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Abstract

In this paper we show that a log-convex function satisfies Hadamard’s inequality, as well as we give an ex-

tension for this result in several directions.
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1. Introduction

Let f:lcR—>R beaconvex mapping of the interval
I of real numbers and a, bel with a < b. The fol-
lowing double inequality

b f(a)+f(b
JCELA PR PP PRI L C R
2 b-a< 2

is known in the literature as Hadamard’s inequality. In
[1], Fejer generalized the inequality (1.1) by proving that

if g:[a,b] >R is nonnegative, integrable and symmet-

. a+b . .
ricto X= ,and if f is convex on [a,b], then

A positive function f is log-convex on a real interval
[a,b] ifforall x,ye[a,b] and 21€[0,1], we have

fAx+(1=2)y)< 4 (x) F7(y). (1.3)

If the above inequality reversed, then f is termed
log-concave. We define for X,y >0

X—y
L(x,y)={Inx-Iny’
X, X=Yy

X#Y

In [2] the following result is achieved:
Theorem 1.1. Let f be a positive log-convex function
on [a, b]. Then
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bi—abf(a)dtgL(f(a),f(a)). (1.4)

a

For f a positive log-concave function, the inequality is
reversed.

2. Lemmas

The following lemmas are needed for our aim.
Lemma 2.1. Let 0<t<l1, then the following ine-
quality holds

t'(1-t)" >1/2. 2.1)
Proof. Set
f(t)=In(t'(1-0)" )~ n1/2.
We have
f'(t)=Int—In(1-t)=0, for t=1/2.

() =1 >0

Therefore f attains its minimum at t=1/2 which is
1/2 Hence f(t)>0 which implies e'™>0,and (2.1)
follows.

Lemma 2.2. For O0<a<b,0<t<1, the following
inequality holds

a'h', t<1/2
Jab > . / (2.2)
a'b'™, t=1/2,

and for a>0, b>0, 0<t<1, the following inequality
holds

2Jab <a'h't +a bt <a+b. (2.3)
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Proof. For t<1/2, we have (b/a)” >(b{ a) , which
implies v/ab>a'"'b', and for t>1/2, (a/b) " >(b/a)’,
which implies /ab > alb™, We also have

tot et
(azb 2 -a? sz >0, which implies

2/ab <ab't+a"'b'.
Set f(t)=a+b-a'h'™"—a"b'. Then, on keeping b
fixed, we have

f'(a)=1-ta""b"™" —(1-t)a™b' =0, for a=b.
f"(a)=-t(t-1)a b +t(1-t)ta™""b".

As [f”(a J =2t(1-t)a™' >0, f attains its mini-
mum at a=b which is 0, therefore f(a)>0, and
(2.3) is satisfied.

Although some of the coming results (Lemma 2.3 and
theorem 3.1) are known, but we prove them by new sim-
ple method.

Lemma 2.3. Let a,b>0, then the following inequal-
ity holds

-b a+b
Jab< 20 _<BTD 24
Ina—Inb 2 4)
Proof. Left inequality. Let us assume that b >a. Set
f(x)=x"-x"-Inx, xxI. (2.5)
' _ 12 132 >0 as
f'(x) FX T HSx x>0

2
(x M =x) 20= x4 x 2 2x7

Therefore f is non-decreasing, and that implies f (x)
> f(1)=0. The result follows by putting x=b/a in
2.5).

Right inequality. Let a>b, andlet x=a/b. Set

f(X)=1nX—2X_1, x>1 (2.6)
X+
We have
1 4 2 1 4
f'(x)=—- >0 as (x-1)">20=>—=> )
() X (x+1)2 (x=1) X (x+l)2

Then f is non-decreasing, and hence f (x)> f (1)=
The result follows by putting x=a/b in (2.6).
Lemma 2.4. The function

f(x)=)1(—_1, x>1 @7
nXx
is non-decreasing.
Proof.
f,(x)zlnx+x"—1: g(x)
(ln X)2 (1n X)2 .
, 1 1
)= =0

therefore g is non-decreasing. Since ¢(1)=0, then
g(x)>0, and hence f'(x)>0, that is f is non-de-
creasing.

3. Theorems

Theorem 3.1. Let f be a positive log-convex function on
[a,b], then f satisfies (1.1).

Proof. This can be achieved immediately as the
log-convex function is convex which follows from the
fact that “Every increasing convex function of a convex
function is convex” which implies that f(x)=e e s
convex. Or the proof can be achieved by following the
definition:

Making use of lemma 2.2, we have

()5

IN
U
—_ —_
D)

— dx_—J'f (ta+

Tf(aer X+dexsbiafff'/z(a+b—x)f1/2(x)dx
ab V2
Uf a+b- x ] U
b
1

JI/Z

—t)b)dt+%.1[ f((1-t)a+tb)dt

o'—,—- D-

2

The following giving a refinement to theorem 3.1.

£ (a) 4 (b)+ f”( ) 1(0) y F (@)

b))+ 1(6)
d 2

Theorem 3.2. Let f be a log convex function. Then the following inequality holds

f(a+bj ( I\/_dXJ:ﬁ:f

Proof.
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f(b)-f(a) _f(a)+f(b) 3.1)
nf(b)-mf(a) 2
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f(a;bj (blai f(a+bj bla)i f(a+b X+dex
J'\/\/f a+b-x) \/f(x)dx<b1a[im jm[i\/_de =%aimd&

which implies

(23 0 s o010

in view of [2] and Lemma 2.3. Theorem 3.3. Let f be log convex, g is positive, inte-
The following presents an extension to Fejer’s gener- grable and symmetric to x= (a+b)/2 Then the fol-
alization (1.2) for log-convex functions lowing inequality holds

(=52 g(x)de <[] f(x)g(x)dx]zsif(xm(x)dx
f

a f (b b f f(b)® G2
S(b_a)lnfgbtln(?ga)jg( Jdx<(b-a) @ ()fg(x)dx
Proof.
(a+bj.f\/_d J- (a+b X+X)\/g dx<j\/f”2(a+b X)f1/2 \/g
12 12

N 2 (a+b-x)g"*(@+b-x)\/f"*(x)g"*(x) dxs(j\/f a+b—x)g(a+b—x)dx] (I\/WJ
:imd“({f(xm( )dx ]/U ]V (jf vaz b-a)”

which implies

["Hbj[f\/idxj <[IJ ] (b-a) If (x)dx
Now, for 0<t<1/2, we have
[f(x)a( ljf ta+(1-t)b)g(ta+(1-t)b)dt<(b- a)jft a)f"'(b)g(ta+(1-t)b)dt
f(

_(b—a)w/f(a)f(b).[ (ta+(1-t)b)dt< m:gbi—lfa())!g(x)dx,

0
in view of Lemmas 2.2 and 2.3. Also, we have for t>1/2,

[+(x)g(x)ax=(b-a)] f (1-t)a+tb)g((1-t)a+tb)dt=(ba)] " (@) (b)g((1-t)a+tb)dt

0

<(b-a) f(a)f(b)jg((l—t)a+tb)dt_Mjg X)dx

0 Inf(b)-Inf(a);
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in view of Lemmas 2.2 and 2.3. Consequently, we obtain, by Lemma 2.2,

b f( b f(a)+f(b)?
f _ d <—2 7 d
'e[ lnf( 1nf '[ X= 2 _a[g(x) X
This completes the proof of the theorem. Theorem 3.4. Assume that f:1 —> R be an increas-
The following is another refinement of theorem 3.1. ing log-convex function. Then for all te[O,l], we have
f(a)-f(b f f(b
f[a+b)<w a,b) jf (2)-f() _f(a)+ (), (3.3)
2 lnf( )—In f (b) 2
where
3a+b a+3b
b)=,|f f 34
woo- [ ) oo
f(ta+(1-t)b)—f f(b)-f(ta+(1-t)b
W(t)Z(l—t) (a+( ) ) (a) +t ( ) (a+( ) ) . 3.5)
Inf(ta+(1-t)b)-Inf(a) Inf(b)-Inf(ta+(1-t)b)
Proof. We have via Lemmas 2.3 and 2.4
a+b
2 b
f(a+bj:f(l3a+b+la+3bjg\/f(3:;1+t>jf(a+3bj:W(t)S 2 P ra [ 1 (x)ax
2 2 4 2 4 4 4 b-ail 1 aib
a+b
21 2 b 1 ® 1 (tera-ob b
a2 ! f(x)dx&f(x)dx =m£f(x)dx=m .! f(x)dx+ta+(_1[7t)bf(x)dx
1 ta+(1-t)b 1 b
=(1-9 —F—— f(X)dx |+t] ——— f (x)dx
e | ], 1000
f(ta+(1-t)b)—f f(b)-f(ta+(1-t)b
nf(ta+ t)b)-Inf(a) Inf(b)- 1nf(ta+(1 t)b)
<(1—) f(b)-f(a) ot f(b)-f(a) _ f(b)-f(a) - f(a)+f(b)
N nf(b)-lnf(a) mnf(b)-nf(a) Inf(b)-Inf(a)" 2 '
Theorem 3.5. Let f is log-convex and g is the following inequality holds
non-negative, integrable, (1/p)+(1/q)=1, p>1, then
(3.6)

a

i F(x)al)a S(b;a 1;:53:;:(2)}”9 ﬁgq (X)del/q.

Proof. We have, via Holder’s inequality

3f(x)g(x)dxg@fp(x)dxj”@gq<x)dxj“ (o0 rr(as-mpa] o0

j
(b ajfm v )dtjvp@gq(x)dxjvq {b a) f° (b I[:(—E)J dtJUg (X)dle/q

p Inf(a)-Inf(b

:(b_a fp(a)_fp(b)))vp@g‘KX)devq
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