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Abstract 
 
In this paper we show that a log-convex function satisfies Hadamard’s inequality, as well as we give an ex-
tension for this result in several directions. 
 
Keywords: Log-Convex Functions, Hadamard’s Inequality, Integral Inequality

1. Introduction 

Let  be a convex mapping of the interval :f I 
I  of real numbers and a, b I  with a < b. The fol-
lowing double inequality 
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is known in the literature as Hadamard’s inequality. In 
[1], Fejer generalized the inequality (1.1) by proving that 
if  : ,g a b   is nonnegative, integrable and symmet-  

ric to 
2

a b
x  , and if f  is convex on [a,b], then 
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A positive function f is log-convex on a real interval 
 ,a b  if for all  , ,x y a b  and  0,1 ,  we have 

      11f x y f x f      y .      (1.3) 

If the above inequality reversed, then f is termed 
log-concave. We define for  , 0x y 
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In [2] the following result is achieved: 
Theorem 1.1. Let f be a positive log-convex function 

on [a, b]. Then 
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For f a positive log-concave function, the inequality is 
reversed. 

2. Lemmas 

The following lemmas are needed for our aim. 
Lemma 2.1. Let 0 t 1,   then the following ine-

quality holds 
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Proof. Set 
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Therefore f attains its minimum at 1 2t   which is 
1 2  Hence   0f t   which implies , and (2.1) 
follows. 

  0f te 

Lemma 2.2. For 0 ,0a b t 1,     the following 
inequality holds 
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           (2.2) 

and for , the following inequality 
holds 

0,  0,  0 1a b t   

1 12 .t t t tab a b a b a b              (2.3) 
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Proof. For 1 2,t   we have    1/2 t
b a b a , which 

implies 1 t tab a b , and for 1 2,t      1/2
,

t
a b b a  

which implies 1 .t tab a b   We also have 
21 1

2 2 2 2 0
t t t t

a b a b
  


 
 , which implies  

1 12 t t t tab a b a b   . 
Set  Then, on keeping b 

fixed, we have  
  1 1 .t t t tf t a b a b a b    
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As 


, f attains its mini-
mum at  which is 0, therefore  and 
(2.3) is satisfied. 

    12 1 0
a b

f a t t a     
a b   0,f a 

Although some of the coming results (Lemma 2.3 and 
theorem 3.1) are known, but we prove them by new sim-
ple method. 

Lemma 2.3. Let  then the following inequal-
ity holds 

, 0a b 

,
ln ln 2

a b a b
ab
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          (2.4) 

Proof. Left inequality. Let us assume that  Set .b a

  1 2 1 2 ln , 1.f x x x x x           (2.5) 

  1 2 3 2 11 1 0
2 2

f x x x x        as 

 21 4 3 4 1 2 3 2 10 2x x x x        x . 

Therefore f is non-decreasing, and that implies  f x  
.  The result follows by putting  1 0f  x b a  in 

(2.5). 
Right inequality. Let  and let ,a b .x a b  Set 
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We have 
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Then f is non-decreasing, and hence    1 0.f x f   
The result follows by putting x a b  in (2.6). 

Lemma 2.4. The function 
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is non-decreasing. 
Proof. 
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therefore g is non-decreasing. Since  1 0g ,  then 
  0,g x   and hence   0,f x   that is f is non-de-

creasing. 

3. Theorems 

Theorem 3.1. Let f be a positive log-convex function on 
[a,b], then f satisfies (1.1). 

Proof. This can be achieved immediately as the 
log-convex function is convex which follows from the 
fact that “Every increasing convex function of a convex 
function is convex” which implies that    ln f xf x e  is 
convex. Or the proof can be achieved by following the 
definition: 

Making use of lemma 2.2, we have 
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The following giving a refinement to theorem 3.1. 
Theorem 3.2. Let f be a log convex function. Then the following inequality holds 
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Proof.  
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which implies 
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in view of [2] and Lemma 2.3. 

The following presents an extension to Fejer’s gener-
alization (1.2) for log-convex functions  

Theorem 3.3. Let f be log convex, g is positive, inte- 
grable and symmetric to   2x a b   Then the fol-
lowing inequality holds 
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in view of Lemmas 2.2 and 2.3. Also, we have for 1 2,t   
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in view of Lemmas 2.2 and 2.3. Consequently, we obtain, by Lemma 2.2, 
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This completes the proof of the theorem. 
The following is another refinement of theorem 3.1. 

Theorem 3.4. Assume that  be an increas-
ing log-convex function. Then for all 

:f I 
 0,t 1 ,  we have 
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Theorem 3.5. Let f is log-convex and g is 

non-negative, integrable,    1 1 1 1,p p q  , then 
the following inequality holds  
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Proof. We have, via Holder’s inequality 
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