1.0, frequency parameter increases while for 
clamped plate with µ = η = −0.5 frequency parameter first decreases and then increases giving rise to local mi-
nima in the vicinity of α = −0.3 for p2 = 5.0 and α = 0.0 for p2 = 1.0. For orthotropic simply-supported plate with 
µ = η = −0.5 and isotropic simply-supported plate, the frequency parameter decreases continuously with increasing 
values of α, while it first decreases and then increases with a minima in the vicinity of α = 0.1 for orthotropic  
 

 
Figure 4. Frequency parameter Ω for (a) fundamental (b) second and (c) third mode of vibration for K = 
500, G = 25, µ = −0.5.  ,  : p2 = 5;  ,  : p2 = 1;  ,  : α = 0.3;  ,  : α = −0.3; - - - - - - - - - 
simply-supported plate; 

 
 clamped plate. 
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Figure 5. Frequency parameter Ω for (a) fundamental (b) second (c) third mode of vibration for G = 25, 
µ = −0.5, η = −0.5.  ,  : p2 = 5;  ,  : p2 = 1;  ,  : α = 0.3;  ,  : α = −0.3. - - - - - - - - - 
simply-supported plate; 

 
 clamped plate. 

 

 
Figure 6. Frequency parameter Ω for (a) fundamental (b) second and (c) third mode of vibration for K 
= 500, µ = −0.5, η = −0.5.  ,  : p2 = 5;  ,  : p2 = 1;  ,  : α = 0.3;  ,  : α = −0.3; - - - - - - - - 
simply-supported plate; 

 
 clamped plate. 

 
plate (p2 = 5) with µ = η = 1.0. Further, Figure 7(b), Figure 7(c)) show the plots for plates vibrating in second 
and third mode of vibration, respectively. It is observed that frequency parameter Ω increases by increasing the 
values of taper parameter α except when simply-supported plate with µ = η = −0.5 vibrates in second mode. In 
this case, frequency first decreases and then increases with a local minima in the vicinity of α = −0.1 for p2 = 5.0 
which shifts to α = 0.1 for p2 = 1.0. 

Figure 8(a), Figure 8(b) present the normalized transverse displacement for orthotropic (p2 = 0.75) non-ho- 
mogeneous (µ = 1.0, η = 1.0) clamped and simply-supported plates, respectively, resting on Pasternak founda-
tion (K = 500, G = 25). It has been observed that the radii of nodal circles decrease by decreasing the value of 
taper parameter α for both the plates. 

Table 1 and Table 2 present the comparison of results for polar orthotropic homogeneous parabolically tapered 
clamped and simply-supported circular plates, respectively, without foundation with those obtained by [10] [23]. 

5. Conclusion 
It is found that the values of frequency parameter Ω for clamped plate are higher than those of simply-supported  
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Figure 7. Frequency parameter Ω for (a) fundamental (b) second and (c) third mode of vibration for K = 500, G = 
25.  ,  : p2 = 5;  ,  : p2 = 1;  ,  : η = 1; µ = 1;  ,  : η = −0.5; µ = −0.5; - - - - - - - - - simp-
ly-supported plate; 

 
 clamped plate. 

 

 
Figure 8. Normalized transverse displacement for (a) clamped plate (b) simply-supported plate for µ = 1.0; η = 1.0; 
G = 25; K = 500; p2 = 0.75.  : α = −0.5;  : α = 0.5. 
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Table 1. Comparison of frequency parameter Ω for clamped plate of parabolic thickness variation for µ = 0.0, η = 0.0, K = 
0.0, G = 0.0. 

p2 
α 0.50 0.75 1.00 2.00 5.00 

−0.5 
6.0167* 6.3543* 6.6320* 7.4614* 9.0266* 
6.0223^ 6.3549^ 6.6320^ 7.4619^ 9.0273^ 
6.0368 6.3549 6.6320 7.4614 9.0266 

−0.3 
7.3394* 7.7414* 8.0759* 9.0923* 11.0598* 
7.3468^ 7.7422^ 8.0759^ 9.0932^ 11.0601^ 
7.3394 7.7414 8.0759 9.0923 11.1498 

−0.1 
8.6602* 9.1195* 9.5055* 10.6932* 13.0263* 
8.6690^ 9.1206^ 9.5055^ 10.6944^ 13.0367^ 
8.6690 9.1195 9.5055 10.6944 13.0441 

0.0 
9.3194* 9.8057* 10.2158* 11.4852* 14.009* 
9.3288^ 9.8068^ 10.2158^ 11.4865^ 14.0094^ 
9.3294 9.8068 10.2158 11.4865 14.0089 

0.1 
9.9775* 10.4898* 10.9235* 12.2723* 14.9731* 
9.9877^ 10.4911^ 10.9235^ 12.2739^ 14.9737^ 
9.9877 10.4898 10.9235 12.2742 14.9752 

0.3 
11.2905* 11.8526* 12.3317* 13.8342* 16.8795* 
11.3015^ 11.8540^ 12.3317^ 13.8360^ 16.8803^ 
11.3011 11.8526 12.3317 13.8342 16.8795 

0.5 
12.5988* 13.2086* 13.7310* 15.3818* 18.7620* 
12.6105^ 13.2100^ 13.7310^ 15.3837^ 18.7626^ 
12.6105 13.2136 13.7310 15.3838 18.7626 

^values taken from [23], *values taken from [10]. 
 
Table 2. Comparison of frequency parameter Ω for simply-supported plate of parabolic thickness variation for µ = 0.0, η = 
0.0, K = 0.0, G = 0.0. 

p2 
α 0.50 0.75 1.00 2.00 5.00 

−0.5 
3.5298* 3.8098* 4.0392* 4.7237* 6.0293* 
3.5335^ 3.8102^ 4.0392^ 4.7239^ 6.0293^ 
3.5298 3.8110 4.0392 4.1244 6.0293 

−0.3 
3.7562* 4.1101* 4.4034* 5.2936* 7.0320* 
3.7607^ 4.1106^ 4.4034^ 5.2940^ 7.0321^ 
3.7564 4.1101 4.4034 5.2936 7.0320 

−0.1 
3.9680* 4.3982* 4.7576* 5.3598* 8.0405* 
3.9730^ 4.3987^ 4.7576^ 5.3602^ 8.0406^ 
3.9732 4.3988 4.7576 5.3602 8.0410 

0.0 
4.0723* 4.5418* 4.9351* 6.1456* 8.5501* 
4.0774^ 4.5423^ 4.9351^ 6.1461^ 8.5503^ 
4.0772 4.5426 4.9351 6.1461 8.6119 

0.1 
4.1767* 4.6863* 5.1142* 6.4343* 9.0640* 
4.1822^ 4.6869^ 5.1142^ 6.4348^ 9.0642^ 
4.1822 4.6864 5.1142 6.4347 9.0640 

0.3 
4.3882* 4.9802* 5.4787* 7.0216* 10.1049* 
4.3938^ 4.9808^ 5.4787^ 7.0222^ 10.1050^ 
4.3942 4.9802 5.4787 7.0216 10.1049 

0.5 
4.6056* 5.2827* 5.8537* 7.6231* 11.1625* 
4.6113^ 5.2833^ 5.8537^ 7.6237^ 11.1627^ 
4.6114 5.2841 5.8537 7.6233 11.2300 

^values taken from [23], *values taken from [10]. 
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plate, whatever be the values of other plate parameters. The frequency parameter increases with increasing val-
ues of non-homogeneity parameter µ, rigidity ratio p2, spring stiffness parameter K, and shear stiffness parame-
ter G. A close agreement of our results (Table 1, Table 2) with those available in literature [10] [23] verifies the 
accuracy of the approach. 
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