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Abstract 
Sucrose, raffinose, and stachyose are important soluble sugars in soybean [Glycine max (L.) Merr.] 
seeds. Seed sucrose is a desirable trait for taste and flavor. Raffinose and stachyose are undesirable 
in diets of monogastric animals, acting as anti-nutritional factors that cause flatulence and abdo-
minal discomfort. Therefore, reducing raffinose and stachyose biosynthesis is considered as a key 
quality trait goal in soy food and feed industries. The objective of this study was to identify ge-
nomic regions containing quantitative trait loci (QTL) controlling sucrose, raffinose, and stachyose 
in a set of 92 F5:7 recombinant inbred lines (RILs) derived from a cross between the lines “MD96- 
5722” and “Spencer” by using 5376 Single Nucleotide Polymorphism (SNP) markers from the Illu-
mina Infinium SoySNP6K BeadChip array. Fourteen significant QTL were identified and mapped 
on eight different linkage groups (LGs) and chromosomes (Chr). Three QTL for seed sucrose con-
tent were identified on LGs N (Chr3), K (Chr9), and E (Chr15). Seven QTL were identified for raffi-
nose content on LGs D1a (Chr1), N (Chr3), C2 (Chr6), K (Chr9), B2 (Chr14), and J (Chr16). Four QTL 
for stachyose content were identified on LG D1a (Chr1), C2 (Chr6), H (Chr12), and B2 (Chr14). Se-
lection for beneficial alleles of these QTLs could facilitate breeding strategies to develop soybean 
lines with higher concentrations of sucrose and lower levels of raffinose and stachyose. 
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1. Introduction 
Soybean [Glycine max (L.) Merr.] seeds are used in many prepackaged traditional foods such as soy milk, tofu, 
tofu skin, soy sauce, bean paste, natto, and tempeh. These types of foods are produced from special soybean 
lines that are ideally low in oil but high in sucrose and proteins. Soybean seeds contain approximately 20% oil, 
40% protein, 35% carbohydrates, and 5% ash by dry weight. The di-, tri-, and tetra-saccharides: sucrose, raffi-
nose, and stachyose are the most abundant soluble sugars in soybean seeds [1], accounting for 5%, 1.5%, and 3% 
of the total carbohydrates portions (35%) [2]-[4]. Sucrose is easily digestible, raffinose is not easily digested, 
and stachyose is difficult to digest by monogastric animals, including humans, pig, chicken, and fish [1]-[5]. Be-
side the nutritional value, sucrose is transported from the source to sink organs in plants during the process of 
photosynthesis and functions as a storage reserve, compatible solute, and signal metabolite [5]. Raffinose and 
stachyoseis serve as transport carbohydrates in the phloem [6], storage reserves, cryoprotectants in frost-hardy 
plant organs [7] [8], and accumulate in maturing seeds to play a role in the acquisition of desiccation tolerance, 
seed hardiness, or storability and germination [9]. Raffinose and stachyose have previously been thought to be 
involved in seed protection during the desiccation process [10] [11] by stabilizing the cell membrane [12]. 
However, when a monogastric animal diet contains raffinose and stachyose, they act as anti-nutritional factors 
that cause flatulence and abdominal discomfort [13] [14], diarrhea, and reduced energy metabolism and diges-
tion [15] [16]. Therefore, many attempts have been made at modulating their contents in crop seeds [17]. Seed 
sugar content is an important trait in food-grade soybeans and up to 10% sucrose and less than 2.5% total raffi-
nose and stachyose contents are considered advantageous [4].  

In a recent study, a germplasm, “V99-5089”, with high sucrose, low raffinose, and low stachyose contents to 
use as a parent in soybean food-grade breeding programs was developed [4]. To date, there are limited studies 
on genetic and QTL mapping of soluble sugars in soybean seed. In SoyBase: Soybean Breeders Toolbox 
(USDA-ARS) (verified on December, 2014) [18], thousands of QTL have been reported for many agronomic 
and quality traits, but only 28 were for seed sucrose. These 28 QTLs were mapped on LGs A1, E, 3 QTLs on A2, 
I, F, 3 QTLs on L, M [19], B1, two QTLs on L, D1b, seven QTLs on L [20], and B2, D1B, E, H, J [21]. No 
QTLs for raffinose or stachyose were found in SoyBase, indicating that more researches are needed in this area. 
To date, although several QTL associated with soybean seed soluble sugars have been identified [20]-[24], it is 
still necessary to validate these QTL or discover new ones in different genetic backgrounds by using different 
populations and genetic mapping approaches. Additional information regarding the genetic basis of sugar-re- 
lated traits could accelerate the discovery of new genes and develop cultivars or more germplasm with high su-
crose and low raffinose and stachyose contents. 

The increased use of different types of molecular markers to generate dense genetic linkage maps can facili-
tate the discovery of genomic regions containing genes involved in the biosynthesis of sugars in soybean and 
other crops [20]-[23]. Different types of molecular markers have been used to construct linkage maps to identify 
QTL in soybean such as restriction fragment length polymorphisms (RFLP), simple sequence repeat (SSR), am-
plified fragment length polymorphism (AFLP), and random amplified polymorphic DNA (RAPD), and single 
nucleotide polymorphism (SNP) [25]-[31]. In spite of the identification of genomic regions affecting soybean 
seed sucrose content [20]-[22], limited information is available for the genomic locations controlling sucrose, 
raffinose, or stachyose accumulation [32] and their inheritance [21].  

The genetic analysis for seed sucrose, raffinose, and stachyose contents in several Arabidopsis accessions in a 
recombinant inbred line population revealed one major QTL responsible for the monogenic segregation for sta-
chyose content, and this locus affected sucrose and raffinose content [33]. They also found two candidate genes 
encoding for galactinol synthase and raffinose synthase located within the genomic region near this major QTL. 
In addition, it was found that three smaller-effect QTLs and each QTL affected the content of the other sugars 
[33]. The genomic regions associated with sucrose, raffinose, and stachyose were identified in segregating F2:F10 
RILs [20]. They found two independent related QTLs oligosaccharides near marker satt546 on linkage group 
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(LG) Dlb and satt278 on LG L. They found four other QTLs for sucrose located at LG B1 (satt197), Dlb 
(satt546), and L (satt523 and satt278). Another two QTLs on LG Dlb and L associated with sucrose, raffinose, 
and stachyose. It was suggested that a single locus could have pleiotropic effects on the biosynthesis pathways 
of sucrose, raffinose, and stachyose [32]. They also reported that a similar phenomenon occurred in soybean and 
a mutation at a single locus conferred a phenotype of low stachyose [34]. The genetic variability of seed sugars 
is significant [35] [36], indicating allelic differences in the genes controlling the biosynthetic enzymes. Other 
researchers were able to identify a low stachyose line [37] to increase seed sucrose content. The allele responsi-
ble for low stachyose was found to be stc1a, and it is a recessive allele that may have been caused by loss of 
function in a synthase enzyme involved in the RFO biosynthetic pathway. Recently, other researchers [32], us-
ing QTL analysis, were able to detect a locus of a major gene that contributes to low stachyose on LG C2. The 
candidate gene containing this mutation (Rsm1) in soybean was suggested to be galactosyltransferase gene, and 
shared close homology with raffinose and stachyose synthase genes from other plant species. It is suggested that 
although the putative enzyme encoded by Rsm1 is involved with stachyose biosynthesis, further research on 
gene expression and enzyme activity is needed to clarify the role of Rsm1 in seed sucrose and raffinose accumu-
lation. In a very recent research published in Crop Science, QTLs associated with seed sucrose content, using 
SSR and SNP markers in a low sucrose line, MFS-553 crossed with a high sucrose plant introduction, PI 243545, 
were identified [38]. They developed an F2-derived QTL mapping population and then genotyped 220 F2:3 
lines through polymorphic SSR markers. They used a total of 94 F3:4 lines derived from the F2:3 population, 
using 5361 SNP markers spanning 20 chromosomes, of which 2016 were polymorphic. After screening F2:3, 
F3:5, and F3:6 lines for sucrose, they found three novel QTLs for seed sucrose on chromosomes 5, 9, and 16 and 
accounted for 46%, 10%, and 8%, respectively, of the phenotypic variation for sucrose content. Using SSR and 
SNP markers [38], it was possible to identify sucrose QTL on chromosome 5, positioning between Sat_344 and 
Sat_407 and concluded that QTL identified by both marker could be the same QTL for sucrose. Also, they 
found a sucrose QTL on chromosome 16 identified by SSR markers in F2:3 population, positioning between 
Sat366 and Satt431. Using SNPs markers for an advanced F3-derived population, they showed that SNP marker 
ss249186914 linked to the sucrose QTL on chromosome 16. The three QTLs explained a total of 64% of varia-
tion in seed sucrose content and concluded that the total phenotypic variation was less than the heritability esti-
mate (0.74), indicating involvement of other minor QTL. It was concluded that the use of SSR markers helped 
identified only few SSR markers associated with sucrose, but the use of dense SNP markers significantly im-
proved the association between SNP markers and the sucrose [38]. The QTLs and associated markers could be 
used for MAS on soybean seed sucrose content.  

Since limited research was done in this area of QTL mapping for seed sugars, the objective of this study was 
to identify more QTLs related to seed sucrose, raffinose, and stachyose QTLs based on natural variation of seed 
sugars. We hypothesized that the current population had adequate natural variation to detect further QTLs. In 
this study, the “MD96-5722” and “Spencer” genetic linkage map of soybean [39] was used to identify the ge-
nomic regions containing QTL that controlled sugars content in soybean seeds using 5376 Single Nucleotide 
Polymorphism (SNP) markers from the Illumina Infinium SoySNP6K BeadChip array [39] [40]. 

2. Materials and Methods 
2.1. Plant Material and Seed Analysis for Sugars 
Ninety-two F5:7 recombinant inbred lines (RILs) developed by crossing the line MD 96-5722 with Spencer were 
used to generate phenotypic and genotypic data. Detailed information of the development of the RIL population 
can be found [39]. The population was grown in pots at Fayetteville State University, Fayetteville, NC in 2012 
with 25 cm plant to plant spaces. Briefly, plants were grown in pots in GrowmixTM in a greenhouse. The Grow-
mixTM used was a ready-made, peat based growing mix containing the Canadian Sphagnum Peat Moss, contain-
ing perlite, vermiculite, limestone, and a wetting agent (The Canadian Sphagnum Peat Moss Association; 
http://www.peatmoss.com/) [41]. The plants were kept in the greenhouse at 25˚C ± 10˚C under natural daylight 
from May 1st to October 4th. No additional fertilizers or insecticides were used. At maturity stage, parents and 
RILs seeds were harvested and analyzed for the three major sugars: sucrose, raffinose and stachyose content (%). 
These sugars were quantified using near infrared reflectance (NIR) with an AD 7200 array feed analyzer (Perten, 
Springfield, IL) as described previously [36]. Briefly, about 25 g of seeds from each line were ground using a 
Laboratory Mill 3600 (Perten, Springfield, IL). The development of the updated calibration equation was based 

http://www.peatmoss.com/
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on the use of the method of using a sufficient number of samples, resulting in sufficiently accurate estimations 
of sugar concentrations. Determination of sugar concentrations was performed on the basis of percent dry matter 
of the seeds, and sugar analyses were performed on a seed dry matter basis [36] [42] [43]. Determination of 
soybean seed sugars (sucrose, raffinose, and stachyose) using NIR technology is well-established, well-accepted, 
and accurate, and has been used for breeding selection for seed composition, including seed protein, oil, fatty 
acids, amino acids, and sugars [36] [42]-[45].  

2.2. Genetic Map and QTL Identification 
The MD 96-5722 by Spencer recombinant inbred lines were genotyped using the SoySNP6K Illumina Infi-
niumBeadChip array which produced 5,376 SNPs. A dense SNP-based genetic linkage map [39] [40] was con-
structed using JoinMap 4 [46] in which composite interval mapping (CIM) was used to detect QTL from geno-
typic and phenotypic data using WinQTLCart 2.5 software (http://statgen.ncsu.edu/qtlcart/WQTLCart.htm) [47]. 
The threshold settings were setup at 1,000 permutations, 0.05 significant level, and 2 cM walking speed. The 
Model 6 with its default parameters; backward stepwise regression method, window size of 10 cM, control 
marker numbers of 5; have been chosen to running WinQTLCart [47].  

3. Results 
Analysis of variance, mean values, standard deviation of parental and RILs (lines) for sucrose, raffinose, and 
stachyose content (%) are presented in Table 1. Variations among RILs were narrower for stachyose (CV = 
6.73%) than raffinose (CV = 11.11%) and sucrose (CV = 12.37%). The frequency distribution of seed sucrose, 
raffinose, and stachyose concentrations of RILs was different from each other. Frequency distributions for su-
crose, raffinose, and stachyose were shown (Figure 1). However, the skewness and kurtosis values for these  
 

 
Figure 1. Frequency distribution for seed sucrose, raffinose, and sta-
chyose in the MD96-5722 by “Spencer” RIL population in soybean. 

http://statgen.ncsu.edu/qtlcart/WQTLCart.htm
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traits were <1.00 (Table 1). Positive but non-significant correlation between sucrose and raffinose (r = 0.32); 
sucrose and stachyose (r = 0.13); raffinose and stachyose (r = 0.03) was observed (Table 1). Additive effects 
(negative or positive) indicated positive or negative interactions between these sugars and their biochemical 
synthesis pathways. 

Composite Interval Mapping (CIM) identified 14 QTLs for sucrose, raffinose, and stachyose in eight different 
chromosomes (Chr) and linkage groups (LG) (Table 2; Figure 2 and Figure 3). Three QTLs for seed sucrose 
content were identified on LGs; N (Chr3), K (Chr9) and E (Chr15) with the LOD scores of 21.2, 3.24 and 3.24, 
respectively. Seven QTL was identified for seed raffinose on LGs; D1a (Chr1), N (Chr3), C2 (Chr6), K (Chr9), 
B2 (Chr14), and J (Chr16), each of LG contained one QTL, except LG B2 (Chr14) which contained two QTLs. 
The LOD scores for these seven QTL ranged from 20.08 to 32.36, which were very high. Four QTL were identi-
fied for seed stachyose content on LG D1a (Chr1), C2 (Chr6), H (Chr12), and B2 (Chr14). Eight of the chro-
mosomes of soybean contained QTLs for sugar contents in the MD96-5722 by Spencer RIL population.  
 
Table 1. Mean values (Mean ± SD), ranges, coefficients of variation (CV%), distributions, and correlations among seed su-
crose, raffinose, and stachyose contents of the parents MD96-5722, and Spencer and their RIL F5:7 population. 

Traits 
Mean ± SD  RIL  Frequency Distribution  Correlation 

MD “Spencer” RIL Range CV (%) Skewness Kurtosis Sucrose Raffinose Stachyose 

Sucrose 3.75 ± 0.02 1.08 ± 0.10 3.96 ± 0.49 3.01 - 5.00 12.37 −0.18 −0.83 1 0.32 0.13 

Raffinose 0.30 ± 0.01 0.31 ± 0.01 0.45 ± 0.05 0.40 - 0.51 11.11 0.04 −2.04 0.32 1 0.03 

Stachyose 1.48 ± 0.13 2.15 ± 0.13 3.12 ± 0.21 2.60 - 3.60 6.73 0.07 −0.04 0.13 0.03 1 

 
Table 2. Chromosomal locations and parameters associated with the quantitative trait loci (QTL) of components of seed 
sugars content in the MD 96-5722 and Spencer RIL population of soybean. 

No. Trait QTL LG/Chr 
†Peak  

Position  
(cM) 

‡2-LOD  
Support  

Interval (cM) 
Markers Interval 

§Peak  
LOD 

#R2 
††Additive 

Effect 

1 Sucrose qSUC001 N/Chr3 21.10 20.80 - 21.10 ss244980861 - ss245114421 3.36 0.08 0.10 

2 Sucrose qSUC002 K/Chr9 0.07 0.06 - 0.07 ss246864598 - ss246876159 3.24 0.08 −0.08 

3 Sucrose qSUC003 E/Chr15 1.50 0.40 - 1.90 ss248604753 - ss248616287 3.24 0.68 0.06 

4 Raffinose qRAF001 D1b/Chr1 15.7 14.70 - 15.80 ss244562583 - ss244554797 26.28 0.73 −3.12 

5 Raffinose qRAF002 N/Chr3 17.70 17.50 - 17.70 ss245003089 - ss245010765 25.64 0.73 0.01 

6 Raffinose qRAF003 C2/Chr6 7.20 7.10 - 7.20 ss246088874 - ss246091245 20.08 0.73 −0.01 

7 Raffinose qRAF004 K/Chr9 0.06 0.05 - 0.06 ss246872868 - ss246868120 32.36 0.76 0.03 

8 Raffinose qRAF005 B2/Chr14 3.00 1.90 - 3.10 ss248293401 - ss248275088 26.06 0.74 0.01 

9 Raffinose qRAF006 B2/Chr14 12.00 10.90 - 16.7 ss248293401 - ss248275088 27.78 0.74 0.03 

10 Raffinose qRAF007 J/Chr16 11.00 9.90 - 12.30 ss248983974 - ss248977568 28.58 0.73 0.03 

11 Stachyose qSTA001 D1b/Chr1 17.2 17.00 - 17.40 ss244552971 - ss244555288 3.62 0.27 0.05 

12 Stachyose qSTA002 C2/Chr6 1.50 1.20 - 1.90 ss246024749 - ss246041195 3.25 0.08 −0.06 

13 Stachyose qSTA003 H/Chr12 1.50 0.60 - 4.5 ss247690345 - ss247704473 4.68 0.08 0.04 

14 Stachyose qSTA004 B2/Chr14 20.70 20.60 - 21.60 ss248278947 - ss248330608 3.47 0.28 −0.02 

†Position of peak LOD value on composite maps described previously (Coles et al., 2010); ‡The positions that define the two LOD intervals around 
the position of peak likelihood for the QTL; §The log of odds (LOD) value at the position of peak likelihood of the QTL; #R2 estimates the proportion 
of RIL mean variance (%) explained by the detected QTL; ††A positive number in additive effect of the QTL indicates that the allele for susceptibility. 



M. Akond et al. 
 

 
969 

 
Figure 2. Locations of SNP markers and the QTL that underlie seed sucrose (qSUC), raffinose (qRAF) and stachyose 
(qSTA) contents (% on dry based) in the MD96-5722 by “Spencer” RIL population on molecular linkage groups (LGs) D1a, 
N, C2, K) using 5376 Single Nucleotide Polymorphism (SNP) markers. 

 

 
Figure 3. Locations of SNP markers and the QTL that underlie seed sucrose (qSUC), raffinose (qRAF) and stachyose 
(qSTA) contents (% on dry based) in the MD96-5722 by “Spencer” RIL population on linkage groups (LGs) H, B2, E, and 
J using 5376 Single Nucleotide Polymorphism (SNP) markers. 
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4. Discussion 
In contrast to the results here, bimodal distributions for sucrose, raffinose, and stachyose contents with single 
gene segregation ratios in the V99-5089-derived population were previously found [4]. It was reported normal 
distribution in soybean sucrose contents in different breeding populations [19]-[21]. A normal distribution was 
found for stachyose content in this study, but not for sucrose and raffinose. The positive non-significant correla-
tions between sucrose and raffinose found in this study were supported by previous reports [20] [21] who ob-
served positive correlation between high oligosaccharides (raffinose and stachyose) and high sucrose, which in-
dicated that developing soybean lines with high sucrose, low raffinose and low stachyose will not be easily 
achieved. Unlike the correlations observed in this study, others [4] [32], reported strong negative correlations 
between sucrose and raffinose (r = −0.88), and between sucrose and stachyose (r = −0.96) concentrations. 
Therefore, selection of soybean lines with high sucrose, low raffinose, and low stachyose contents in seed will 
be possible.  

To date, the genetic basis of sucrose, raffinose, and stachyose contents has not been fully determined in soy-
bean, although previous studies identified QTLs associated with seed sucrose, raffinose, and stachyose contents 
in different populations [19]-[21] [32] [48]-[50]. Among the 14 potential QTL of this study, three QTL were for 
seed sucrose content. The region of Chr15 (LG E) that has been detected in this study and associated with su-
crose was detected by others [49], but the position of the QTL was different. The two of the regions underlying 
seed sucrose QTLs identified in this study on LG N (Chr3) and K (Chr9) are additions to the loci previously re-
ported on LGs D1b (Chr2), A1 (Chr5), M (Chr7), A2 (Chr8), B1 (Chr11), H (Chr12), F (Chr13), G (Chr18), J 
(Chr16), L (Chr19), and I (Chr20) [19]-[21] [49] [50].  

The seven QTLs associated with seed raffinose are new. One region underlying seed stachyose QTL detected 
in this study with stachyose on C2 (Chr6) was on the same LG that two stachyose QTL were detected by others 
[32] [50], but the positions of the QTL were different. The other three regions underlying seed stachyose QTL 
identified in this study were additions to the previously detected QTLs, identified by others [32] [50] on LG A1 
(Chr5), M (Chr7), B1 (Chr11), and I (Chr20). Only two QTL underlying seed sucrose and stachyose contents in 
this study were previously mapped. The percentage contribution of most QTLs (12 QTLs) on different LG and 
chromosome to the phenotypic variation ranged from low (8%) to moderate (26%), except for sucrose for two 
QTLs (qSUC001 on LG N/Chr3 and qSUC003 on LG E/Chr15). For these two QTLs, the percentage contribu-
tion to the phenotypic variation was high (more than 70%). The different QTLs reported for the same sugars, 
reported here and elsewhere, could be because many of the previously reported QTLs were discovered through 
simple linear regression methods (SIM) and not by composite interval mapping (CIM), or use of different types 
of marker systems or different populations. Therefore, the QTLs detected in the present study and their asso-
ciated molecular makers provided new additional knowledge that helps breeders to adopt breeding strategies to 
develop cultivars or germplasm with desirable soybean seed quality traits such as higher sucrose and lower raf-
finose and stachyose. 

5. Conclusion 
Our research shows that out of 20 LG/Chr of soybean we identify 14 QTL on 8 different LG/Chr which underlie 
the three main sugars in the MD96-5722 by Spencer RIL population of soybean. Since higher seed sucrose is a 
desirable trait and higher seed raffinose and stachyose are undesirable for seed quality in soybean, selection for 
beneficial alleles of these QTL could facilitate breeding strategies to develop soybean lines with higher concen-
trations of sucrose and lower levels of raffinose and stachyose. It is important to note that the lack of a high cor-
relation among the sugars, suggests that it could be possible to genetically manipulate content of these sugars 
independently. Expansion of our existing linkage map would be needed for more comprehensive examination of 
the genetic basis for these traits. Since seed sugars content are influenced by the growing conditions, greenhouse 
and field experiments will be conducted to further study the stability of these traits under drought and high heat. 
We believe that the current research contributes valuable knowledge and new additional QTLs associated with 
seed composition, especially seed sugars. 
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