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Abstract 
This article attempts to develop a simultaneous optimization procedure of several response 
variables from incomplete multi-response experiments. In incomplete multi-response 
experiments all the responses (p) are not recorded from all the experimental units (n). Two 
situations of multi-response experiments considered are (i) on n1  units all the responses are 
recorded while on n n n2 1= −  units a subset of p p2 <  responses is recorded and (ii) on n2  
units all the responses (p) are recorded, on n1  units a subset of p p1 <  responses is recorded 
and on ( )3 1 2n n n n= − −  units the remaining subset of ( )p p p2 1= −  responses is recorded. The 
procedure of estimation of parameters from linear multi-response models for incomplete 
multi-response experiments has been developed for both the situations. It has been shown that 
the parameter estimates are consistent and asymptotically unbiased. Using these parameter 
estimates, simultaneous optimization of incomplete multi-response experiments is attempted 
following the generalized distance criterion [1]. For the implementation of these procedures, SAS 
codes have been developed for both complete (k ≤ 5, p = 5) and incomplete (k ≤ 5, p1 = 2, 3 and p2 = 
2, 3, where k is the number of factors) multi-response experiments. The procedure developed is 
illustrated with the help of a real data set. 
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1. Introduction 
The experimental situations where more than one response is observed for a set of input combinations are 
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known as multi-response experiments. In these experiments, experimenter is interested in determining the 
optimum combination of input factors. There are several experimental situations in which simultaneous 
optimization of several response variables is required. For example, in food processing experiments, a food 
technologist may be interested in determining the optimum combinations of various ingredients of a product or 
operability conditions for obtaining the product on the basis of acceptability, colour, flavour, nutritional value, 
economic and biochemical parameters, etc. Such experimental situations do exist in many other disciplines of 
science. For some more such experimental situations, a reference may be made to [2]. The experiments for 
simultaneous optimization of several responses are generally conducted in response surface designs. The 
determination of the conditions on the set of input variables that simultaneously optimize a multi-response 
function is of particular interest. 

Multi-response optimization is the process of determining a combination of levels of input factors that yield 
optimal values of several response variables taken simultaneously. In such experimental situations, one should 
not obtain the optima for each response variable separately. When more than one response variables are under 
investigation simultaneously, the meaning of optimum combination becomes unclear since there is no unique 
way to order multivariate values of a multi-response function. Further the conditions that are optimal for one 
response variable may be far from optimal or may even be physically impractical for the other response 
variables. Therefore, the procedure of simultaneous optimization of several response variables is required. In the 
literature, different procedures for simultaneous optimization of several responses have been suggested (see e.g. 
[1] [3]-[7]). 

[4] and [1] considered an optimization problem associated with a dual response system consisting of two 
responses. [3] and [6] adopted desirability function approach for optimization of complete multi-response 
experiments. [1] gave an optimization procedure based on minimization of generalized distance. The above 
procedures are suitable only for the situations where the process is optimized either for maximization of all 
response variables or minimization of all the response variables.  

There, however, do occur experimental situations particularly in osmotic dehydration studies where one wants 
to optimize the process keeping in view the maximum moisture loss and minimum solids gain. Such a situation 
has also been encountered by [8]. Hence, there is a need to develop a procedure of optimization where optimum 
conditions for maximization of some of the response variables and minimization of the remaining response 
variables is desired. It is, therefore, suggested that we take the negative values of the response variables to be 
minimized and determine the optimum combination using the procedure of maximization of all the response 
variables. 

The above discussion relates to the experimental situations, where the data on all the response variables are 
collected from each design point. In some experimental situations, it may not be possible to observe data on all 
the response variables from all the experimental units. The data from only a subset of responses are collected 
from some experimental units and other subset of responses from other experimental units. Some of the 
responses may be common to two or more experimental units. For example, consider an experiment on modified 
atmospheric packaging (MAP) conducted to determine the optimum combinations of temperature, packaging 
material and time on the basis of different physical parameters like physiological loss of weight (PLW), 
moisture content (MC) and texture; biochemical parameters like total sugars, flavanoids and total soluble solids 
(TSS); microbiological parameters like, total count and caliform count and sensory parameters like, colour, 
flavour and overall acceptability. In such situations it may happen that after some days, the data on a subset of 
parameters such as sensory may not be available due to spoilage of the packaged food material for some of the 
treatment combinations. In this particular situation, the data on sensory characters may not be available at 25 
degree centigrade after 11 days for the packaging material HDPE (High Density polyethylene). Further, it may 
be possible to record the data on all the response variables in some of the replications of the treatment 
combinations due to variability in the raw material and their differences in initial microbial count. 

In response surface designs generally some of the design points are replicated for testing the lack of fit. Due 
to constraints on time or equipments, it may not be possible to collect data on all the response variables from 
each of the replicated design points. Therefore, the experimenter may divide the response variables in as many 
groups as the replications of a design point. Some of the response variables are common in each of the sets. 
Therefore, this is also an incomplete multi-response situation, where simultaneous optimization of several 
response variables is required. 

Cold storage studies involving different temperatures may also encounter such situations. Field experiments 
where certain plots or treatment combinations are affected by pests or insects may also have situations as 
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described above. For example, if a field crop is affected by insects/pests which affect only the leaf and damage it, 
we may be able to record data on other response variables but not on the response variables related to leaf or say 
if the grain/pod is affected and damaged, we may not be able to record data on yield but can record physical and 
other parameters like plant height etc. 

From the above discussion we can see that there are two types of multi-response experiments viz. complete 
multi-response and incomplete multi-response experiments where interest is in simultaneous optimization of 
several response variables. As mentioned above, some procedures of simultaneous optimization of several 
response variables are available for complete multi-response situations. These procedures are involved quite 
algebraically, therefore, for the benefit of experimenters it is required to develop some computer based 
procedure for simultaneous optimization of several response variables. 

For incomplete multi-response situations, it seems that no analytical procedure for simultaneous optimization 
of several response variables is available in the literature. The basic difference between simultaneous optimization 
from complete and incomplete multi-response experiments is in estimation of parameters in multi-response 
equations. As shown in [2] that in complete multi-response situations, the parameter estimates are same as that 
of the estimates obtained from fitting response surfaces individually for all the response variables. This, however, 
may not be the case with incomplete multi-response situations. Therefore, in the present investigation an attempt 
has been made to obtain the parameter estimates for the data obtained from incomplete multi-response 
experiments. Once the parameter estimates are obtained, the procedure of simultaneous optimization given by [1] 
has been used. 

In Section 2, the procedure of estimation of parameters from incomplete multi-response experiments is 
developed. Two situations of incomplete multi-response considered are (i) on 1n  units all the p responses are 
recorded while on 2 1n n n= −  units a subset of 2p p<  responses is recorded and (ii) on 2n  units all the 
responses (p) are recorded, on 1n  units a subset of 1p p<  responses is recorded and on ( )3 1 2n n n n= − −  
units the remaining subset of ( )2 1p p p= −  responses is recorded. In Section 3, a stepwise procedure of 
simultaneous optimization of complete/incomplete multi-response is described in brief. The procedure of 
parameter estimation and obtaining simultaneous optima is illustrated with the help of examples in Section 4. 
SAS codes have been developed for the whole procedure for both complete (k ≤ 5, p = 5) and incomplete (k ≤ 5, 
p1 = 2, 3 and p2 = 2, 3, where k is the number of factors) multi-response experiments. The codes are available 
with the first author and can be obtained by sending an E-mail to nandi_stat@yahoo.co.in. 

2. Parameter Estimation from Incomplete Multi-Response Experiments 
In this section, we develop an estimation procedure of parameters of linear multi-response models for incomplete 
multi-response situations. We consider two cases for incomplete multi-response as described in the sequel. 

2.1. Case I 
Let there be p (= p1 + p2) response variables which are measured for each design point of k input variables 
(factors) 1 2, , , kx x x . Let there are n = (n1 + n2) experimental units. From n1 experimental units all the response 
variables are observed and from n2 experimental units only p2 < p responses are observed. It is assumed that n1 > 
m (the number of parameters to be estimated from the model). The pictorial representation in Figure 1 may be 
helpful for better understanding of the situation: 

For the first p1 response variables, model can be written as  

1 1, 1, 2, , ,i i i i i p n m= + = >y X β ε                               (1) 

where 
yi: n1 × 1 vector of observations on the ith response variable, 
Xi: n1 × m matrix of rank m of known functions of the settings of the coded variables, 
βi: m × 1 vector of unknown constant parameters, and εi: n1 × 1 vector of random error associated with the ith 
response variable ( )11, 2, ,i p=  . 

Model for each of the remaining p2 response variables is 

( )1 1 1 2 1 2, 1, 2, , ,j j j j j p p p p n n n m= + = + + + = + >y X β ε                   (2) 

yj: (n1 + n2) × 1 vector of observations on the jth response variable, 
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Figure 1. Lengths of bars represent number of 
observation recorded for that response.                  

 
Xj: (n1 + n2) × m matrix of rank m of known functions of the settings of the coded variables, 
βj: m × 1 vector of unknown constant parameters, and εj: (n1 + n2) × 1 vector of random error associated with the 
jth response variable ( )1 1 1 21, 2, ,p p p p+ + + . 

Now combining and rolling down the models (1) and (2) we have 
= +Y Zβ ε                                            (3) 
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where Y1 is (n1p1 × 1) vector of observations on p1 response variables, 2
∗Y  is (n1p2 × 1) vector of observations 

on p2 response variables and 2
∗∗Y  is (n2p2 × 1) vector of observations on p2 response variables. So Y 

( )1 1 1 2 2 2 1n p n p n p+ + ×  vector of the observation vector on all (p1 + p2) response variables. 
Here, Xi = X1 11, 2, ,i p∀ =   and Xj = X2 1 1 1 21, 2, ,j p p p p∀ = + + + . 
Using the above, the design matrix Z is 
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The vector of parameters is 

n1

y1 y2 … yp1 yp1+1 yp1+2 … yp1+ p2

n2

p1 p2

n1 + n2



P. K. Nandi et al. 
 

 
434 

( )
( )

1

1

1

1 2

1

2

1 1

1 2 2

2

1
1

p

p

p

p p

mp
mp+

+

+

 
 
 
 
 
   × 

= =   ×  
 
 
 
 
 





β
β

β β
β β β

β

β

                             (6) 

where β1(mp1 × 1) is the vector of parameters for first p1 response variables and β2(mp2 × 1) is the vector of 
parameters for remaining p2 response variables. So β is the vector of parameters of order (mp1 + mp2) × 1. 
Similarly, one can also write the expression for residual vectors as 
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where ε1 is (n1p1 × 1) vector of residuals for first p1 response variables, *
2ε  is (n1p2 × 1) vector of residuals for  

remaining p2 response variables and **
2ε  is (n2p2 × 1) vector of residuals for p2 response variables. 

From the structure of residual vector, the dispersion matrix of residual vector is 
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As is clear from (8) that the covariance between p1 and p2 can only be possible on n1 observations and for n2 
observations covariance cannot be obtained (zero). In (8) 11Σ  represents variance/covariance within the p1 
response variables on n1 observations; 12Σ  represents variance/covariance between p1 and p2 response 
variables on first n1 observations and 22Σ  represents variance/covariance within the p2 response variables on n2 
observations. 

It may be noted here that the form of Z in (5) with unequal number of observations for each set of responses 
(n1 for p1 and n1+n2 for p2 response variables), requires additional effort to estimate β , for the incomplete set of 
response variables. We now regard the above model as a single-equation regression model and thus made use of 
Aitken’s Generalized Least Squares (GLS) technique to estimate the parameter vector. Asymptotically unbiased 
estimator of β can be obtained from the normal equations 

1 1 .− −′ ′=Z Z Z YβΩ Ω                                   (9) 

Asymptotically unbiased estimator of β is 

( ) 11 1ˆ .
−− −′ ′= Z Z Z Yβ Ω Ω                               (10) 

The dispersion matrix of β̂  is 
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( ) ( ) 11ˆ .D
−−′= Z Zβ Ω                                (11) 

Equations (10) and (11) require knowledge of Ω . If Ω  is unknown, as is usually the case, then an estimate 
of β can be obtained by replacing Ω  in (10) by an estimate Ω̂ . This requires a lot of efforts as described in 
the sequel. 

Estimation of β When Ω Is Unknown 
It is easy to prove that if we replace Ω  by any consistent estimator in (10), the resulting estimator of β is 
consistent and has the same asymptotic distribution as the estimator of β which used Ω  itself. It, therefore, 
makes no difference, asymptotically, which consistent estimate of Ω  is used. There are a number of consistent 
estimators available in [9] for two response variables with unequal number of observations. These estimators are 
based on least-square residuals and are given in the sequel. 

Let E1 (n1 × p1) and E2 ((n1 + n2) × p2) be the matrices of least-squares residuals for the p1 and p2 response 
variables respectively. E2 can be partitioned analogously to X2 and Y2 as 
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The dispersion matrix of β̂  is 
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Following the proof of [10], one can easily see that the estimators of β in (15) have distributions which are 
symmetric around the true value of β and their mean exists. These are, therefore, unbiased. 

2.2. Case-II 
Let there be p (=p1 + p2) response variables which are measured for each design point of k input variables 
(factors) 1 2, , , kx x x . Let there are p response variables to be observed from n1 + n2 + n3 experimental units. All 
the p response variables are observed from n2 experimental units. Only p1 response variables are observed from 
first 1n  experimental units and from remaining n3 experimental units only p2 response variables are observed. It 
is assumed that 1 2n n m+ >  and 2 3n n m+ >  (the number of parameters to be estimated from the model). The 
pictorial representation in Figure 2 may be helpful for better understanding of the situation: 
For the first p1 response variables, model can be written as  

( )1 1 2, 1, 2, , ,i i i i i p n n m= + = + >y X β ε                      (17) 

where 
yi: (n1 + n2) × 1 vector of observations on the ith response variable,  
Xi: (n1 + n2) × m matrix of rank m of known functions of the settings of the coded variables, 
βi: m × 1 vector of unknown constant parameters, and εi : (n1 + n2) × 1 vector of random error associated with  
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Figure 2. Lengths of bars represent number of 
observations recorded for that response.                   

 
the ith response variable ( )11, 2, ,i p=  . 

Model for each of the remaining p2 response variables is 
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βj: m × 1 vector of unknown constant parameters, and εj: (n2 + n3) × 1 vector of random error associated with the 
jth response variable ( )1 1 1 21, 2, ,j p p p p= + + + . 
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where Y, β and ε are column vectors with ( ) ( )1 2 1 2 3 2 1n n p n n p + + + ×  ,  ( )1 2 1mp mp+ ×  and  
( ) ( )1 2 1 2 3 2 1n n p n n p + + + ×   components respectively, and the order of the design matrix Z is  
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We now regard the above model as a single equation regression model and making use of Aitken’s GLS 
technique asymptotically unbiased estimator of β  can be obtained as in (10) in Case I and the dispersion 
matrix of estimator of β  as in (11). These equations require the knowledge of Ω . If Ω  is unknown, as is 
usually the case, then an estimate of β  can be obtained by replacing Ω  by its estimator Ω̂ . 

Estimation of β When Ω Is Unknown 
In most of the practical situation Ω  is seldom known, so some estimate of Ω  will have to be used in its place. 
It is easy to prove that if we replace Ω  in (23) by any consistent estimator, the resulting estimator of β is 
consistent and has the same asymptotic distribution as the estimator of β which used Ω  itself. It, therefore, 
makes no difference, asymptotically, which consistent estimator of Ω  is used. There are a number of 
consistent estimators available in [9] for two response variables with unequal number of observations. These are 
described in the sequel. 

Let E1 ((n1 + n2) × p1) and E2 ((n2 + n3) × p2) be the matrices of least-squares residuals for the p1 and p2 
response variables respectively. Ei’s can be partitioned analogously to Yi and Xi in (19) and (20) 

1

2

1

2

0 0 00
11 12 11

1 * * *
1 21 22 2

* * *
11 12 12

2 00 00 00 00
2 21 22 2

and .
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∗

  
= =   

    
  

= =   
    









E
E

E

E
E

E

ε ε ε

ε ε ε

ε ε ε

ε ε ε

                         (24) 

Now we define the following quantities: 
* *

11 1 1 22 2 2 12 1 2
1 2 2 3 2

1 1 1, , .
n n n n n

′ ′ ′= = =
+ +

S E E S E E S E E                    (25) 

The consistent estimators of Ω  in (23) can be obtained by replacing the following quantities [11], 

11 11 12 21 12 22 22
ˆ ˆ ˆ ˆ, , .∑ = ∑ = ∑ = ∑ =S S S                            (26) 

Once a consistent estimator of Ω  is obtained, then using GLS and replacing the estimator of Ω  ( )Ω̂  we 
can obtain the parameter estimates as follows 

( ) ( ) ( )
( ) ( ) ( )

11 0 0 11 12
11 1 1 1 1 1 1

21 1 22 00 00
1 1 22 1 1 2 2

1 0 0 11 12
11 1 1 1 1 1 2

21 1 22 00 00
1 1 22 1 2 2 2

ˆ ˆ ˆ
ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

ˆ ˆ ˆ

−− ∗ ∗ ∗ ∗

∗ ∗ − ∗ ∗

− ∗ ∗ ∗ ∗

∗ ∗ − ∗ ∗

 ′ ′ ′⊗ + ⊗ ⊗
=  

′ ′ ′⊗ ⊗ + ⊗  
 ′ ′ ′⊗ + ⊗ + ⊗
 ⋅
 ′ ′ ′⊗ + ⊗ + ⊗ 

X X X X X X

X X X X X X

X Y X Y X Y

X Y X Y X Y

β
Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

Σ Σ Σ

                 (27) 
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( )
11 0 0 11 12

11 1 1 1 1 1 1
21 1 22 00 00

1 1 22 1 1 2 2

ˆ ˆ ˆ
ˆ .

ˆ ˆ ˆ

−− ∗ ∗ ∗ ∗

∗ ∗ − ∗ ∗

 ′ ′ ′⊗ + ⊗ ⊗
=  

′ ′ ′⊗ ⊗ + ⊗  

X X X X X X
D

X X X X X X
β

Σ Σ Σ

Σ Σ Σ
              (28) 

As in Case I, following the proof of [10], one can easily see that the estimators of β based on the estimators 
given in (27) have distributions which are symmetric around the true value of β and their mean exists. They are, 
therefore, unbiased. 

3. Simultaneous Optimization Procedures 
In the present study, simultaneous optimization of several responses based on minimization of generalized 
distance given by [1] has been considered. SAS codes have been developed for the whole procedure for both 
complete (k ≤ 5, p = 5) and incomplete (k ≤ 5, p1 = 2, 3 and p2 = 2, 3, where 1 2p p p+ = , the total number of 
response variables) multi-response experiments and illustrated with the help of an example. 

For the sake of completeness, we describe the procedure in brief. Using the parameter estimates obtained in 
Section 2, the prediction equation for the ith response at design point ( )1 2 kx x x=x   is 

( ) ( ) ˆˆ , 1, 2, ,i i iY i p′= =x g x β                              (29) 

where ( )1 2 kx x x=x   is the vector of coded variables, ( )i′g x  is vector of the same form as row of the 
design matrix Xi evaluated at the design point x, ˆ

iβ  is the GLS estimator of βi. It follows that 

( ) ( ) ( ) ( )ˆˆ , 1, 2, , .i i i iD Y D i p  ′= =  x g x g xβ                     (30) 

Combining all the response variables together we can get the prediction equation at design point  
( )1 2 kx x x=x   as 

( ) ( )( ) ( )ˆ ˆˆ
p i′= ⊗ =Y x I g x G xβ β                           (31) 

( ) ( ) ( ) ( )ˆˆD D  ′= Y x G x G xβ                             (32) 

where ( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ

pY Y Y ′ =  Y x x x x  is the vector of predicted responses at the design point x.  

Let îφ  be the optimum value of ( )îY x  optimized individually over the experimental region ( )1, 2, ,i p=  ,  

and let ( )1 2
ˆ ˆ ˆˆ pφ φ φ ′= ϕ . If these individual optima are attained at the same set x, of operating conditions,  

then an “ideal” optimum is said to be achieved. The problem of multi-response optimization is, therefore, 
obviously solved and no further work is needed. However, such an ideal optimum may rarely exist. In more 
general situations one might consider finding compromising conditions on the input factors that are somewhat 
favorable to all responses. Such a deviation of the compromising conditions from the ideal optimum is 
formulated by means of a distance function, which measures the distance of ( )Ŷ x  from ϕ̂ , the vector of 
individual optima. The distance function [1] is defined as 

( ) ( )( ) ( ){ } ( )( )
1

1 2ˆ ˆ ˆ ˆˆ ˆ ˆ, Dρ
−′    = − −     

Y x Y x Y x Y xϕ ϕ ϕ                 (33) 

where ( ) ( ) ( ) ( )1 2
ˆ ˆ ˆ ˆ

pY Y Y
′

 =  Y x x x x  is the vector of predicted response at the design point x. ϕ̂  is 

the vector of individual optima and ( )ˆD   Y x  is the dispersion matrix of the predicted response vector at the 

design point x. 
The above distance function is termed as generalized distance by [1]. The multi-response optimization then 

involves finding the optimum point x that minimize this generalized distance function (33) over the experimental 
region W. If x0 is the point in the experimental region at which ( )ˆ ˆ,ρ   Y x ϕ  attains its absolute minimum,  

and if m0 is the value of this minimum, then one may describe the experimental conditions at x0 as being near 
optimal for each of the p response functions. The smaller the value of m0, the closer these conditions are to 
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representing an “ideal” optimum. To summarize, the steps for obtaining a simultaneous optima of a multi-response 
function consisting of p responses are: 

1) Obtain the predicted equations using the complete/incomplete multi-response data and the method of 
generalized least squares. 

2) Choose a distance measure ρ  from (33). 
3) Optimize the predicted responses individually over the experimental region W to obtain the vector ϕ̂  of 

estimated individual optima. The method of ridge analysis as given in [2] may be used for determination of the 
elements of ϕ̂ . 

4) The distance measure being a function of x alone is minimized over W. 
Here the controlled random search procedure given in [12] can be employed effectively. 
The results of ridge analysis for optimization of individual responses can be obtained using PROC RSREG in 

SAS [13] by simply using the RIDGE MAX statement to the RSREG SAS code. But for incomplete multi-response 
situation one can’t use this procedure. So to obtain individual optima for incomplete multi-response situation a 
SAS code has been developed for determining individual optima using the method of ridge analysis for 
determining optima. The SAS code can be used for specified number of input factors (k ≤ 5) and response 
variables (p1 = 2, 3 and p2 = 2, 3). The SAS code is available with the first author and can be obtained by 
sending an E-mail to nandi_stat@yahoo.co.in. The method of ridge analysis for determining optimum conditions 
given in [2] is used for the purpose of obtaining individual optima of the response variables with incomplete 
observations. 

4. Illustrations 
In this section, we illustrate the procedure developed in Sections 2 and 3 for simultaneous optimization of 
several response variables through the data from a quantitative factorial experiment. 

Example 4.1: An experiment was conducted on osmotic dehydration of banana to determine the optimum 
combinations of power levels, temperature and air velocity at Division of Agricultural Engineering, ICAR-   
Indian Agricultural Research Institute, New Delhi. The levels of the 3 factors tried are shown in Table 1. 

The data were collected on energy use efficiency (%) ( )1Y , rehydration ratio ( )2Y , total soluble solids (TSS) 
( )3Y , total sugars ( )4Y  and total carbohydrates (mg/g dry matter) ( )5Y . The experimenter is interested in 
obtaining the optimum combination of the controllable factors that maximizes all the response variables 
simultaneously. The levels of power (X1), temperature (X2) and air velocity (X3) are coded, using the following 
expression given in [2] 

( )2
, 1,2,3i iL iH

i
iH iL

X X X
x i

X X
− +

= =
−

                             (34) 

where xi is the coded variable, iLX  and iHX  are the low and high levels of iX , respectively. Using the above 
expression, the coded and measured levels for the factors are shown in Table 2. 

The coded levels of the factors and data on 5 response variables in given in Table 3. 
As mentioned in Section 1 that in case of complete multi-response situations, the parameter estimates 

obtained by taking all the response variables together is same as obtained individually for each of the response 
variables. A second order response surface model was fitted to each of the 5 response variables separately to 
obtain the parameter estimates. The regression coefficient estimates, their standard errors, and the coefficients of 
determination 2R , are given in Table 4. 

It was observed that stationary points are outside the experimental region for some of the response variables, 
we have performed ridge analysis to obtain individual maxima. The individual maxima for the 5 response  
 

Table 1. Factors and levels.                                                    

Factors Levels 

Microwave power (W) 140, 210 and 280 

Temperature (˚C) 25, 45, 55 and 65 

Air velocity (m/s) 0.5, 1.5 and 2.5 

mailto:nandi_stat@yahoo.co.in
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Table 2. Coded factors and levels.                                                                            

Microwave power Temperature Air velocity 
Actual Coded Actual Coded Actual Coded 

X1 x1 X2 x2 X3 x3 
140 W −1 25˚C −1 0.5 m/s −1 
210 W 0 45˚C 0 1.5 m/s 0 
280 W 1 55˚C 0.5 2.5 m/s 1 

  65˚C 1   

 
Table 3. Design points in coded levels of input factors and response values.                                            

Serial number Power level 
(W) 

Temperature 
(˚C) 

Air velocity 
(m/s) 

Energy use  
efficiency 

(%) 

Rehydration 
Ratio 

TSS 
(˚Brix) 

Total  
Sugars 

Total  
Carbohydrates 

(mg/g dry matter) 
 1x  2x  3x  1Y  2Y  3Y  4Y  5Y  

1 −1 −1 −1 19.54 1.94 60.98 47.73 555 
2 −1 −1 0 13.01 1.9 61.74 47.85 558.09 
3 −1 −1 1 12.53 1.904 62.5 48.04 561.53 
4 −1 0 −1 22.45 1.805 59.82 48.69 569.69 
5 −1 0 0 13.22 1.733 60.87 49 575.45 
6 −1 0 1 8.57 1.71 60.43 49.89 584.31 
7 −1 0.5 −1 20.51 1.68 58.71 49.36 581.36 
8 −1 0.5 0 12.82 1.783 60.06 50.54 594.09 
9 −1 0.5 1 8.21 1.702 60.31 50.54 595.32 

10 −1 1 −1 24.71 1.603 57.47 49.95 590.59 
11 −1 1 0 11.96 1.77 58.86 50.28 597.52 
12 −1 1 1 7.49 1.78 59.3 50.37 598.15 
13 0 −1 −1 35.76 2.125 64.31 50.17 583.99 
14 0 −1 0 32.8 2.093 65.08 50.9 590.8 
15 0 −1 1 16.66 2.212 67.32 51.7 603.29 
16 0 0 −1 31.68 1.819 63.78 50.95 596.09 
17 0 0 0 21.69 1.993 64.39 51.18 601.88 
18 0 0 1 13.98 2.018 66.71 52.02 608.66 
19 0 0.5 −1 36.76 1.775 63.18 52.52 617.34 
20 0 0.5 0 22.83 1.671 64.49 51.9 615.73 
21 0 0.5 1 17.53 1.906 66.73 52.69 622.7 
22 0 1 −1 34.29 1.691 63.51 53.37 630.47 
23 0 1 0 21 1.684 63.76 51.55 612.53 
24 0 1 1 14.7 1.88 64.46 52.74 626.69 
25 1 −1 −1 52.09 2.237 71.41 52.54 614.24 
26 1 −1 0 44.65 2.307 71.04 52.7 623.26 
27 1 −1 1 39.1 2.403 70.98 53.96 629.86 
28 1 0 −1 49.29 2.353 72.94 53.44 628.08 
29 1 0 0 32.96 2.433 72.53 54.7 641.83 
30 1 0 1 25.3 2.505 70.46 54.34 639.48 
31 1 0.5 −1 46.25 2.793 71.13 54.36 640.54 
32 1 0.5 0 33.67 2.579 71.86 55.39 651.29 
33 1 0.5 1 26.47 2.609 71.51 55.23 651.4 
34 1 1 −1 53.2 2.821 70.69 54.75 647.96 
35 1 1 0 32.57 2.64 70.04 54.85 647.34 
36 1 1 1 24.69 2.696 70.81 54.71 649.41 
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Table 4. Least squares fit and regression estimates.                                                                 

 Regression coefficients 

Model term Y1 Y2 Y3 Y4 Y5 

Intercept 22.2847 (1.1205) 1.8608 (0.0589) 65.2523 (0.3336) 51.7167 (0.2112) 607.1644 (2.1368) 

x1 12.1479 (0.5381) 0.3580 (0.0283) 5.5159 (0.1602) 2.4656 (0.1014) 29.6592 (1.0261) 

x2 −2.1499 (0.5899) −0.0285 (0.0310) −0.8924 (0.1756) 1.0097 (0.1112) 16.4039 (1.1250) 

x3 −8.5617 (0.5381) 0.0292 (0.0283) 0.5675 (0.1602) 0.3829 (0.1014) 5.1491 (1.0261) 

x1
*x1 1.4958 (0.9189) 0.2480 (0.0483) 0.8754 (0.2736) −0.0071 (0.1732) 0.2271 (1.7524) 

x2
*x1 −2.1095 (0.7174) 0.1582 (0.0377) 0.6565 (0.2136) −0.1479 (0.1352) −2.7435 (1.3681) 

x2
*x2 2.5217 (0.9774) 0.0466 (0.0514) −0.5885 (0.2910) −0.1804 (0.1842) −0.383 (1.8639) 

x3
*x1 −2.1788 (0.6498) −0.0037 (0.0342) −0.4981 (0.1935) 0.0025 (0.1225) −0.2087 (1.2391) 

x3
*x2 −1.9400 (0.7174) −0.0059 (0.0377) 0.0004 (0.2736) −0.2629 (0.1352) −2.7094 (1.3681) 

x3
*x3 2.3083 (0.9189) 0.0331 (0.0483) −0.0102 (0.2136) 0.0992 (0.1732) 0.2721 (1.7524) 

Coefficient of 
determination 

(R2) 
0.9698 0.8987 0.9807 0.9643 0.9766 

*The number in the parentheses is the standard error. 
 
variables obtained by the method of ridge analysis are given in Table 5. Using the distance measure given in (33)  
simultaneous maxima for the 5 response variables is obtained by minimizing ( )ˆ ,ρ   Y x ϕ , where ϕ  = (40.92,  

2.48, 71.63, 54.48, 643.65) and the results are given in Table 6. The location at which the linear complete 
multi-response function attains its simultaneous minima is [0.995 (278.95 W), 0.59 (46.55˚C), −0.52 (0.98 m/s)] 
and the corresponding maxima (41.02, 2.55, 71.22, 54.51, 643.16) for the response variables. The minimum 
value of the distance function obtained is 3.81. 

Now, to illustrate the procedure for incomplete multi-response situations, we have deleted the data on some of 
the response variables on some of the design points in Example 4.1. Example 4.2 relates to Case I of incomplete 
multi-response situation as discussed in Section 2.1. 

Example 4.2: For the purpose of illustration, consider the experiment in Example 4.1 for complete multi-response 
experiments. Let us consider that the data on Energy use efficiency (%), Rehydration ratio and TSS for the 
design points (1, 1, 0) and (1, 1, 1) at serial number 35 and 36 in Table 3 are deleted. 

In case of incomplete multi-response experiments the parameter estimates obtained by taking each response 
variable individually is not same as the parameter estimates obtained taking all the response together. In this 
case to estimate the parameters of the second order response surface are obtained as per procedure of Case I in 
Section 2.1. After obtaining individual estimates based on the available data, residuals are used to obtain 
variance-covariance matrix. Using the variance-covariance matrix, we have obtained the GLS estimate of the 
parameters of the second order response surface model. Comparing Table 4 and Table 7 it can be observed that, 
parameter estimates of the response variables with incomplete data on some design points are different. 

It was observed that the stationary points are outside the experimental region for some of the response variables, 
we have performed ridge analysis to obtain individual maxima. Table 8 includes the individual maxima for the 
five response variables obtained by the method of ridge analysis. Using the distance measure given in (33)  
simultaneous maxima for the 5 response variables is obtained by minimizing ( )ˆ ,ρ   Y x ϕ , where ϕ  = (40.61,  

2.50, 71.72, 54.49, 643.68)' and the results are given in Table 9. From the results on individual maxima it can be 
observed that, individual maxima obtained from the incomplete data on three response variables on some design 
points are different from that obtained with complete multi-response data. 

The location at which the linear incomplete multi-response function attains its simultaneous optima is [1.000 
(280 W), 0.610 (57.2˚C), −0.470 (1.03 m/s)] and the corresponding maxima (40.70, 2.57, 71.42, 54.55, 643.76) 
for the response variables are given in Table 9. It can also be observed that the minimum value of the distance  
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Table 5. The individual Maxima.                                                                               

   Location of maxima 

Response Individual maxima x1 (X1) x2 (X2) x3 (X3) 

1̂Y  40.92 0.99 (279.8) −0.16 (41.6) −0.61 (0.88) 

2̂Y  2.48 0.98 (279.0) 0.14 (47.8) 0.09 (1.59) 

3̂Y  71.63 0.99 (279.7) −0.02 (44.4) −0.002 (1.49) 

4̂Y  54.48 0.99 (279.8) 0.35 (52.1) 0.05 (1.55) 

5̂Y  643.65 0.99 (279.9) 0.45 (54.1) 0.14 (1.64) 

 
Table 6. Simultaneous optimum combination of input factors.                                                      

Distance measure Generalized distance 

Minimum distance 3.81 

 1̂Y  41.02 

 2̂Y  2.55 

 3̂Y  71.22 

 4̂Y  54.51 

 5̂Y  643.16 

Location of 
Minima* 

X1 0.995 (278.95 W) 

X2 0.59 (46.55˚C) 

X3 −0.52 (0.98 m/s) 

*Actual value of optimum point is given in parenthesis. 
 
Table 7. The Generalized least squares fit and regression estimates.                                                   

 Regression coefficients 

Model term Y1 Y2 Y3 Y4 Y5 

Intercept 22.3701 (0.9848) 1.8627 (0.0027) 65.2435 (0.0836) 51.7166 (0.0322) 607.1644 (3.2975) 

x1 12.1903 (0.2399) 0.3603 (0.0006) 5.5555 (0.0203) 2.4655 (0.0074) 29.6591 (0.7603) 

x2 −2.0867 (0.3120) −0.0249 (0.0008) −0.8334 (0.0263) 1.0097 (0.0089) 16.4038 (0.9139) 

x3 −8.5909 (0.2264) 0.0287 (0.0006) 0.5756 (0.0192) 0.3828 (0.0074) 5.1490 (0.7603) 

x1
*x1 1.5489 (0.6679) 0.2509 (0.0018) 0.9250 (0.0567) −0.0070 (0.0216) 0.2270 (2.2177) 

x2
*x1 −2.0244 (0.4788) 0.1628 (0.0013) 0.7358 (0.0404) −0.1479 (0.0132) −2.7435 (1.3517) 

x2
*x2 2.6119 (0.8199) 0.0516 (0.0022) −0.5043 (0.0694) −0.1804 (0.0245) −0.3830 (2.5089) 

x3
*x1 −2.2336 (0.3507) −0.0046 (0.0009) −0.4829 (0.0297) 0.0025 (0.0108) −0.2087 (1.1088) 

x3
*x2 −1.9985 (0.4247) −0.0068 (0.0011) 0.0059 (0.0360) −0.2628 (0.0132) −2.7094 (1.3517) 

x3
*x3 2.0922 (0.6828) 0.0253 (0.0019) −0.0684 (0.0579) 0.0991 (0.0216) 0.2720 (2.2177) 

*The number in the parentheses is the standard error. 
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Table 8. The individual maxima.                                                                                 

   Location of maxima 

Response Individual maxima x1 (X1) x2 (X2) x3 (X3) 

Y1 40.61 1.00 (280.0) −0.16 (41.8) −0.56 (0.93) 

Y2 2.50 0.99 (279.6) 0.15 (48.02) 0.09 (1.59) 

Y3 71.72 1.00 (280.0) −0.01 (44.76) 0.01 (1.51) 

Y4 54.49 1.00 (280.0) 0.35 (52.12) 0.05 (1.55) 

Y5 643.68 1.00 (280.0) 0.45 (54.12) 0.12 (1.62) 

 
Table 9. Simultaneous optimum combination of input factors.                                                         

Distance measure Generalized distance 

Minimum distance 3.36 

 Y1 40.70 

 Y2 2.57 

 Y3 71.42 

 Y4 54.55 

 Y5 643.76 

Location of 
Optima* 

X1 1.000 (280 W) 

X2 0.610 (57.2˚C) 

X3 −0.470 (1.03 m/s) 
*Actual value of optimum point is given in parenthesis. 
 
function obtained is 3.36 which is lower (3.81) than that obtained from complete multi-response situation as 
given in Table 9. 

On the similar lines, one can obtain the simultaneous optima for Case II of incomplete multi-response 
situations. 

5. Conclusion 
In the present investigation, a methodology was developed for estimation of parameters and optimization of 
simultaneous optimization from multi-response experiments where some responses could not be obtained on 
some design points. The procedure of obtaining a consistent estimator of unknown dispersion matrix in case of 
incomplete multi-responses is also suggested. The simultaneous optimization procedure is implemented through 
SAS codes for specified number of input factors (k ≤ 5) and response variables (p1 = 2, 3 and p2 = 2, 3). The 
procedures developed have been illustrated through an example. Further efforts are required to obtain a general 
procedure for any number of factors and any number of response variables in incomplete multi-response 
situations. 
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