
Creative Education, 2015, 6, 1456-1465
Published Online August 2015 in SciRes. http://www.scirp.org/journal/ce
http://dx.doi.org/10.4236/ce.2015.613146

How to cite this paper: Rocha, J., Soares, A., Honorato, M., Lima, L., Costa, N., Moreira, E., & Costa, E. (2015). Computers
and Language Learning. Creative Education, 6, 1456-1465. http://dx.doi.org/10.4236/ce.2015.613146

Computers and Language Learning
Junia Rocha1, Alexsandro Soares2, Mauro Honorato3, Luciano Lima4, Nayara Costa4,
Elvio Moreira5, Eduardo Costa4
1Department of Informatics, Federal Institute of Triangulo Mineiro, Patos de Minas, Brazil
2Department of Computer Science, Federal University of Uberlandia, Uberlandia, Brazil
3Department of Informatics, Federal Institute of Sao Paulo, Barretos, Brazil
4Department of Electrical Engineering, Federal University of Uberlandia, Uberlandia, Brazil
5Department of Education, Federal University of Uberlandia, Uberlandia, Brazil
Email: juniamagalhaes@iftm.edu.br, prof.asoares@gmail.com, maurojh@gmail.com,
lucianovieiralimaster@gmail.com, asc.nayara@gmail.com, elvio.esm@hotmail.com, edu500ac@gmail.com

Received 30 May 2015; accepted 2 August 2015; published 5 August 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
This paper investigates how computers together with Internet technologies help people in the
learning of languages. To achieve this goal, it analyses open source libraries that a teacher can use
to build educational applications. The text contains a short discussion on how to build such tools,
using methods of programming proposed by Richard Stallman and Paul Graham. It also shows that
computers help to improve language skills in those children with low reading abilities. Finally, it
provides an overview of linguistic and computational tools that a teacher can use to check a stu-
dent’s grammar. Of course, in order to build a practical grammar checker, the reader must have a
working knowledge of Lisp and Prolog. In few words, the reader will not only see the magic of
programs that understand English grammar, but learn how one can reproduce it.

Keywords
Rasch Model, Natural Language Processing, Automatic Grammar Checker

1. Introduction
When one hears about computer aided language learning, she thinks immediately in Artificial Intelligence, and
machines that can talk, translate all English Wikipedia entries to Esperanto, perform automatic caption, and ac-
cept speech-to-text input. Everybody knows that such intelligent applications exist, and help millions of people
in their dealings with a multi-language world. Therefore a large portion of the present paper concerns Artificial
Intelligence and programming. However, the greatest help that computers bring to language learning is the pos-
sibility of publishing books.

http://www.scirp.org/journal/ce
http://dx.doi.org/10.4236/ce.2015.613146
http://dx.doi.org/10.4236/ce.2015.613146
http://www.scirp.org
mailto:juniamagalhaes@iftm.edu.br
mailto:prof.asoares@gmail.com
mailto:maurojh@gmail.com
mailto:lucianovieiralimaster@gmail.com
mailto:asc.nayara@gmail.com
mailto:elvio.esm@hotmail.com
mailto:edu500ac@gmail.com
http://creativecommons.org/licenses/by/4.0/

J. Rocha et al.

1457

While doing graduate studies in Cornell in the seventies, one of the authors of this work dedicated himself to
space science and linguistics. His main concern at the time was learning Ancient Greek. As a space scientist, he had
access to good computers to perform numerical calculations. However, electronic publishing did not exist at the
time, and the powerful Cray computer available to engineers was of little use for reproducing Greek documents.

In 1984, Donald Knuth made TeX available (Knuth, 1984). TeX allowed for the typeseting of Greek books.
Therefore, students could learn to read Greek by typesetting their own edition of Plato’s Republic.

With the invention of eInk, publishing a book became even easier. Now students can carry around whole li-
braries in a device weighting less than 200 g. While reading a book, the student can touch a word whose mean-
ing is unknown, and get its definition in 20 languages.

Another way that computers help language learning is to connect learners to native speakers through the In-
ternet. For instance, the authors observe that children that are learning Chinese in the United States sponta-
neously contact people living in China.

Computer aided language learning has two kinds of tool. Typesetting, dictionary construction and connectivi-
ty do not require Artificial Intelligence. On the other hand, automatic caption, translation and speech-to-text in-
put require a good deal of artificial intelligence.

Let us end this section with a short discussion on programming. Students of computer science learn their trade
by trying to write programs from scratch. In summary, the students open a blank buffer in a text editor like
emacs and start filling it with code. Stallman (2015) thinks that such an approach is wrong. In his opinion, the
student should start with an open software application, and adapt it to her needs, fix bugs and extend its functio-
nality. To make a long story short, if the computer scientist does not start with the accumulated work of linguists
and teachers, she is doomed to failure.

There are many open source tools that a language teacher can use to build parsers. The easiest of these to in-
stall and use is the open source version of RASP (Briscoe, 2015). In order to make this conversation easier, let
us introduce Nia, a fictitious female character that performs natural language processing for a living. Nia down-
loads and expands the archive in her work space, and runs the Makefile script in the application home directory.

~/wrk/rasp3os$ make

Since Nia has a limited knowledge of shell commands, she asks for help from Bob and Alice, who work in the

Cryptography Department, as anyone familiar with the world of Computer Science fictitious characters already
knows. After a few minutes, there appears the Clozure Common Lisp together with the RASP system in Nia’s
machine. Nia checks what comes ready to go.

It seems that, after learning Lisp, Nia will be able to build a simple grammar checker on top of RASP.
When dealing with languages, one needs a parser. Following Stallman philosophy, the parser should be open

source and written in a language that facilitates contributions from the linguist. The computer languages that sa-
tisfy this last requisite are Lisp and Prolog.

The focal point of this introductory section is that one should not start a programming project on an empty
buffer. The most effective approach to programming is to build code on top of existing tools, as recommended
by Richard Stallman.

2. Lisp
A small team that wants to write an educational natural language application should rely on one of the libraries
available on line. However, it is a good idea to build a small prototype, in order to learn programming, and un-
derstand how libraries work.

Lisp has two features that one cannot find in other languages, and makes it specially suitable for Artificial In-
telligence. For one thing, Lisp has a strong mathematical foundation. Mathematics does not become obsolete.

J. Rocha et al.

1458

People use books written by Gauss 200 years ago, or by Archimedes, 2000 years ago, and they are considered
state of the art. Although Lisp is the oldest computer language that is widely used, the very best works in Artifi-
cial Intelligence are coded in Lisp even today. After all, Lisp has remained unchanged for decades, while gener-
ations of mathematicians and physicists add code to complex applications.

The syntax of Lisp is extremely simple: Programs and data are represented by a list of elements between pa-
rentheses. When that list represents a program snippet, the first element is an operation, i.e., a command or a
function call. When a list is data, it is prefixed by a quotation mark. Let us define a small vocabulary, and a few
syntax rules.

The parameter wrds represents a list of words, where each word is associated with its grammatical class. For

example, cat is a noun, therefore its dictionary entry is the sublist (cat n). The grammar is written in the so
called Chomsky Normal Form. The rule (npdet n) means that a noun phrase is made of a determiner followed by
a noun.

Representing the dictionary and the grammar as lists means that the computer would need to loop through all
entries. Loops are both inefficient and hard to code. They should be used only when necessary. Dictionary loo-
kup must be performed with a hash table.

The above snippet creates two hashtables, that use the lisp predicate #’equal for comparison. This predicate is

able to check whether two lists are equal.
To test the program, the linguist needs a text editor and a lisp. The text editor must be emacs. One can find

emacs and the sbcl Lisp on the Internet.
Since Nia has already installed the RASP library, she decided to use it. A Read Eval Print Loop prompt ap-

pears on the window. Below one can see how Nia tested the program.

J. Rocha et al.

1459

It seems that everything is working fine. Now Nia will write a snippet that retrieves grammar rules, and use
them to rewrite an input list. Of course, with such a small vocabulary in the hash table, the input sentence must
be something like the cat chases the rat.

Lisp has an extremely simple syntax: The first element of a list is the operation and the other elements are ar-

guments. For instance, (rp s) picks the left hand side of a rule, (first s) produces the first element of s, and so on.
The nxt program repeatedly applies a function to the first element of a series until the series converges to a

fixed value. Before proceeding to syntactical analysis, let us test the nxt program with a subject that is easier
than natural language, something like mathematics.

The nr is the famous Newton algorithm that calculates the square root of a number. Before trying to under-
stand it, Nia checks whether it works.

* (load "cyk.lisp")
T

* (nxt (nr 16) #'equal '(3))
(4.0 4.0000014 4.003333 4.1666665 3)

* (car '(a x b e))
a

* (cdr '(a x b e))
(x b e)

* (cons 'top '(a x b e))
(top a x b e)

It seems that it works. The series converges to the square root of 16. Function nxt finds the limit of a series by

repeatedly applying a function that adds the next element of a series to the head of list s. Of course, Nia will not
learn Lisp in a short paper. However, she can understand an amazing fact. One can represent almost everything
with lists. Nia has seen that she can use lists to represent grammar, sentences, arithmetic series and syntactical
trees. Besides this, one needs only four functions to process lists.

The car and the cdr, in the theory of algebraic data types, are called selectors. These two functions take a list
apart: (car s) calculates the head of s, while (cdr s) calculates the tail, which is the remaining part of the list
when its first element is removed. The (cons a s) is called constructor, and builds a list whose car is a and the
cdr is s. The predicate (null s) checks whether a list is empty.

Function nxt keeps adding elements to the head of the list until an element converges to the same value as the
previous one. Function fn calculates the next element of the series. Nia noticed that fn is passed as a parameter to

J. Rocha et al.

1460

nxt. This is necessary because this fn changes from one application to another.
Expression (nr n) builds a function that calculates the next approximation of the square root of n. Yes, Lisp

functions can build other functions as easily as Python builds intergers. Lisp has two mechanisms that allow
programs to build programs: closures and macros. There are two books that one can use to learn more about
closures and macros. The first one was written by Paul Graham (Graham, 1993). Nia prefers Paul Graham’s
book, but the most popular one is Practical Common Lisp, by Peter Seibel (Seibel, 2005).

Let us go back to English grammar. One can use nxt to build a series of syntactic trees that converge to the
representation of a phrase.

~/wrk/rasp3os$ rlwrap bin/x86_64_darwin/ccl
Welcome to Clozure Common Lisp Version 1.8-r15286M
? (load "infix.cl")
#P"/Users/ufu/wrk/rasp3os/infix.cl"
? (load "cyk.lisp")
#P"/Users/ufu/wrk/rasp3os/cyk.lisp"

? (tree '(the cat chases the rat))
((PHRASE) (NP SV) (NP TVERB NP)

(DET N TVERB DET N)
(THE CAT CHASES THE RAT))

The function ky picks each pair of symbols and checks whether there is a grammar rule able to rewrite the pair.
After reading the first and second chapter of Practical Common Lisp, the interested reader will have no problem
in understanding this short program.

3. Recovering from Blind Alleys
The problem with the parser described in program cyk. lisp is that the choice of a grammar rule may lead the al-
gorithm down a blind alley, where there is no way to backtrack from the mistake. What is worse, the determinis-
tic cyk algorithm has no mechanism to choose a rule with high probability of success. In fact, it does not even
deal with probability.

Most people implements the cyk algorithm with arrays. This paper shows a list based implementation, be-
cause one can easily add backtrack to stateless data structures such as lists. The interested reader can use the
screamer library to build a backtracking version of the cyk. lisp parser.

The work that gave rise to this paper uses both probabilities and backtrack. The rule with greatest probability
of success is chosen first. This point deserves a comment. Consider the following rule:

S NP VP→

The probability of S is the product of the probability of the rule by the probabilities of the subtrees NP and SP.
To overcome the problem of estimating the probabilities of NP and VP before the full expansion of the tree, one
solution is to accept backtracking in case of failure. With backtracking, a rough estimation of the subtree proba-
bilities is acceptable.

4. Assessment
The previous section states that the probability of a construction occurring is used to resolve ambiguities in the
grammar formalism. The main contribution of the present paper is a method for calculating the probability of a
student committing a given mistake. To unify the framework, one describes mistakes as grammar rules. For in-
stance, there are grammar rules for the lack of agreement between the verb and its subject. Therefore, a set of
rules accept a sentence like The cat chase mouses, and tags it as a mistake.

In order to estimate probabilities, the teacher needs to model the student, and assess his/her evolution. The
method explained here is amply used to evaluate learning.

In any kind of measurement, there is a variable that one wants to evaluate. Variables like weight, temperature
or height can be measured directly with scales, thermometers, measuring tapes, calipters, etc. Unobservable va-

J. Rocha et al.

1461

riables like skill and difficulty are not so easy to measure. One can describe such latent variables, but cannot
compare them to a standard meter, since they lack physical dimensions. However, one needs to assess them to
appraise student evolution.

In order to estimate the value of a latent variable, Rasch, Lord and Lazarsfeld developed independently a
branch of statistics known as Measurement Theory. There is strong evidence found in Measurement Theory that
leads educators to consider its superiority over classical test theory. Therefore, making it the preferred method
for scoring high stake tests, like SAT.

4.1. Scales
Let us consider two students C and V. Suppose a teacher wants to discover the most common types of errors her
students commit. In order to do this, one needs to compare the ability of the student in relation to a given gram-
matical rule.

The teacher’s best option would be to write a grammar for mistakes. Let us examine exactly what a grammar
for mistakes is. A very commoner or among students of English as a Second Language is lack of agreement be-
tween subject and verb. For instance, the subject may be in the third person singular and the verb in the plural:
She walk in beauty. One can write a grammar that accepts this kind of sentence, and use it to compare how often
it appears in texts that two students C and V have written. Let us ignore those results where both C and V com-
mit the same mistake or both of them avoid it.

At first glance, it may seem strange that the counter ignores when an instance of the error occurs with both
students. To understand that such a procedure does not alter the distance between the two students, let us con-
sider Table 1.

C committed this particular kind of mistake 5 times. V made the mistake 8 times. The difference is 3. If one
ignores the cases where both C and V hit the mistake together, then the final count for C drops to 2, and for V is
reduced to 5. The difference between them is still 3.

The probability of C committing a mistake r is given by crP and the probability of avoiding it can be calcu-
lated by ()1 crP− . On the other hand, the probabilities of V committing and avoiding the mistake are given by

vrP and ()1 vrP− respectively. Let 10N be the notation of how many times C stumbles upon a mistake and V
avoids it. On the same token, let 01N denote the number of times that C makes a mistake and V stays away
from it. The ratio between 10N and 01N is given below

()
()

10

01

1
1
cr vr

cr vr

P PN
N P P

× −
=

− ×

4.2. Specific Objectivity
One can say that C is more prone to mistakes than V if the rate 10 01N N does not change with the kind of mis-
take. This property is called specific objectivity and when it holds, one has the equality below.

()
()

()
()

1 1
1 1
cr vr cs vs

cr vr cs vs

P P P P
P P P P
× − × −

=
− × − ×

Odds is the ratio of the probability of an event occurring to the probability of it not occurring. One can rewrite
this equality in order to obtain the odds of C committing the mistake r

() ()
()

()
1

1 1 1
vscr cs vr

cr cs vs vr

PP P P
P P P P

−
= × ×

− − −

4.3. Origin
The next step is to choose the origin for the measurement scales that one intends to introduce. Let us consider a

Table 1. VS agreement, where 1 represents a mistake.

C 1 0 0 1 0 0 1 1 1 0

V 1 1 1 0 1 1 0 1 1 1

J. Rocha et al.

1462

student o whose tendency to make mistakes matches the easiness of anitem o. In this case, the student will
stumble upon the mistake in half of the trials, and the error will fail to defeat the student for the other half. This
student is said to be at the origin of the inability scale, and the item is at the origin of the easiness scale. Since
the student commits the mistake half of the times, the probability of failure is 0.5ooP = . Let us compare C with
the student of the origin.

() ()
()

()
1

1 1 1
oocr co or

cr co oo or

PP P P
P P P P

−
= × ×

− − −

Since ooP is 0.5 one has that ()1 1oo ooP P− = . Therefore

() () ()1 1 1
cr co or

cr co or

P P P
P P P

= ×
− − −

Let’s take the logarithm from both sides of this equation

() () ()
ln ln

1 1 1
cr co or

cr co or

P P P
P P P

   
= ×      − − −   

() () ()
ln ln ln

1 1 1
cr co or

cr co or

P P P
P P P

     
= +          − − −     

() ()
()1

ln ln ln
1 1

orcr co

cr co or

PP P
P P P

     −
= −        − −     

If one defines

()
ln

1
co

c
co

PF
P

 
=   − 

()1
ln or

r
or

P
E

P
 −

=  
 

The equation becomes:

()
ln

1
cr

c r
cr

P F E
P

 
= −  − 

Notice that cF does not depend on the grammar rule r and rE does not depend on the student c. This find-
ing is the greatest contribution made by Georg Rasch to the Measurement Theory (Wright & Mok, 2004).

The definition of the logarithm yields the following expression for the odds of committing a given mistake:

()
e

1
c rF Ecr

cr

P
P

−=
−

e ec r c rF E F E
cr crP P− −= − ×

()1 e ec r c rF E F E
crP − −× + =

()
e Logistic equation

1 e

c r

c r

F E

cr F E
P

−

−
=

+

One often refers to parameters cF and rE as an individual’s inability and an item easiness respectively.

4.4. Calibration
In the previous section, the reader saw that probability depends on parameters like easiness and inability. Cali-

J. Rocha et al.

1463

bration is thus the process of determining these parameters. To meet this goal, an iterative algorithm must force
raw data onto the logistic curve.

The first step of the iteration calculates row and column averages to estimate initial easiness and inability
vectors for the data matrix Xn.

The next step is to adjust the easiness vector by subtracting the average from each element. The function

probability calculates the odds, and stores its value in a two dimensional array.

J. Rocha et al.

1464

In order to update the inability and easiness vectors,one must calculate the residual between the current andthe
previous probability matrix.

Now, one needs to calculate the variance of the probability matrix.

After summing up the residual and variance for each of the two dimensional arrays along each row, one is

ready to update the easiness and inability vectors. These steps must be repeated until the sum of the squares of
the residuals becomes sufficiently small.

The calibration algorithm produces Table 2 containing the probabilities of each student committing a given

mistake.

5. Conclusion
The authors are convinced that natural language processing has reached a stage that makes building of automatic
grammar checking possible. Another interesting application of these new technologies is the construction of
models that facilitate the planning of grammar drilling. The abstract of the present paper was written by a

J. Rocha et al.

1465

Table 2. Probabilities.

 You + is She + go It + stay He + have She + give Inability

Porgy 0.2329 0.4890 0.8640 0.9525 0.4890 0.6810

Std 2 0.0784 0.2113 0.6401 0.8489 0.2113 −0.5463

Std 3 0.5267 0.7781 0.9588 0.9866 0.7781 1.9686

Std 4 0.0185 0.0561 0.2831 0.5550 0.0561 −2.0104

Std 5 0.0185 0.0561 0.2831 0.5550 0.0561 −2.0104

Std 6 0.2329 0.4890 0.8640 0.9525 0.4890 0.6810

Easiness 2.0564 0.8420 −1.2528 −2.4914 0.842

person with limited knowledge of English, and corrected by natural language processing tools. The reader will
find the original text below.

This paper investigates how computers and communication can help people in learning languages. The au-
thors will present both tools developed by themselves and by third parties. The text contains a short discus-
sion on how to build such tools, using methods of programming proposed by Richard Stallman and Paul
Graham. A longitudinal survey that the authors performed along three decades shows how computers im-
proved the language learning environment. This article will provides enough information about linguistic
and libraries for the reader building a program able to check of English prose composition. Of course, in
order to build a practical grammar checker, the reader must have a working knowledge of Lisp and Prolog.
In fewer words, this article intends not only to show the magic of programs that understand English gram-
mar, but reveal how one can reproduce the effects.

References
Briscoe, T., Buttery, P., Carroll, J., Medlock, B., Watson, R. Andersen, O., & Parish, T. (2015). RASP, a Robust Parsing

System for English. Cambridge: iLexIR. http://users.sussex.ac.uk/~johnca/rasp/
Graham, P. (1993). On LISP: Advanced Techniques for Common LISP. Upper Saddle River, NJ: Prentice Hall.
Knuth, D. E. (1984). The TEXbook. New York: Addison-Wesley Professional.
Seibel, P. (2005). Practical Common Lisp. New York: Apress. http://dx.doi.org/10.1007/978-1-4302-0017-8
Stallman, R. (2015). The Best Way to Learn Programming. https://www.youtube.com/watch?v=dvwkaHBrDyI
Wright, B. D., & Mok, M. M. C. (2004). An Overview of the Family of Rasch Measurement Models in Introduction to Rasch

Measurement (pp. 1-24). Maple Grove: JAM Press.

http://users.sussex.ac.uk/%7Ejohnca/rasp/
http://dx.doi.org/10.1007/978-1-4302-0017-8
https://www.youtube.com/watch?v=dvwkaHBrDyI

	Computers and Language Learning
	Abstract
	Keywords
	1. Introduction
	2. Lisp
	3. Recovering from Blind Alleys
	4. Assessment
	4.1. Scales
	4.2. Specific Objectivity
	4.3. Origin
	4.4. Calibration

	5. Conclusion
	References

