

Refinements to Hadamard's Inequality for Log-Convex Functions

Waadallah T. Sulaiman

Department of Computer Engineering, College of Engineering, University of Mosul, Mosul, Iraq E-mail: waadsulaiman@hotmail.com Received April 25, 2011; revised May 25, 2011; accepted May 28, 2011

Abstract

In this paper we show that a log-convex function satisfies Hadamard's inequality, as well as we give an extension for this result in several directions.

Keywords: Log-Convex Functions, Hadamard's Inequality, Integral Inequality

1. Introduction

Let $f: I \subset \Re \to \Re$ be a convex mapping of the interval I of real numbers and $a, b \in I$ with a < b. The following double inequality

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) dx \le \frac{f(a)+f(b)}{2}$$
 (1.1)

is known in the literature as Hadamard's inequality. In [1], Fejer generalized the inequality (1.1) by proving that if $g:[a,b] \to \Re$ is nonnegative, integrable and symmetric to $x=\frac{a+b}{2}$, and if f is convex on [a,b], then

$$f\left(\frac{a+b}{2}\right)\int_{a}^{b}g(x)dx \le \int_{a}^{b}f(x)g(x)dx$$

$$\le \frac{f(a)+f(b)}{2}\int_{a}^{b}g(x)dx.$$
(1.2)

A positive function f is log-convex on a real interval [a,b] if for all $x, y \in [a,b]$ and $\lambda \in [0,1]$, we have

$$f(\lambda x + (1 - \lambda)y) \le f^{\lambda}(x)f^{1-\lambda}(y). \tag{1.3}$$

If the above inequality reversed, then f is termed log-concave. We define for x, y > 0

$$L(x,y) = \begin{cases} \frac{x-y}{\ln x - \ln y}, & x \neq y \\ x, & x = y \end{cases}$$

In [2] the following result is achieved:

Theorem 1.1. Let f be a positive log-convex function on [a, b]. Then

$$\frac{1}{b-a} \int_{a}^{b} f(a) dt \le L(f(a), f(a)). \tag{1.4}$$

For f a positive log-concave function, the inequality is reversed.

2. Lemmas

The following lemmas are needed for our aim.

Lemma 2.1. Let 0 < t < 1, then the following inequality holds

$$t^{t} (1-t)^{1-t} \ge 1/2.$$
 (2.1)

Proof. Set

$$f(t) = \ln(t^{t}(1-t)^{1-t}) - \ln 1/2.$$

We have

$$f'(t) = \ln t - \ln(1-t) = 0$$
, for $t = 1/2$.
$$f''(t) = \frac{1}{t} + \frac{1}{1-t} > 0.$$

Therefore f attains its minimum at t = 1/2 which is 1/2 Hence f(t) > 0 which implies $e^{f(t)} > 0$, and (2.1) follows.

Lemma 2.2. For $0 < a < b, 0 \le t \le 1$, the following inequality holds

$$\sqrt{ab} \ge \begin{cases} a^{1-t}b^t, & t \le 1/2 \\ a^tb^{1-t}, & t \ge 1/2, \end{cases}$$
(2.2)

and for a > 0, b > 0, $0 \le t \le 1$, the following inequality holds

$$2\sqrt{ab} \le a^t b^{1-t} + a^{1-t} b^t \le a + b. \tag{2.3}$$

Proof. For $t \le 1/2$, we have $(b/a)^{1/2} \ge (b/a)^t$, which implies $\sqrt{ab} \ge a^{1-t}b^t$, and for $t \ge 1/2$, $(a/b)^{1/2} \ge (b/a)^t$, which implies $\sqrt{ab} \ge a^tb^{1-t}$. We also have

$$\left(a^{\frac{t}{2}}b^{\frac{1-t}{2}}-a^{\frac{1-t}{2}}b^{\frac{t}{2}}\right)^{2} \geq 0 \text{ , which implies}$$

 $2\sqrt{ab} \le a^t b^{1-t} + a^{1-t} b^t.$

Set $f(t) = a + b - a^t b^{1-t} - a^{1-t} b^t$. Then, on keeping b fixed, we have

$$f'(a) = 1 - ta^{t-1}b^{1-t} - (1-t)a^{-t}b^{t} = 0, \text{ for } a = b.$$

$$f''(a) = -t(t-1)a^{t-2}b^{1-t} + t(1-t)ta^{-t-1}b^{t}.$$

As $[f''(a)]_{a=b} = 2t(1-t)a^{-1} \ge 0$, f attains its minimum at a=b which is 0, therefore $f(a) \ge 0$, and (2.3) is satisfied.

Although some of the coming results (Lemma 2.3 and theorem 3.1) are known, but we prove them by new simple method.

Lemma 2.3. Let a,b>0, then the following inequality holds

$$\sqrt{ab} \le \frac{a-b}{\ln a - \ln b} \le \frac{a+b}{2},\tag{2.4}$$

Proof. Left inequality. Let us assume that b > a. Set

$$f(x) = x^{1/2} - x^{-1/2} - \ln x, \quad x \ge 1.$$

$$f'(x) = \frac{1}{2} x^{-1/2} + \frac{1}{2} x^{-3/2} - x^{-1} \ge 0 \quad \text{as}$$

$$\left(x^{-1/4} - x^{-3/4}\right)^2 \ge 0 \Rightarrow x^{-1/2} + x^{-3/2} \ge 2x^{-1}.$$
(2.5)

Therefore f is non-decreasing, and that implies $f(x) \ge f(1) = 0$. The result follows by putting x = b/a in (2.5).

Right inequality. Let $a \ge b$, and let x = a/b. Set

$$f(x) = \ln x - 2\frac{x-1}{x+1}, \quad x \ge 1.$$
 (2.6)

We have

$$f'(x) = \frac{1}{x} - \frac{4}{(x+1)^2} \ge 0$$
 as $(x-1)^2 \ge 0 \Rightarrow \frac{1}{x} \ge \frac{4}{(x+1)^2}$.

Then f is non-decreasing, and hence $f(x) \ge f(1) = 0$. The result follows by putting x = a/b in (2.6).

Lemma 2.4. The function

$$f(x) = \frac{x-1}{\ln x}, \quad x \ge 1 \tag{2.7}$$

is non-decreasing.

Proof.

$$f'(x) = \frac{\ln x + x^{-1} - 1}{\left(\ln x\right)^2} = \frac{g(x)}{\left(\ln x\right)^2}.$$
$$g'(x) = \frac{1}{x} - \frac{1}{x^2} \ge 0,$$

therefore g is non-decreasing. Since g(1) = 0, then $g(x) \ge 0$, and hence $f'(x) \ge 0$, that is f is non-decreasing.

3. Theorems

Theorem 3.1. Let f be a positive log-convex function on [a,b], then f satisfies (1.1).

Proof. This can be achieved immediately as the log-convex function is convex which follows from the fact that "Every increasing convex function of a convex function is convex" which implies that $f(x) = e^{\ln f(x)}$ is convex. Or the proof can be achieved by following the definition:

Making use of lemma 2.2, we have

$$f\left(\frac{a+b}{2}\right) = \frac{1}{b-a} \int_{a}^{b} f\left(\frac{a+b-x+x}{2}\right) dx \le \frac{1}{b-a} \int_{a}^{b} f^{1/2} (a+b-x) f^{1/2} (x) dx$$

$$\le \frac{1}{b-a} \left(\int_{a}^{b} f(a+b-x) dx\right)^{1/2} \left(\int_{a}^{b} f(x) dx\right)^{1/2}$$

$$= \frac{1}{b-a} \int_{a}^{b} f(x) dx = \frac{1}{2} \int_{0}^{1} f(ta+(1-t)b) dt + \frac{1}{2} \int_{0}^{1} f((1-t)a+tb) dt$$

$$\le \int_{0}^{1} \frac{f'(a) f^{1-t}(b) + f^{1-t}(a) f'(b)}{2} dt \le \frac{f(a) + f(b)}{2} \int_{0}^{1} dt = \frac{f(a) + f(b)}{2}.$$

The following giving a refinement to theorem 3.1.

Theorem 3.2. Let f be a log convex function. Then the following inequality holds

$$f\left(\frac{a+b}{2}\right) \le \left(\frac{1}{b-a}\int_{a}^{b} \sqrt{f(x)} dx\right)^{2} \le \frac{1}{b-a}\int_{a}^{b} f(x) dx \le \frac{f(b)-f(a)}{\ln f(b)-\ln f(a)} \le \frac{f(a)+f(b)}{2}$$

$$(3.1)$$

Proof.

$$\sqrt{f\left(\frac{a+b}{2}\right)} = \frac{1}{(b-a)} \int_{a}^{b} \sqrt{f\left(\frac{a+b}{2}\right)} dx = \frac{1}{(b-a)} \int_{a}^{b} \sqrt{f\left(\frac{a+b-x+x}{2}\right)} dx$$

$$\leq \frac{1}{(b-a)} \int_{a}^{b} \sqrt{\sqrt{f(a+b-x)}} \sqrt{f(x)} dx \leq \frac{1}{b-a} \left(\int_{a}^{b} \sqrt{f(a+b-x)} dx\right)^{1/2} \left(\int_{a}^{b} \sqrt{f(x)} dx\right)^{1/2} = \frac{1}{b-a} \int_{a}^{b} \sqrt{f(x)} dx,$$

which implies

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{\left(b-a\right)^2} \left(\int_a^b \sqrt{f(x)} dx\right)^2 \le \frac{1}{\left(b-a\right)} \int_a^b f(x) dx \le \frac{f(b)-f(a)}{\ln f(b)-\ln f(a)} \le \frac{f(a)+f(b)}{2}$$

in view of [2] and Lemma 2.3.

The following presents an extension to Fejer's generalization (1.2) for log-convex functions

Theorem 3.3. Let f be log convex, g is positive, integrable and symmetric to x = (a+b)/2 Then the following inequality holds

$$f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b}\sqrt{g(x)}dx\right)^{2} \leq \left(\int_{a}^{b}\sqrt{f(x)g(x)}dx\right)^{2} \leq \int_{a}^{b}f(x)g(x)dx$$

$$\leq \left(b-a\right)\frac{f(b)-f(a)}{\ln f(b)-\ln f(a)}\int_{a}^{b}g(x)dx \leq \left(b-a\right)\frac{f(a)+f(b)}{2}\int_{a}^{b}g(x)dx.$$
(3.2)

Proof.

$$\sqrt{f\left(\frac{a+b}{2}\right)} \int_{a}^{b} \sqrt{g(x)} dx = \int_{a}^{b} \sqrt{f\left(\frac{a+b-x+x}{2}\right)} \sqrt{g(x)} dx \le \int_{a}^{b} \sqrt{f^{1/2}(a+b-x)} f^{1/2}(x) \sqrt{g(x)} dx$$

$$= \int_{a}^{b} \sqrt{f^{1/2}(a+b-x)} g^{1/2}(a+b-x) \sqrt{f^{1/2}(x)} g^{1/2}(x) dx \le \left(\int_{a}^{b} \sqrt{f(a+b-x)} g(a+b-x) dx\right)^{1/2} \left(\int_{a}^{b} \sqrt{f(x)} g(x) dx\right)^{1/2}$$

$$= \int_{a}^{b} \sqrt{f(x)} g(x) dx \le \left(\int_{a}^{b} f(x) g(x) dx\right)^{1/2} \left(\int_{a}^{b} dx\right)^{1/2} = \left(\int_{a}^{b} f(x) g(x) dx\right)^{1/2} (b-a)^{1/2}$$

which implies

$$f\left(\frac{a+b}{2}\right)\left(\int_{a}^{b}\sqrt{g(x)}dx\right)^{2} \le \left(\int_{a}^{b}\sqrt{f(x)g(x)}dx\right)^{2} \le \left(b-a\right)\int_{a}^{b}f(x)g(x)dx$$

Now, for $0 \le t \le 1/2$, we have

$$\int_{a}^{b} f(x)g(x)dx = (b-a)\int_{0}^{1} f(ta+(1-t)b)g(ta+(1-t)b)dt \le (b-a)\int_{0}^{1} f'(a)f^{1-t}(b)g(ta+(1-t)b)dt$$

$$\le (b-a)\sqrt{f(a)f(b)}\int_{0}^{1} g(ta+(1-t)b)dt \le \frac{f(b)-f(a)}{\ln f(b)-\ln f(a)}\int_{a}^{b} g(x)dx,$$

in view of Lemmas 2.2 and 2.3. Also, we have for $t \ge 1/2$,

$$\int_{a}^{b} f(x)g(x)dx = (b-a)\int_{0}^{1} f((1-t)a+tb)g((1-t)a+tb)dt \le (b-a)\int_{0}^{1} f^{1-t}(a)f^{1-t}(b)g((1-t)a+tb)dt$$

$$\le (b-a)\sqrt{f(a)f(b)}\int_{0}^{1} g((1-t)a+tb)dt \le \frac{f(b)-f(a)}{\ln f(b)-\ln f(a)}\int_{a}^{b} g(x)dx,$$

in view of Lemmas 2.2 and 2.3. Consequently, we obtain, by Lemma 2.2,

$$\int_{a}^{b} f(x)g(x)dx \le \frac{f(b) - f(a)}{\ln f(b) - \ln f(a)} \int_{a}^{b} g(x)dx \le \frac{f(a) + f(b)}{2} \int_{a}^{b} g(x)dx.$$

This completes the proof of the theorem.

The following is another refinement of theorem 3.1.

Theorem 3.4. Assume that $f: I \to \Re$ be an increasing log-convex function. Then for all $t \in [0,1]$, we have

$$f\left(\frac{a+b}{2}\right) \le w(a,b) \le \int_{a}^{b} f(x) dx \le W(t) \le \frac{f(a)-f(b)}{\ln f(a)-\ln f(b)} \le \frac{f(a)+f(b)}{2},$$
(3.3)

where

$$w(a,b) = \sqrt{f\left(\frac{3a+b}{4}\right)f\left(\frac{a+3b}{4}\right)},\tag{3.4}$$

$$W(t) = (1-t)\frac{f(ta+(1-t)b)-f(a)}{\ln f(ta+(1-t)b)-\ln f(a)} + t\frac{f(b)-f(ta+(1-t)b)}{\ln f(b)-\ln f(ta+(1-t)b)}.$$
 (3.5)

Proof. We have via Lemmas 2.3 and 2.4

$$f\left(\frac{a+b}{2}\right) = f\left(\frac{1}{2}\frac{3a+b}{4} + \frac{1}{2}\frac{a+3b}{4}\right) \le \sqrt{f\left(\frac{3a+b}{4}\right)} f\left(\frac{a+3b}{4}\right) = w(t) \le \frac{2}{b-a}\sqrt{\int_{a}^{\frac{a+b}{2}}} f\left(x\right) dx \int_{\frac{a+b}{2}}^{b} f\left(x\right) dx$$

$$\frac{2}{b-a} \frac{1}{2} \left(\int_{a}^{\frac{a+b}{2}} f\left(x\right) dx \int_{\frac{a+b}{2}}^{b} f\left(x\right) dx \right) = \frac{1}{b-a} \int_{a}^{b} f\left(x\right) dx = \frac{1}{b-a} \left(\int_{a}^{ta+(1-t)b} f\left(x\right) dx + \int_{ta+(1-t)b}^{b} f\left(x\right) dx \right)$$

$$= (1-t) \left(\frac{1}{(1-t)(b-a)} \int_{a}^{ta+(1-t)b} f\left(x\right) dx \right) + t \left(\frac{1}{t(b-a)} \int_{ta+(1-t)b}^{b} f\left(x\right) dx \right)$$

$$\le (1-t) \frac{f\left(ta+(1-t)b\right) - f\left(a\right)}{\ln f\left(ta+(1-t)b\right) - \ln f\left(a\right)} + t \frac{f\left(b\right) - f\left(ta+(1-t)b\right)}{\ln f\left(b\right) - \ln f\left(ta+(1-t)b\right)} = W(t)$$

$$\le (1-t) \frac{f\left(b\right) - f\left(a\right)}{\ln f\left(b\right) - \ln f\left(a\right)} + t \frac{f\left(b\right) - f\left(a\right)}{\ln f\left(b\right) - \ln f\left(a\right)} = \frac{f\left(b\right) - f\left(a\right)}{\ln f\left(b\right) - \ln f\left(a\right)} \le \frac{f\left(a\right) + f\left(b\right)}{2}.$$

Theorem 3.5. Let f is log-convex and g is the following inequality holds non-negative, integrable, (1/p)+(1/q)=1, p>1, then

$$\int_{a}^{b} f(x) g(x) dx \le \left(\frac{b-a}{p} \frac{f^{p}(a) - f^{p}(b)}{\ln f(a) - \ln f(b)} \right)^{1/p} \left(\int_{a}^{b} g^{q}(x) dx \right)^{1/q}.$$
(3.6)

AM

Proof. We have, via Holder's inequality

$$\int_{a}^{b} f(x)g(x)dx \leq \left(\int_{a}^{b} f^{p}(x)dx\right)^{1/p} \left(\int_{a}^{b} g^{q}(x)dx\right)^{1/q} = \left((b-a)\int_{0}^{1} f^{p}(ta+(1-t)b)dt\right)^{1/p} \left(\int_{a}^{b} g^{q}(x)dx\right)^{1/q} \\
\leq \left((b-a)\int_{0}^{1} f^{pt}(a)f^{p(1-t)}(b)dt\right)^{1/p} \left(\int_{a}^{b} g^{q}(x)dx\right)^{1/q} = \left((b-a)f^{p}(b)\int_{0}^{1} \left(\frac{f(a)}{f(b)}\right)^{pt}dt\right) \left(\int_{a}^{b} g^{q}(x)dx\right)^{1/q} \\
= \left(\frac{b-a}{p}\frac{f^{p}(a)-f^{p}(b)}{\ln f(a)-\ln f(b)}\right)^{1/p} \left(\int_{a}^{b} g^{q}(x)dx\right)^{1/q}$$

4. References

[1] L. Fejér, "Uber die Fourierreihen, II," *Math. Naturwiss Anz. Ungar. Akad. Wiss*, Hungarian, Vol. 24, 1906, pp.

369-390.

[2] P. M. Gill, C. E. M. Pearse and J. Pečarić, "Hadamard's Inequality for R-Convex Functions," *Mathematical Inequalities & Applications*, Vol. 215, No. 2, 1997, pp. 461-470.