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Abstract 
 
This note studies the optimality conditions of vector optimization problems involving generalized convexity 
in locally convex spaces. Based upon the concept of Dini set-valued directional derivatives, the necessary 
and sufficient optimality conditions are established for Henig proper and strong minimal solutions respec-
tively in generalized preinvex vector optimization problems. 
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1. Introduction 

The study on the optimality conditions for non-smooth 
and generalized convex vector optimization problem in 
abstract spaces is a lively subject. Recently, there is a 
growing interest on this topic by using Dini set-valued 
directional derivatives. For example: Yang [1] intro-
duced Dini set-valued directional derivatives for a vector 
valued function in infinite dimensional vector spaces and 
used this concept to establish the optimality conditions 
for weakly efficient solution in vector optimization 
problem under cone-convexity assumption; Ginchev [2] 
obtained first-order necessary and sufficient optimality 
conditions in terms of Dini set-valued directional deriva-
tives in finite dimensional linear spaces for locally 
Lipschitz vector optimization. 

It is well known that the concept of convexity and its 
various generalizations play an important role in opera-
tions research and applied mathematics. A meaningful 
generalized convex function was called the preinvex 
functions, which was introduced by Weir and Mond [3] 
and by Weir and Jeyakumer [4] in -dimensional 
Euclidean space. Nowadays, this class of functions has 
been extended to the abstract spaces and applied to es-
tablish optimality criteria and duality in vector optimiza-
tion [5-8]. Recently, Qiu [9] in normed linear spaces 
considered a class of functions called generalized prein-

vex and established the unified optimality conditions for 
set-valued vector optimization problems. 

n

On the other hand, the (weakly) efficient solution is a 
kind of extremely efficient solutions in vector optimiza-
tion. Since the range of the set of (weak) efficient solu-
tions is often too large, contracting the solution range is a 
basic topic in vector optimization. For this purpose, 
many kinds of proper efficiency have been presented. 
Among them, an important proper efficiency is called 
Henig proper efficiency, which was introduced by Henig 
[10]. It is worthy to notice that the super efficiency, in-
troduced by Borwein [11], equals to the Henig efficiency 
when the convex cone has a bounded base. 

The aim of this paper is to deal with the optimality of 
Henig proper efficient solutions for vector optimization 
problems in terms of Dini set-valued directional deriva-
tives under the generalized preinvex assumptions. 

2. Preliminaries 

In this note, it is assumed that X  and Y  are two lo-
cally convex spaces with topological duals X  and Y , 
respectively. The partially order of Y is defined by a 
closed convex cone C  with Y int C  . On the 
other hand, we assume that Y is a complete vector lattice, 
i.e., sup  1 2,y y  exists for all 1 2  and every 
bounded nonempty subset has an infimum and a supre-
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A nonempty convex subset  of the convex cone 
 is called a base of , if  and 

B
C cC C oneB 0 clB . 

In this paper, it is always assumed that B  is a base of 
. Set C

 C B
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0 clB
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Define the neighborhood family of  in  as fol-
lows:  

0Y Y

B  is an open convex circled neighbor-
hood of zero in}. 

 

For each  , Let 

 cone B U   

It has been pointed out in [5] that for each U  , 
 is a pointed convex cone in Y  with 

.  
 UC B
 \ 0  int UC C B

Definition 2.1. (See [12]) Let K  be a nonempty sub-
set of  and let  be a base of . 0  is said 
to be a Henig proper efficient point of 

Y B C y K
K  with respect 

to  if there exists U  such that B 

 0K y  int UC B     

Now, let us recall the concepts of upper and lower 
Dini set-valued directional derivatives given by Yang [1]. 

Definition2.2. (See [1]) Let  :f X Y  be a vector 
valued function and ,x d  X . The limiting set of  
at 

f
x  in the direction  is defined as follows d

     
0; : limf t

f x td f x

t

  
 


Y x d z z 


  (2.1) 

For our approach in this note, the following assump-

tion will be needed. 
Assumption 2.1. (See [1]) The subset  has a 

minimal element and a maximal element. 
 ;fY x d 

Definition 2.3. Let :f X Y  be a vector valued 
function. Let ,x d X  be two points. The upper and 
lower Dini-directional derivatives of  at f x  in the 
direction  are defined respectively by d

  
   

max

min

; ;

; ;

f

f

f x d V Y x d

f x d V Y x d







 



      (2.2) 

Remark 2.1. It is obviously that 

    ; ;f x d f x d  . 

In addition, it has been pointed out in Ref. [1] that if 
Assumption 2.1 holds, then 

   ;f x d; ,f x d     , 

and  ;f x d ,  ;f x d  as functions of  are posi-
tively homogeneous. 

d

Definition 2.4. (See [9]) Let : X X X    be a 
map and    : 0,1 0,    be a function such that  

 
0

lim 0k


 


  . 

The set  is called a generalized invex set with 
respect to 

S X
  and   if for any ,x y S  and any 

[0,1]  , 

   ,y x y S    . 

Suppose that  is a generalized invex set with 
respect to 

S  X
  and  . A vector valued function 

:f S Y  is called generalized -preinvex on  with 
respect to 

C S
  and   if for any ,x yS  and any 

[0,1]  , 

          1 ,f x f y f y x y     C     . (2.3) 

Remark 2.2. It is clear that the concepts of general-
ized invex sets and generalized preinvex functions are 
the generalizations of the invex sets and preinvex func-
tions which introduced by Weir [3,4]. In addition, the 
function    : 0,1 0,    in Definition 2.4 has prop-
erty  

 
0

lim 0


 
 . 

In fact, 

   
0 0

lim lim 0 0k
 

 
  

  
      

We need the next assumptions. 
Assumption 2.2. (See [1]) Let  be defined 

as in (2.1). The domination property is said to hold for if  
 ;fY x d 

       min max; ; ;f f fY x d V Y x d C V Y x d C     (2.4) 
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The following important property of Generalized 
cone-preinvex functions will be used in the sequel. 

Proposition 2.1. Let  be a generalized invex 
set with respect to 

S  X
  and   and the vector valued 

function :f S Y  be Generalized C  preinvex on  
with respect to 

S
  and  . Then for any Syx , , 

      ; ,ff y f x kY x x y C   .     (2.5) 

If, in addition, Assumption 2.2 holds, then 

      ; ,f y f x kf x x y C   .     (2.6) 

Proof: For any  ,x y S  and any  0,1  , it fol-
lows from Definition 2.4 that 

          1 ,f y f x f x x y        C . 

This means that 

          ,f x x y f x
f y f x C

  


 
   . 

Thus, 

            
 

,f x x y f x
f y f x C

   
  

 
    . 

Then, it yields from Remark 2.2 that 

      ; ,ff y f x kY x x y C   . 

Furthermore, if follows from Assumption 2.2 and 
positive homogeneous property of Dini set-valued direc-
tional derivatives that 

     min; , ; ,f fY x x y V Y x x y C   . 

Thus, we get 

      ; ,f y f x kf x x y C   . 

3. Optimality Criteria 

In this section, we apply the Dini set-valued directional 
derivatives defined in the last section to characterize op-
timality conditions for a vector optimization problem 
involving the generalized preinvex functions. We begin 
by presenting the following vector optimization problem 

,  VOP

  min x SVOP C f x   

where  is a nonempty open subset of S X  and 
:f X Y . 
Definition3.1. a) The point is said to be a Henig 

proper efficient solution of  VOP with respect to if 
there exists  such that U 

       int .Uf S f x C B      

b) The pointis said to be a strong efficient solution of  
 VOP , if 

    ,f x f x C x S    . 

Theorem 3.1. Consider the vector optimization prob-
lem  VOP . 

1) If x S  is a Henig proper efficient of  VOP  
with respect to , then there exists  such that  B U 

    ; , int ,f UY x x x C B x S     .   (3.1) 

In particular, 

    ; , int ,Uf x x x C B x S      . (3.2) 

2) Assume that  is a generalized invex with respect 
to 

S
  and   and f  is generalized -preinvex on 

 with respect to 
C

S   and  . If (3.1) holds, then x  is 
a Henig proper efficient solution of .  PVO

Proof: 1) If (3.1) does not hold, by the Definition 2.2, 
then there exists  x̂ S  and small enough  ˆ 0t 
such that  ˆˆ ˆx t x x S    and  

       ˆˆ ˆ int Uf x t x x f x C B    . 

which contradicts to the assumption that x S
VOP

 is a He-
nig proper efficient solution of problem . On the 
other hand, It is obviously from (2.2) that the inequality 
(3.2) holds. 



2) Suppose that there exists  such that U 

    ; , int ,f UY x x x C B x S     . 

Then 

    ; , int ,f UkY x x x C B x S     . 

By Proposition 2.1, we get 

      ; ,ff x f x kY x x x C    

Noticing that   \ 0 int UC C B , we get 

        ; ,f Uf x f x kY x x x C B   . 

Hence 

      int ,Uf x f x C B x S      

This means that x  is a Henig proper efficient solu-
tion of the problem  VOP . 

Theorem 3.2. Consider the vector optimization Prob-
lem  VOP . 

1) If x S  is a strong efficient solution of  VOP , 
then 

  ; , ,fY x x x C x S    .          (3.3) 

In particular, 

  ; , ,f x x x C x S    .         (3.4) 
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