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Abstract 
We aimed in this paper to use fuzzy logic approach to solve a hepatitis B virus optimal control 
problem. The approach efficiency is tested through a numerical comparison with the direct me-
thod by taking the values of determinant parameters of this disease for people administrating the 
drugs. Final results of both numerical methods are in good agreement with experimental data. 
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1. Introduction 
Hepatitis B is one of various diseases that are potentially life-threatening liver infection. Abbreviated in terms of 
HBV [1], hepatitis B virus is a species of the genus Orthohepadna virus that is found in Hepadnaviridae family 
viruses. For some cases, HBV results in serious liver diseases such as chronic hepatic insufficiency, hepatocel-
lular carcinoma, cirrhosis and can be a potential cause of the liver cancer [2]. For instance, the commonly 
worldwide well-known Hepatocellular carcinoma (HCC) is a cancer and more than half of HCC patients are at-
tributable to persistent HBV infections. It is approximated that between 15% and 40% of infected patients de-
velop cirrhosis, liver failure, or HCC which occupies the fifth place of the most frequent dangerous cancers, 
killing 300,000 - 500,000 each year. Taking in account of the HBV danger, its prevention is made up throughout 
the universal hepatitis B vaccination program, which currently is leading to a tangible reduction of incidence 
rates of childhood HCC in several countries. However, this is not a 100% answer to that health change because 
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there are still hundreds of millions of people suffering HBV today. In the past decade, several hepatitis B viral 
factors such as serum HBV DNA level, genotype, and naturally occurring mutants have already been identified 
to influence liver disease progression [3]. 

It has been scientifically found that hepatitis B is transmitted through contact with blood or bodily fluids from 
an individual infected with the hepatitis B virus (HBV). The virus mainly affects liver function; this is, it in-
vades the liver cells (hepatocytes) and uses the cells’ machinery to replicate within it. The hepatitis B virion 
binds to the hepatocyte via the domain of the viral surface antigen. The cell then engulfs the virus in a process 
called endocytosis. As the infection occurs, the host immune response is triggered. The body’s immune system 
attacks the infected hepatocytes, which lead to liver injury at the same time as clearing the virus from the body. 
The liver damage associated with HBV infection is mainly caused by the adaptive immune response, particular-
ly the virus-specific cytotoxic T lymphocytes (CTLs). These CTLs kill cells that contain the virus. Liver damage 
is also aggravated by the antigen-nonspecific inflammatory cells and activated platelets at the site of infection. 

There are two possible phases of this infection [2]: 
1) Acute hepatitis B infection that lasts less than six months. In this case the immune system is usually able to 

clear the virus from the body, and the patient should recover completely within a few months. This kind of phase 
is the most case for adult people who acquire hepatitis B. 

2) Chronic hepatitis B infection which lasts six months or longer. This infection manifests in the most infants 
infected with HBV at birth and many children infected between 1 and 6 years of age become chronically in-
fected. 

The chronic carrier people do not develop symptoms; these are taken as two-thirds of people with chronic 
HBV infection. In the all world more than 240 million people have chronic liver infections and about 600,000 
people die every year due to the acute or chronic consequences of hepatitis B [2]. 

Mathematical models can be a useful tool in controlling hepatitis B virus in order to put down the infection 
from the population. It is in the manner that the simple mathematical model has been used by Anderson and 
May to illustrate the effects of carriers on the transmission of HBV [4]. To develop a strategy for eliminating 
HBV in New Zealand [5] [6], the mathematical model has been used by Medley et al [7]. An age structure mod-
el to predict the dynamics of HBV transmission and evaluate the long-term effectiveness of the vaccination pro-
gram in China has been proposed by Zhao et al. [8]. The mathematical model developed by Pang et al. [9] allowed 
him to explore the impact of vaccination and other controlling measures of HBV infection while Bhattacharyya 
and Ghosh [10], Kar and Batabyal [11], and Kar and Jana [12] proposed optimal control of infectious diseases. 

Several drug therapies have been proposed for treating persons with chronic HBV including adefovir dipivox-
il, alpha-interferon, lamivudine, pegylated interferon, entecavir, telbivudine, and tenofovir [13]. Hepatitis anti-
viral drugs prevent replication of HBVs and save the liver from cirrhosis and cancer. During the treatment, the 
viral load is reduced and consequently the viral replication in liver is decreased [14]. 

Optimal control theory has found wide-ranging applications in biological and ecological problems [15]. In 
biomedical problems, techniques from control theory are of great use in developing optimal therapeutic strate-
gies. The treatment regimen is usually taken to be the control variable, with the aim of minimizing the detri-
mental effects of the medical condition. Optimal control theory can be used to optimize the drug doses required 
in the treatment of HBV infected patients [13] [16] [17]. The optimal treatment schedules for HBV have been 
designed using model predictive control (MPC) method [18]. One of the numerical methods for solving optimal 
control problem is fuzzy logic strategy [19]-[21]. 

In this paper, the optimal control problem is presented and fuzzy logic strategy is used to solve it. It is orga-
nized as follows. Section 2 presents the model equations and optimal control problem. A short description of by 
fuzzy logic for solving optimal control problems is discussed in this section. Section 3 is interested in the appli-
cation of the direct approach and the approach that integrates the fuzzy logic for solving an optimal control 
problem of an infected hepatitis B virus dynamics. The numerical simulation is presented in Section 4. Finally, 
we present concluding remarks in the last section. 

2. Methods 
2.1. Setting of the Problem 
In terms of constraints of our problem, the option was put on the model proposed in [22] that incorporates the 
effect of two types of antiviral drugs as in [18]. 



J. M. Ntaganda, M. Gahamanyi 
 

 
1526 

1

max

d 1 e
d 1

uT T TVs qT aT
t T bV

β − 
= − + − −  + 

                          (1) 

1
d e
d 1

uI TV I
t bV

β δ−= −
+

                                         (2) 

2
d e ,
d

uV p I cV
t

−= −                                             (3) 

where T, I and V stand for the concentration of uninfected hepatocytes, infected hepatocytes and free virions re-
spectively. In this context uninfected hepatocytes are produced at the constant rate s and die at the rate qT. For 
the purpose of describing the proliferation of existing T cells, we used the logistic function where a stands for 
the maximum proliferation rate of target cells and maxT  is the T concentration at which proliferation shuts off. 
The rate of infection is given by saturation functional response 1e 1u TV bVβ − +  where β  denotes the infec-
tion rate constant which characterizes the infection efficiency and where b is positive constant. The death rate of 
infected hepatocytes is given by Iδ . The free virions are produced from infected hepatocytes at the rate of 

2e up I−  and cV  is the clearance rate of viral particles. In this model two types of drugs are taken. The first is 
described by chemotherapy functions 1e u− . It helps to prevent the virus from infecting the cell and the second 
facilitates the prevention of the infected cells from producing the new viruses; it is denoted by the function 

2e u− . 
If ( ), , tT I V=E  is a state vector, then the healthy improvement conditions for an uninfected human should 

look for reaching uninfected steady state ( )0 0 ,0,0 tT=E  where 0T  is the constant that must be found out. 
Next the cost function (objective function) was formulated in the following way. 

Find ( )1u t∗  and ( )2u t∗  solution of 

( ) ( ) ( ) ( )
1 2

2 2 2
1 2 0 1 20
, fT

T u uJ u u q T T q u t q u t= − + +∫                         (4) 

subject to the system (1)-(3). 
The positive scalar coefficients Tq , 

1uq  and 
2uq  determine how much weight is attached to each cost com- 

ponent term in the integrand whereas fT  denotes the maximum time that the physical activity can take. 
Let’s NW  be the vector space that is span of a base of linear B-splines function on a regular grid 

{ },  1, ,N N
j j Nψ= =B                                      (5) 

,   0, , .f
N k

kT
t k N

N
 

Ω = = = 
 

                               (6) 

The functions N
jψ , 1, ,j N=   satisfy the following relation 

( ) ,N
j k jktψ δ=  

where δ  denotes Kronecker symbol. 

2.2. Description of Fuzzy Logic Approach 
Let us consider the following problem. 

Find N
kU ∈R , 0, , 1k N= −  that minimizes 

( ) ( )
1

T T
0 1

0
, ,

N

N k k k k
k

J U U x Rx U QU
−

−
=

= +∑                           (7) 

subject to 

( )1 ,
,    0, , 1,

,
k k k k

n m
k k

x f x U
k N

x U
+ =

= −
∈ ∈



R R
                            (8) 

where R  and Q  are positive defined matrices. 
The problem (7)-(8) can be solved by the dynamic programming method. This method has a fast convergence, 
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its convergence rate is quadratic and the optimal solution is often represented as a state of control feedback [23]. 
However, this method allows getting the solution which depends on the choice of the initial trajectory and in 
some cases that solution is not optimal. In this study we integrated fuzzy logic approach to achieve a guaranteed 
optimal solution [24]. We develop a linearization strategy of the subject system by an approach based on the 
fuzzy logic. This approach has been developed by Takagi-Sugeno [25] [26] and in1985 they carried out a model 
that can be used to find fuzzy linearization regions in the state [27]. Taking these fuzzy regions as basis, non li-
near system is decomposed in a structured multi models which is composed of several independent linear mod-
els [28]. The linearization is made around an operating point contained in these regions. 

Let’s consider the set of operating points iX , 1, ,i S=  . Different fuzzy approximations of the nonlinear 
term ( )NL x  can be considered. 

1) The approximation of order zero gives: 

( ) ( ) ( )0 iNL x NL x NL x≈ =                               (9) 

2) Using the first order of Taylor expansion series we obtain 

( ) ( ) ( ) ( ) ( )
T

1

d
.

d
i

i i
x

NL x
NL x NL x NL x x x

x
 

≈ = + − 
 

                    (10) 

To improve this approximation, we introduced the factor of the consequence for fuzzy Takagi-Sugeno system. 
This factor allows to minimize the error between the non linear function and the fuzzy approximation. If ε  de-
signates this factor, the approximation (10) can be formulated as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )
T

0 1

d
1 ,  with 0 1.

d
i

i i
x

NL X
NL x NL x NL x NL x x x

x
β ε β β

 
≈ − + ≈ + − ≤ ≤ 

 
        (11) 

If one replaces the term NL by its value approached in (8), the linearization around ix  leads to 

1 , , , , 1, , ; 0, , 1,k i k k i k k i kx x U i S k N+ = + + = = −A B C                      (12) 

where ,i kA  and ,i kB  are square matrix which has N N×  order and ,i kC  matrix with 1N ×  order. 
Therefore, the optimal control problem (7)-(8) becomes a linear quadratic problem which the feedback control 

is given by the following expression [29] [30]: 

, , 1, , ;   0, , 1,i k i kU x i S k N= − = = − K                        (13) 

where 

( ) 1T T ,i i i i i i i

−
= +K Q B E B B E A                             (14) 

is the feedback gain matrix and iE  discrete Riccati equation solution of the following form 

( ) 1T T T T 0.i i i i i i i i i i i i i

−
− − + + =E Q A E A A E B R B E B B E A                  (15) 

Obviously the linearization around every operating point gives the system for which the equations have the 
form (12). Due to the presence of S operating points, S systems of that form should be formed and therefore ac-
cording to the relation (13) S controls are determined. The defuzzyfication method [26] permits to determine 
only one system and only one control kU . 

Then, this transformation gives the following equation: 

1 ,    0, , 1,k k kx x U k N+ = + + = −A B C                        (16) 

,   0, , ,k kU x k N= − = K                                   (17) 
where 

( )

( )

( )

( )

( )

( )

( )

( )

, , , ,
1 1 1 1

1 1 1 1

, ,   ,  and ,

S S S S

i i i k i i i k i i i k i i i k
i i i i

S S S S

i i i i i i i i
i i i i

x x x x

x x x x

ω ω ω ω

ω ω ω ω

= = = =

= = = =

= = = =
∑ ∑ ∑ ∑

∑ ∑ ∑ ∑

A B C K
A B C K        (18) 
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and where ( )i ixω  designates membership degree partner to the operating point ix . 

3. Numerical Approaches for Solving the Optimal Control Problem (4), (1)-(3) 
3.1. Using Fuzzy Logic Approach 
To approximate the optimal control problem (4), (1)-(3), we propose to use the explicit Euler scheme because 
the stability of this scheme allows deal with some ordinary differential equations. 

By letting the following variable change 

( ) ( ) ( )( )0 1 2, ,    and   ,
ttX T T I V U u t u t= − =                         (19) 

the system (1)-(3) becomes 

( ) ( ) ( )

( )

1

1

2

1 0 31 01
1 0 1 0

max 3

1 0 32
2

3

3
2 3

d
1 e

d 1

d
e

d 1
d

e .
d

U

U

U

X T XX TX s q X T a X T
t T bX

X T XX X
t bX

X
p X cX

t

β

β δ

−

−

−

 + +
= − + + + − −   + 

 + = −
+


= −



 

The discretization of the constraints (1)-(3) is done using the first order explicit Euler method. The first order 
of explicit Euler’s method gives following system 

( ) ( ) ( ) ( )

( )

( )

1

1

2

1, 0 1, 0 3,
1, 1 1, 1 0 1, 0

max 3,

1, 0 3,
2, 1 2, 2,

3,

3, 1 3, 2, 3,

1 e
1

e
1

e ,

k k kU
k k k

k

k kU
k k k

k

U
k k k k

X T X T X
X X hs hq X T ha X T h

T bX

X T X
X X h X

bX

X X h p X cX

β

β δ

−
+

−
+

−
+

   + +
   = + − + + + − −
  +   
  +  = + −  +  


= + −



     (20) 

where fT
h

N
= , ( )k kX X t= . 

Using the approximation e 1x x≈ +  the system (20) becomes 

( ) ( ) ( )

( )
( )

( )
( )

( )( )

1, 0 1, 0
1, 1 1, 1, 0 1, 1, 0 0

max max

1, 0 3,
1

3,

1, 0 3,
2, 1 2, 1 2,

3,

3, 1 3, 2 2, 3,

            1
1

1
1

1

k k
k k k k k

k k

k

k k
k k k

k

k k k k

X T X T
X X hs hq X T ha X X T T

T T

X T X
h U

bX

X T X
X X h U X

bX

X X h p U X cX

β

β δ

+

+

+

  + +
  = + − + + − + −
   

 +
 − −

+   
 +
 = + − −
 + 

= + − −












 

that is 
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( ) ( )
( ) ( )

( ) ( )

( )
( ) ( )

1, 0 1, 0
1, 1 1, 0 1, 0

max max

1, 0 3, 1, 0 3,
1

3, 3,

1, 0 3, 1, 0 3,
2, 1 2, 1

3,

1 1

            
1 1

1
1

k k
k k k

k k k k

k k

k k k k
k k

k

X T X T
X ha hq X h s qT ha X T

T T

X T X X T X
h U h

bX bX

X T X X T X
X h X h U h

bX

β β

δ β β

+

+

  + +
  = + − + − + − + −

    
 + +
 + −
 + + 

 + +
 = − − +
 + 

( )
3,

3, 1 3, 2, 2 2,

1

1 .

k

k k k k

bX

X hc X hpX U hpX+












+

 = − − +

       (21) 

Since the system (21) has nonlinear factors let us designate these points as iT , iI  and iV , 1, 2,3i = , for the 
first, second and third equation of the system (21) respectively. Obviously these points take the corresponding 
values in the labels centers of a universe of discourse X [24]. 

To simplify, we consider only the Taylor expansion of first order around the operating points iT , iI  and iV . 
We therefore obtain three systems of the following form 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( )

0 0
1, 1 1, 0 0

max max

0 0
1

0 0
2, 1 1

3, 1 2

1 1

            
1 1

1
1 1

1

i i
k k i

i i i i

i i

i i i i
k i

i i

k i i i

T T T T
X ha hq X h s qT ha T T

T T

T T V T T V
h U h

bV bV

T T V T T V
X h I h U h

bV bV

X hc V hpI U hpI

β β

δ β β

+

+

+

  + +
= + − + − + − + −      

 + +
+ −  + + 

 + +
= − − +  + + 
= − − +

,  1, 2,3

.

i






 =






       (22) 

Assuming that 1, 2,3i =  to be numbers related to each operating point, the system (22) can be written as 
follows 

1, , , ,    1, 2,3,k i s k i i k i iX A X BU C i+ = + + =                          (23) 
where 

1 0 0
0 1 0 ,
0 0 1

i

ha hq
h

ch
δ

+ − 
 = − 
 − 

A                             (24) 

( )

( )

0

0

0
1

0 ,  1, 2,3
1
0

i i

i

i i
i

i

i

T T V
bV

T T V
h i

bV
pI

β

β

 +
 

+ 
 + = − =
 +
 − 
 
 

B                         (25) 

and 
( ) ( ) ( ) ( )

( )

0 0 0
0 0

max max

0

1
1

, 1,2,3.
1

i i i i
i

i

i i
i

i

i

T T T T T T V
aT aT s qT

T T bV

T T V
C h i

bV
pI

β

β

  + + +
− + − − + −   +  
 + = = +
 
 
  
 

           (26) 
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To approximate the objective function of the problem (4), we use the rectangular method. Hence, we obtain 

( ) ( )
1

T T
1 2

0
, ,

N
N

k k k k
k

J X U X X U U h
−

=

= +∑ R R                            (27) 

where ( )T

1, 2, 3,, ,k k k kX X X=X . 1R  and 2R  are the matrix 

1
1

1 2 2
2

3

0 0
0

0 0 ,       .
0

0 0

a
b

a
b

a

 
  = =      

 

R R                             (28) 

Finally, the optimal control problem (4), (1)-(3) can be formulated as follows. 

Find ( )T

0 1, , NU U∗ ∗ ∗
−=U   solution of 

( ) ( )
1

T T
1 2

0
min ,

N

k k k kU k
J X U X X U U h

−

=

= +∑ R R                           (29) 

subject to 
1 , , , ,    1, 2,3.k i k k i k k i kX X U i+ = + + =A B C                           (30) 

It easy to note that the problem (29)-(30) is a linear quadratic (LQ). Since there are three linear state systems, 
the solution leads to three feedback controls of the form 

, ,   1, 2,3;k i k kU K X i= − =                                 (31) 

where iK  is a gain feedback. 

3.2. Using Direct Approach 
To approximate the system (1)-(3), we consider 

{ },  1, ,N N
j j Nψ= = B                                 (32) 

a linear B-splines basis functions on the uniform grid 

,   0, , ,f
N k

kT
t k N

N
 

Ω = = = 
 

                             (33) 

such that 

( ) .N
i k iktψ δ=  

Let us introduce the vector space NW  whose the basis is NB . We have 
1) dim NW N=  
2) 1N NW W +⊂  
Let us consider ( )0 0, fW C T=  and let us take the interpolation operator 

:N N

N

W W
φ φ

Π →
Π

                                (34) 

satisfying 

( ) ( ) , 1, , .N
k kt t k Nφ φΠ = =                              (35) 

We verify easily that 

0N
W N

Wφ φ φ
→∞

Π − → ∀ ∈                               (36) 

0
sup 1.

W

N
N W

Wφ
φ

φ

φ
∈
≠

Π
Π = =                                 (37) 
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Therefore, the system (1)-(3) can be approached by the following form. 

Find ( ) ( )3
, ,N N N NT I V W∈  solution of the system 

1

max

d 1 e
d 1

N N N N
uN

N

T T T Vs qT aT
t T bV

β − 
= − + − −  + 

                       (38) 

1
d e
d 1

N N N
u N

N

I T V I
t bV

β δ−= −
+

                                       (39) 

2
d e

d

N
u N NV p I cV

t
−= −                                            (40) 

( ) ( ) ( ),0 ,0 ,00 ,     0 ,     0N N N N N NT T I I V V= = =                        (41) 

such that 
0 ,0 0N

N
T T

→∞
− →                                      (42) 

0 ,0 0.N

N
I I

→∞
− →                                      (43) 

0 ,0 0.N

N
V V

→∞
− →                                     (44) 

The discretization of the optimal problem (4) is done as follows. 

( ) ( )( ) ( )( )
22 2

00
1

min d ,fTN N
T j jQ j

J q T t T q t t
λ

λ λ
∈ =

 
= − + ⋅ 

 
∑∫                    (45) 

where 

( ) ( )1 2

T
1 2,  and ,

t

u uu u q q qλ = =                               (46) 

with jλ  and jq  respectively the thj  component of the vectors λ  and q  respectively. 

We are looking for ( )1 2,M M M MQλ λ λ= ∈  an approximated solution of (45) in the set ( )2M MQ W=  such that 

( ),
0

,   1, 2.
M

M M
j j k k

k
t jλ λ ψ

=

= =∑  

Therefore the cost function (45) becomes 

( ) ( )( ) ( ) max
22 2

0 ,
1 1

, with ,M
M

N N M
T k j j k

k j

TJ q T t T q h h
M

λ λ
= =

 
≈ − + = 

 
∑ ∑                 (47) 

where (47) is determined using rectangular method such that the discretization is done on a regular grid MΩ . 
The discrete formulation of optimal problem (4) subject to (1)-(3) is written as follows. 

( ) ( ) ( ) ( ) ( )( )1 1

TTmin ,
M MM

M M MNJ h Y RY B
λ

λ λ λ
+ +∈ ×

≈ +
R R

                     (48) 

where Mλ  is a matrix ( )1 2M + ×  such that the components ,
M
j kλ  are components of the function N

jλ  in the 
set NB  and Y  represents the matrix with ( ), thj k  component, ( ) 0

N
kT t T−  denotes the first components of 

solution of the system (1)-(3) associated to Nλ λ= , R  and B  are matrix defined by 

1

2

00
, .

0 0
uT

T u

qq
q q

  
= =        

R B  

Finally, the optimal control problem (4), (1)-(3) is a minimisation problem with constraint. The discreet for-
mulation of such problem can be written as follows. 

Find ( ) ( )1 1, M MMλ + +∗ ∈ ×R R  solution of 
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( ) ( ) ( ) ( ) ( )( )1 1

TTmin ,
M MM

M M MNJ h Y RY B
λ

λ λ λ
+ +∈ ×

≈ +
R R

                    (49) 

subject to 

1

1

2

max

d 1 e
d 1

d e
d 1

d e ,
d

N N N N
uN

N

N N N
u N

N

N
u N N

T T T Vs qT aT
t T bV

I T V I
t bV

V p I cV
t

β

β δ

−

−

−

  
= − + − −   + 

 = −
+


= −



                      (50) 

where Mλ  is a matrix ( )1 2M + ×  such that the components ,
M
j kλ  are those function N

jλ  in NB  and Y  is 
the matrix such that the ( ), thi k  component is ( ) ,N e

i k ix t y−  where ( )T

1 2,N N Nx x x=  is the solution of (4), 
(1)-(3) associated to Nλ λ= . 

4. Numerical Simulation 
Taking in account of the mechanism of linealisation of the nonlinear terms of the system (20), we applied the 
fuzzy approach where the concentration of uninfected hepatocytes for health person has been considered to be 

0 1000T =  cells/dl. Furthermore, from optimal control problem (4), (1)-(3), the role of drugs of hepatitis B virus 
is to allow uninfected hepatocytes cells to be around the equilibrium value (T0 = 1000 cells/dl) and remove all 
infected hepatocytes ( 0I = ) and virions ( 0V = ) in the body of patient. This is not quickly done but is a process 
during the time of administration of drugs by a patient. In this context X (universe of discourse) has two linguis-
tic variables: uninfected hepatocytes (UH), infected hepatocytes (IH) and free virions (FV) respectively. Taking 
in account of the physiology, we consider [ ]200,1500T ∈  and [ ]0,300I ∈  and [ ]0,500V ∈ . Therefore, the 
uninfected hepatocyte, infected hepatocytes and free virions are low if 200T <  cells/dl, 0I <  and 0V <  
respectively. 

If T, I and are respectively included in the middle of 200 and 1500 cells/dl, 0 and 300cells/dl and 0 and 500, 
we suppose that the concentration of uninfected hepatocytes (UH), infected hepatocytes (IH) and free virions 
(FV) are normal. While if 1500T > , 300I >  and 500V >  we say that the uninfected hepatocytes, infected 
hepatocytes and free virions are the highest. Then, LUH (low uninfected hepatocytes), NUH (normal uninfected 
hepatocytes) and GUH (the highest uninfected hepatocytes) constitute the terms (fuzzy sets) of the linguistic va-
riable UH. Similarly, LIH, NIH and GUH (respectively LFV, NFV and GFV are used for the terms of the varia-
ble linguistic IH (respectively FV). 

According the relation (19), we have [ ]1 800,500X ∈ − , [ ]2 0,300X ∈  and [ ]3 0,500X ∈ . For an uninfected 
Hepatitis B virus, uninfected hepatocytes, infected hepatocytes and free virions change such that we can consid-
er a universe of discourse X where the labels are centered respectively at −800, 150 and 500; 0, 150 and 300; 0, 
250 and 500. Then, we suppose that theses centers constitute the operating points values of the system (20). 

The operating points associated to those linguistic variables are given in the Table 1, membership functions 
associated to this labeling are represented in the Figures 1-3. 

Let us set 100N =  and max 10T = , using parameters values from Table 2. 
The relations (24), (25) and (26) give respectively the following matrices 

1.0036 0 0
0 0.95 0 ,  1, 2,3
0 0 0.7

i i
 
 = = 
 
 

A

 
 

Table 1. Variables and their operating points. 

Variable Operating Points 
T [−500; 0; 500] 
I [0; 150; 300] 
V [0; 0; 250:500] 
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Figure 1. Membership function of T. 

 

 
Figure 2. Membership function of I. 

 

 
Figure 3. Membership function of V. 

 
Table 2. Parameters used in numerical simulation. 

Parameter a q s σ β c p b Tmax 

Value 0.108 0.072 36 0.5 0.001 3 5 0.01 1500 
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1 2 3

0 0 6.0714 0 12.5 0
0 0 ,   6.0714 0 ,    12.5 0
0 0 0 75 0 150

     
     = = − = −     
     − −     

B B B  

1 2 3

6.9120 4.0734 21.5
0 ,   6.0714 ,   12.5 .
0 75 150

− −     
     = = =     
     
     

C C C  

It is easy to note that the problem (29)-(30) is a linear quadratic (LQ). Since there are three linear state sys-
tems, the solution leads to three feedback controls of the form 

, ,   1, 2,3;k i k kU K X i= − =                                 (51) 

where iK  is a gain feedback. 
The implementation can be made in several platforms. Here we use MATLAB package. Taking 1R  and 2R  

of the relation (28) as identity matrices of size 3 and 2 respectively, we obtain from the relation (31) 

1 2

3

0 0 0 0.0815 0.0772 0
,    

0 0 0 0 0 0.0093

0.0400 0.0379 0
.

0 0 0.0047

−   
= =   −   

− 
=  − 

K K

K
 

The defuzzification transformation allows obtaining one system. Consequently, for the system (30) this tech-
nique gives the following system 

1 ,    0, , 1,k k kX X U k N+ = + + = −A B C                          (52) 

where A and B are 3 × 3 and 3 × 2 matrices and C a 3 × 1 matrix. 
In the same way, from the matrixes K1, K2 and K3 the defuzzification process allows to have one matrix K. We 

propose the following procedure. 
The rows of matrixes iA , iB , iC  and iK , 1, 2,3,i =  are defuzzified as given by the relation () and us-

ing the degree of membership 2ω  and 3ω  (see the Figure 1), 1ω  and 2ω  (see the Figure 2) and 1ω  and 
2ω  (see the Figure 3). This manner of procedure is due to the two following reasons. 
1) We consider the degree of membership of the entry uninfected hepatocytes, infected hepatocytes and free 

virions respectively. These values are respectively 400 cells/dl (see the Figure 1), 120 cells/dl (see the Figure 2) 
and 180 cells/dl (see the Figure 3). After calculations, the Table 3 shows the obtained degrees of membership 
of each linguistic variable. 

2) Each equation of the system (22) has nonlinear factor. 
Considering these hypothesis and from the relation (18) where we take degrees of membership as given in the 

Table 3, we have the following matrixes. 

1.0036 0 0 7.0357 0 6.6874
0 0.95 0 , 1.2143 0 1.2143
0 0 0.7 0 21 21

0.0753 0.0753 0
.

0 0 0.0019

−     
     = = − =     
     −     

− 
=  − 

A B C

K

 

 
Table 3. Variables and their corresponding degrees of membership. 

Variable ω1 ω2 ω3 

T 0 0.85 0.15 

I 0.80 0.20 0 

V 0.72 0.28 0 
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The numerical simulation gives the graphical results given in the Figure 4 and Figure 5. 
The Figure 4 illustrates both chemotherapy 1u  that is used to prevent the virus from infecting the cell (Figure 

4(a)) and chemotherapy 2u  that allows the prevention of the infected cells from producing the new viruses 
(Figure 4(b)). Figure presents the response of these chemotherapy to variation of the concentration of unin-
fected hepatocytes (Figure 5(a)), infected hepatocytes (Figure 5(b)) and free virions (Figure 5(c)) respectively. 

 

 
Figure 4. Variation of drugs (control) u1 (a) and u2 (b). The curves in dotted line represent the parameter for the the direct 
approach. The curve dashed line show the parameter for the approach integrating the fuzzy logic approach. 
 

 
Figure 5. Variation of the concentration of uninfected hepatocytes (a), infected hepatocytes (b) and free virions (c) for a 
patient. The curves in dotted line represent the parameter for the direct approach. The curve dashed line show the parameter 
for the direct approach. The curve dashed line show the parameter for the approach integrating the fuzzy logic approachThe 
curve dashed line show the parameter for the approach integrating the fuzzy logic. 
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It is known that acute hepatitis B infection (short-term inflammation of the liver) goes away on its own since 
the immune system is able to clear the virus from the body. The patient of acute hepatitis B infection may not 
need treatment. The main aim of treatment for chronic hepatitis B is to suppress HBV replication before there is 
irreversible liver damage. Furthermore, the role of drugs on chronic hepatitis B virus is to reduce the risk of liver 
disease and prevent you from passing the infection to others. The controls variation of hepatitis B virus are 
represented in Figure 4 which shows the decrease from 1 (when and treatment is absent) of both chemotherapy 

1u  and chemotherapy 2u  to be closer to the lower value 0 (maximal use of therapy). The Figure 5(a) shows a 
increase of uninfected hepatocytes to its higher value during the first month of the beginning of the process be-
fore decreasing to reach the wanted equilibrium value. This behaviour is due to action of therapeutic drugs. The 
Figure 5(b) and Figure 5(c) illustrate that both infected hepatocytes and free virions decrease from starting time 
of taking therapeutic drugs to normal value. The results obtained in this work are rather satisfactory. In particu-
lar, the reaction of the disease to drugs can be modeled and a feedback can be approximated by the solution of a 
linear quadratic problem. The drugs reduce the risk of disease. Therefore the drugs play a crucial role such that 
any patient becomes healthy. 

5. Concluding Remarks 
In this work, we have been dealing with an optimal control problem related to an uninfected hepatitis B virus 
dynamics. To handle that problem, two numerical approaches have been compared to determine the optimal tra-
jectories of uninfected hepatocytes, infected hepatocytes and free virions as response to hepatitis B virus con-
trols that is two drugs, interferon and ribavirin. The findings show that those two used methods are satisfactory 
and provide the closer results. Consequently, the approach that involves fuzzy logic approach can be seen to 
play an important role for the resolution of the optimal control problem. In particular, it gives the optimal tra-
jectories and in the same way it ensures healthy. 
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