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Abstract 
Air and soil temperatures strongly influence the growth and quality of crops. However, in root vege-
tables, such as carrot, few experiments aimed at regulating growth and quality by manipulating 
root-zone temperature have been reported. We investigated the effect of root-zone temperatures 
(20˚C, 25˚C, 29˚C, and 33˚C) on carrot growth and components using a hydroponic system. High 
root-zone temperatures for 14 days reduced shoot and rootgrowth and water content. In contrast, 
total phenolic compounds and soluble-solid content increased in tap roots under high-tempera- 
ture treatment. Root oxygen consumption was upregulated after 7 days under high-temperature 
treatment. These results suggest that high root-zone temperatures induce drought-like stress 
responses that modulate carrot biomass and components. High root-zone temperature treatments 
administered to hydroponically grown crops may be a valuable tool for improving and increasing 
the quality and value of crops. 
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1. Introduction 
Hydroponics is a method of growing plants in nutrient solutions without soil and is used for crop production in 
environmentally-controlled cultivation systems, such as plant factories. In Japan, leafy vegetables, such as let-
tuce, spinach, and basil, grown in plant factories are already in the market [1]. Crops produced in factories 
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usually incur more cost than those grown in the field and greenhouse because of electricity bills and the expense 
of equipment and labor. Thus, it is necessary to add value to these crops by enhancing crop quality. 

To date, various environmental cultivation conditions have been reported to improve plant growth and com-
ponents. In lettuce, light quality and quantity influence the production of plant phenolic compounds, such as an-
thocyanin [2]-[4]. Blue and ultraviolet (UV) lights have been shown to increase the production of anthocyanin, 
which was accompanied by the activation of anthocyanin biosynthetic genes in leaf lettuce [3]. Light intensity 
and nitrogen-free hydroponic solution treatments are also important factors in lowering nitrate concentrations in 
lettuce leaf blades and petioles before harvest [5]. In tomato, salt stress improves fruit quality by increasing su-
gars, organic acids, and amino acids [6]-[9]. 

Temperature stress is also known to affect the quantities of plant organic components, including secondary 
metabolites [10] [11]. Elevated temperatures have been shown to decrease photosynthesis and biomass and in-
crease root secondary-metabolite concentrations in the herb Panax quinquefolius [12]. In red leaf lettuce, low 
temperature accelerates the production of anthocyanin and chlorophylls [13]. Sugar and ascorbic acid contents 
of strawberry fruits were increased when plants were grown at low temperature [14], whereas anthocyanin con-
tent of these fruits was decreased at high-temperature treatment [15]. Thus, proper regulation of plant growing 
temperature could enhance plant components associated with increased human health or preference, resulting in 
increased crop market value. 

Carrots are one of the major root vegetables and are consumed worldwide. The edible root, known as the tap 
root, contains various secondary metabolites, such as carotenoids and phenolic compounds, which have health- 
promoting properties [16]. Recently, several hydroponic systems for cultivating carrots with or without medium 
have been studied [17]-[20]. Using a deep flow technique (DFT) hydroponic system, oxygen dissolved in the 
nutrient solution has been shown to be indispensable for the proper growth of the tap root [18]. In rockwool 
block hydroponics, the holes in the growth medium are important for the growth of carrot roots [17]. In perlite 
medium, the diameter of the perlite and the concentration of the hydroponic solution are key factors achieving 
maximum yield and high quality of hydroponically grown carrots [20]. To date, these hydroponic methods for 
growing carrots have been developed experimentally for stable carrot production. 

Because nutrient solution is frequently circulated in hydroponic systems, solution conditions, such as nutrient 
constituents and temperature, can be easily regulated. To add value to hydroponically grown carrots, we inves-
tigated the effect of nutrient solution temperature on carrot growth and quality using a DFT hydroponic system. 

2. Materials and Methods 
2.1. Plant material and Growth Conditions 
Carrot seeds (Daucus carota L. cv Tokinashigosun, Takii, Co. Ltd., Japan) were pregerminated for 1 day at 
20˚C under 200 µmol∙m−2∙s−1 photosynthetic photon flux (PPF) for 16 h under fluorescent lamps (FLs; 
FL40SBR-A; NEC Co., Japan). Germinated seeds were sown in sponge cubes of 2 × 2 × 2 cm and grown at the 
same condition. At 10 days after sowing (DAS), seedlings were transferred to the DFT hydroponic system with 
continuous aeration. The nutrient solution was based on one quarter strength culture solution of A-type Otsuka 
House Solution (Otsuka AgriTechno Co. Ltd., Japan). To avoid the entangling of seedling roots, roots were un-
tangled every 3 days. At 30 DAS, plants for which one main root was sufficiently elongated with an active root 
tip were transferred to a new DFT system with a 25-cm-deep box. Plants were cultivated at 20˚C under 250 
µmol∙m−2∙s−1PPF for 16 h under FLs. Root-zone temperature (25˚C, 29˚C, and 33˚C) was controlled by heating 
the nutrient solution using an IC auto heater (DS 150; DEX Co., Japan). The root-zone treatment at 20˚C was 
not controlled because this temperature was the ambient temperature. To avoid the entangling of seedling roots, 
roots were untangled every 3 days. Growth parameters of leaf number, shoot length, and tap root diameter were 
measured at 1 - 4, 6 - 11, 13, and14 DAS. At 44 DAS, plants were harvested and growth parameters and com-
ponents were analyzed. 

2.2. Measurement of Total Phenol Content 
Total phenol content was measured using the modified Folin-Ciocalteu method [21]. Sliced tap root segments 
(50 mg) were homogenized with 500 µL of 90% methanol and stored at 4˚C overnight. The sample was then 
centrifuged at 10,000 × g for 5 min. The supernatant (50 µL) was diluted with distilled water to 650 µL, and 50 
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µL phenol reagent was mixed with it. After addition of 300 µL of 5% sodium carbonate, the mixture was incu-
bated at 25˚C for 30 min. The absorbance of the supernatant was measured at 765 nm, and a standard curve was 
prepared using gallic acid. The absorbance was converted to total phenol content in terms of milligrams of gallic 
acid equivalent per gram of fresh weight of sample. 

2.3. Measurement of Anthocyanin Content 
Anthocyanin content was measured spectrophotometrically as previously described [21] with slight modification. 
Sliced tap root segments (50 mg) were homogenized with 500 µL methanol and 1% hydrochloric acid and 
stored at 4˚C overnight. The sample was then centrifuged at 10,000 × g for 5 min. The absorbance of the super-
natant was measured at 533 nm, and a standard curve was prepared using cyanidin-3-glucoside. The absorbance 
was converted to anthocyanin content in terms of milligrams of cyanidin-3-glucoside equivalent per gram fresh 
weight of sample. 

2.4. Measurement of Carotene Contents 
Sliced tap root segments (20 mg) were homogenized with 1 mL acetone and stored at 4˚C overnight. The sample 
was then centrifuged at 10,000 × g for 5 min. The absorbance of the supernatant was measured at 443, 475, and 
492 nm, and total carotenoid, α-carotene, and β-carotene concentrations were calculated as previously described 
[22]. 

2.5. Measurement of Soluble Solid Content 
Sliced tap root segments were homogenized with a pestle and mortar, and the homogenates were filtered with 
filter paper (No. 1, Whatman plc., UK) to remove tissue debris. The concentration of soluble solids was meas-
ured using an Atago PAL-1 Handheld Digital Brix Refractometer (Atago, Japan). 

2.6. Measurement of Root Activity 
Root respiration rate was measured at 7 and 14 days post-treatment. Root segments (50 mg) were immersed in 
oxygen-saturated nutrient solution in a 50-mL tube for 1 h. The initial and final dissolved oxygen concentrations 
were measured with a DO-5509 dissolved oxygen meter (Lutron, Taiwan) for calculation of dissolved oxygen 
depletion. 

2.7. Measurement of Chlorophyll Content 
Chlorophyll content was measured spectrophotometrically as previously described [23] with slight modification. 
Leaf segments (50 mg) were homogenized with 500 µL of 80% acetone and stored at 4˚C overnight. The sample 
was then centrifuged at 10,000 × g for 5 min and the absorbance of the supernatant was measured at 652 nm. 

2.8. Data Analysis 
The data obtained for each parameter were analyzed with the statistical package JMP (SAS Institute, Cary, NC, 
USA). Differences among treatments were determined by one-way analysis of variance (ANOVA). Mean com-
parisons were made using the Tukey-Kramer honestly significant difference multiple range test at p < 0.05. 

3. Results 
Fourteen-day treatments at various root-zone temperatures influenced the growth of hydroponically grown car-
rots (Figure 1, Figure 2, and Table 1). Root-zone heating at 33˚C significantly reduced leaf number, shoot 
length, and tap root diameter after 14 days (Figure 1). Time-course observation revealed that growth suppres-
sion of aboveground parts of the pants (as leaf number and shoot length) was induced over 10 days of treatment, 
whereas suppression of tap root diameter was induced within 9 days (Figure 1). Thus, elevated root-zone tem-
peratures primarily influenced tap root growth and then shoot growth. After 14 days of treatment, shoot size of 
plants heated at 33˚C was less than that of plants receiving lower temperature treatments, and this was also ac-
companied by leaf de-greening (Figure 2). In accordance with this observation, leaf chlorophyll content was  
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Figure 1. Time-course changes in leaf number, shoot length, and tap-root diameter of carrots grown at four 
different root-zone temperatures. Vertical bars represent ± SE (n = 5).                                    

 

 
Figure 2. Shoots and roots of carrots grown at four different root-zone temperatures.                                  

 
Table 1. Growth parameters of carrots grown at four different root-zone temperatures.                              

Root zone temp. Leaf number Shoot length (cm) Total root length (cm) Tap root diameter (mm) 

20˚C 7.6 ± 0.2 a 34.5 ± 1.1 a 61.7 ± 6.3 a 16.8 ± 1.5 a 

25˚C 7.8 ± 0.2 a 32.1 ± 1.1 ab 65.2 ± 3.4 a 14.2 ± 1.3 ab 

29˚C 7.6 ± 0.2 a 34.7 ± 0.9 a 67.4 ± 4.2 a 11.6 ± 0.7 bc 

33˚C 6.4 ± 0.2 b 29.2 ± 0.6 b 42.1 ± 2.3 b 7.8 ± 0.6 c 

Values are mean ± SE (n = 5). Different letters in the same column indicate significant differences by Tukey-Kramer honesty significant 
difference test (p < 0.05). 

 
reduced by 33˚C root-zone temperature treatment (Figure 3). Root length and tap-root diameter of plants heated 
at 33˚C were also smaller than those of the plants grown at lower temperatures, and this was accompanied with 
fibrous root browning (Figure 2 and Table 1). The fresh weights of shoots and fibrous roots were decreased at 
33˚C, whereas tap-root fresh weight was more strongly influenced by temperatures below 33˚C (Table 2), re-
sults also observed for dry weight and relative growth rate (RGR) (Table 2 and Table 3). Water content of 
shoots and roots was decreased at 33˚C (Table 2) suggesting the acceleration of shoot transpiration and/or the 
inhibition of root water-uptake by high root-zone temperature treatment. The ratios of the shoot/tap-root and 
shoot/fibrous root were increased between 20˚C to 29˚C in a temperature-dependent manner (Table 3). This re-
sult may explain the different temperature sensitivities of shoots and roots. The total phenol content of the tap- 
root was increased in a temperature-dependent manner (Figure 4), whereas there were no significant differences  
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Figure 3. Effect of root-zone temperatures on chlorophyll content of carrot leaves. 
Vertical bars represent ± SE (n = 5). Different letters indicate significant difference by 
Tukey-Kramer honesty significant difference test (p < 0.05).                                         

 

 
Figure 4. Effect of root-zone temperatures on total phenol content of carrot tap roots. 
Vertical bars represent ± SE (n = 5). Different letters indicate significant difference by 
Tukey-Kramer honesty significant difference test (p < 0.05).                                         

 
Table 2. Fresh weight, dry weight, and water content of carrots grown at four different root-zone temperatures.               

Root 
zone 
temp. 

Fresh weight (g) Dry weight (g) Water content (%) 

Shoot Tap root Fibrous root Shoot Tap root Fibrous root Shoot Tap root Fibrous root 

20˚C 10. 4 ± 1.6 a 13.5 ± 1.7 a 7.1 ± 1.5 a 1.70 ± 0.24 a 1.56 ± 0.2 a 0.36 ± 0.07 ab 83.5 ± 0.4 a 88.6 ± 0.2 a 94.8 ± 0.1 a 

25˚C 10.3 ± 0.6 a 10.2 ± 1.1 ab 8.3 ± 0.9 a 1.70 ± 0.13 a 1.18 ± 0.1 ab 0.43 ± 0.05 a 83.7 ± 0.3 a 88.4 ± 0.4 a 94.8 ± 0.1 a 

29˚C 11.2 ± 1.3 a 7.4 ± 0.7 bc 7.9 ± 0.8 a 1.88 ± 0.19 a 0.92 ± 0.1 b 0.45 ± 0.04 a 83.1 ± 0.4 a 87.5 ± 0.2 a 94.3 ± 0.3 a 

33˚C 3.8 ± 0.3 b 3.7 ± 0.5 c 1.4 ± 0.2 b 0.84 ± 0.04 b 0.64 ± 0.1 b 0.18 ± 0.03 b 77.4 ± 0.9 b 82.5 ± 0.7 b 87.3 ± 0.4 b 

Values are mean ± SE (n = 5). Different letters in the same column indicate significant differences by Tukey-Kramer honesty significant difference 
test (p < 0.05). 

 
Table 3. Relative growth rate (RGR) and organ ratio of carrots grown at four different root-zone temperatures.                   

Root zone 
temp. 

RGR (g∙g−1∙day−1) Ratio of plant organ 

Shoot Tap root Fibrous root Shoot/Tap root Shoot/Fibrous root Tap root/Fibrous root 

20˚C 0.134 ± 0.011 a 0.218 ± 0.011 a 0.108 ± 0.014 a 0.90 ± 0.08 b 1.12 ± 0.12 b 0.24 ± 0.04 b 

25˚C 0.136 ± 0.005 a 0.200 ± 0.008 ab 0.124 ± 0.008 a 1.07 ± 0.08 ab 1.50 ± 0.17 ab 0.39 ± 0.06 ab 

29˚C 0.142 ± 0.008 a 0.183 ± 0.006 bc 0.128 ± 0.007 a 1.39 ± 0.15 a 2.09 ± 0.26 a 0.49 ± 0.03 a 

33˚C 0.087 ± 0.003 b 0.156 ± 0.009 c 0.059 ± 0.010 b 1.07 ± 0.09 ab 1.40 ± 0.15 ab 0.29 ± 0.06 b 

Values are mean ± SE (n = 5). Different letters in the same column indicate significant differences by Tukey-Kramer honesty significant difference 
test (p < 0.05). 
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between the different temperature treatment groups in total carotenoids, carotenes, and anthocyanin (Table 4). 
Tap-root soluble-solid content expressed by Brix was higher at 29˚C than at lower temperatures and was further 
increased at 33˚C (Figure 5), suggesting an increase of sugar content with root-zone temperature rise. Root ac-
tivity measured by oxygen consumption at 7 and 14 days of treatment increased with root-zone temperature 
(Figure 6). 
 
Table 4. Carotenes and anthocyanin contents of carrots grown at four different root zone temperatures.                      

Root zone 
temp. 

Total carotenoid 
(µg/g fresh weight) 

α-carotene 
(µg/g fresh weight) 

β-carotene 
(µg/g fresh weight) 

Anthocyanin 
(µg/g fresh weight) 

20˚C 161.5 ± 15.9 a 103.0 ± 10.4 a 39.3 ± 2.5 a 103.5 ± 9.0 a 

25˚C 137.1 ± 15.9 a 88.1 ± 9.9 a 34.7 ± 2.9 a 129.3 ± 9.0 a 

29˚C 131.2 ± 12.1 a 86.7 ± 7.7 a 30.7 ± 2.0 a 134.0 ± 14.6 a 

33˚C 140.5 ± 24.0 a 93.1 ± 15.0 a 31.6 ± 4.0 a 136.4 ± 22.8 a 

Values are mean ± SE (n = 5). Different letters in the same column indicate significant differences by Tukey-Kramer honesty significant difference 
test (p < 0.05). 
 

 
Figure 5. Effect of root-zone temperatures on soluble solid content of 
tap roots. Vertical bars represent ± SE (n = 5). Different letters indi-
cate significant difference by Tukey-Kramer honesty significant dif-
ference test (p < 0.05).                                         

 

 
Figure 6. Effect of root-zone temperatures on respiration of fibrous 
roots. Vertical bars represent ± SE (n = 4). Different letters indicate 
significant difference by Tukey-Kramer honesty significant differ-
ence test (p < 0.05).                                               
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4. Discussion 
Similar to other plants, carrots accumulate various secondary metabolites in response to temperature [24]-[26]. 
Higher temperatures led to higher accumulations of terpenoid volatiles in carrots in a controlled climate chamber 
experiment [25]. In carrot suspension cell cultures, incubation of cells at 30˚C increased production of antho-
cyanin from that at 20˚C and 25˚C [26]. In agreement with these findings, we observed that high root-zone tem-
perature increased the production of phenolic compounds (Figure 4). In contrast, the contents of carotenes and 
anthocyanin were not influenced by root-zone temperature (Table 4), indicating the presence of diverse temper-
ature responses in carrot secondary metabolism. Interestingly, carrot total biomass increased by 37% with a 1˚C 
rise in soil temperature in a field experiment [24]. In contrast, we observed that high root-zone temperature sup-
pressed the growth of shoot and root biomass (Table 2). This difference is probably due to the low temperatures 
(7.5˚C - 10.9˚C) used in the field experiment differing from optimum temperatures and our experimental condi-
tions (20˚C - 33˚C) [24]. Different cultivation methods and cultivars may also have accounted for this contrary 
result. 

Although poorly studied in carrots, root-zone temperature is an important factor for the production of various 
plant metabolites in many plants [27]-[29]. In African snake tomato (Trichosanthes cucumerina L.), amounts of 
phenolics, ascorbic acid, and chlorophylls increased with increasing root-zone temperature [27]. In contrast, cu-
cumber seedlings exposed to low root-temperature (12˚C) had significantly higher soluble sugar content than 
those at 20˚C [28]. Raising or lowering root-zone temperature altered the synthesis and accumulation of several 
alkaloids differently in Catharanthus roseus and Nicotiana tabacum [29]. Interestingly, the changes in alkaloid 
accumulation were observed within 2 days of treatment [29]. In our study, high-temperature treatment of the 
root zone for 14 days increased the production of phenolic compounds and soluble solid contents, but also led to 
suppression of growth in hydroponically grown carrots (Figure 1, Figure 2, Table 1, and Table 2). Thus, short- 
term treatment with high root-zone temperature in hydroponically grown carrots may increase growth while 
preserving the accumulation of secondary metabolites.  

Drought and salt stress to the root was shown to lead to plant growth suppression followed by leaf photosyn-
thetic impairment [30]. High temperature also promoted a decline in photosynthesis and shoot and grain mass 
and reduced water-use efficiency, responses resembling drought stress responses [31]. Similarly, we observed 
drought stress-like reduction of shoot and root water content under high root-zone temperature treatments 
(Table 2). Temperature stress to the root zone reduced photosynthetic capacity [32] [33]. In rice seedlings, high 
root-zone temperatures compared with shoot temperature accelerated leaf chilling injury, and this was preceded 
by the photoinhibition of photosystem II [32]. In our study, high root-zone temperature caused photo-oxidative 
damage, as represented by the loss of leaf chlorophyll (Figure 3), suggesting that root temperature stress first 
indirectly represses leaf photosynthesis, resulting in shoot growth inhibition. Elevation of root oxygen consump-
tion by high root-zone temperature treatment (Figure 6) may also be a drought stress-like response. Indeed, wa-
ter deficit in the rhizosphere leads to an increased rate of root respiration followed by a reduction in plant growth 
[34]. 

5. Conclusion 
Environmental stresses influence plant metabolism, including changes of plant components [6]-[15] [24]-[29]. 
To increase crop components associated with human health or preferences such as phenolic compounds and su-
gars, stress treatments have previously been applied during the cultivation periods in several crops including 
tomato [35]. In the present study, we showed that high root-zone temperature treatments of nutrient solutions 
increased phenolic compounds and soluble solid content in hydroponically-grown carrot tap roots. Although 
there appears to be a tradeoff between growth rate and production of several plant metabolites, our findings 
propose a useful technique for improving the quality of crops, including root vegetables. 
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