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Abstract 
 
We used simulated data to investigate both the small and large sample properties of the within-groups (WG) 
estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel 
data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels. 
WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage 
of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at 
least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since 
their optimality was established in the context of asymptotic theory. We developed parametric bootstrap ver-
sions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods 
under small sample cases on the assumption that variances of the individual effects and the disturbances are 
of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples. 
 
Keywords: Dynamic Panel Data Model, Within-Groups Estimator, First-Difference Generalized Method of 

Moments Estimator, Parametric Bootstrap 

1. Introduction 
 
Panel data combine cross-sectional and time series in-
formation. Since the temporal dependencies for each unit 
could vary significantly, a dynamic parameter is desir-
able to relax the parametric constraints into the model. 
Dynamic panel data (DPD) model postulates the lagged 
dependent variable as an explanatory variable. Just like 
in univariate time series analysis, modeling the depend-
ency of the time series on its past value(s) gives valuable 
insights on the temporal behavior of the series. [1] noted 
that many economic relationships are dynamic in nature 
and the panel data allow the researcher to better under-
stand the dynamics of structural adjustment exhibited by 
the data.  

A good number of dynamic panel data estimators have 
been proposed and thoroughly characterized in the lit-
erature. The within-group (WG) estimator, among the 
early estimation method for DPD, provides consistent 
estimate for static models.  In DPD models, [2] showed 
that the WG estimator of the coefficient of the lagged 
dependent variable parameter is downward biased and 
the bias only disappears as the number of time units 
grows larger. Thus, the WG estimator is known to be 

biased whenever the time-dimension  is fixed, even if 
the cross-section dimension  is large. 

T
N

The inconsistency of the WG estimator leads to the 
development of DPD coefficient parameter estimators 
that are consistent for large  and fixed or large , 
e.g., the use of instrumental variables (IV). For the IV 
estimators, [3] used either the dependent variable lagged 
two periods or its first-differences as instruments. Even 
the development of the generalized method of moments 
(GMM) estimators for DPD coefficient parameters is 
based on the IV approach. [4] proposed GMM estimator 
that uses all available lags at each period as instruments 
for the equations in first differences, this is now known 
as the first-difference generalized method of moments 
estimator (FD-GMM). [5] proposed the level GMM es-
timator which is based on the level of the model and uses 
lagged difference variables as instruments. [6] further 
proposed the now called system GMM estimator which 
uses both the lags of the level and first difference as in-
struments. 

N T

The DPD model estimators have exhibited good as-
ymptotic properties, see for example [2], [7], and [8]. 
Some work investigated the small sample properties of 
the said estimators, e.g., [9] and [10]. There are numer-
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ous studies on the properties of dynamic panel data 
model but are mostly focusing on data sets with large 
cross-section and small time dimensions. Other studies 
highlight datasets with sizeable cross-section dimensions 
and moderately-sized time dimensions. 

We used intensive simulations to investigate both the 
small and large sample properties of two of the simplest 
and oldest DPD estimators, the within-groups and 
first-difference generalized method of moments estima-
tors of the AR(1) DPD model. We also propose the use 
of parametric bootstrap procedure in the WG and 
FD-GMM for the boundary scenario, i.e., when asymp-
totic optimality of WG and FD-GMM fail.  

As [11] pointed out, the application of bootstrap meth- 
odology in panel data analysis is currently in its embry- 
onic stage. The bootstrap estimators proposed in this 
study can answer the possible limitations of the estima- 
tors by [8]. Over a short period, it is common for proc- 
esses over time to be easily affected by random shocks. 
Thus, if long period data are used, it is very likely that 
structural change will manifest and the modeler will ei-
ther incorporate the change into the model (more com-
plicated), or analyze the series by shorter periods, lead-
ing to small sample data where the proposed estimator is 
applicable. 
 
2. Dynamic Panel Data Model 
 
Suppose the dynamic behavior of a time series for unit i 
(yit) is characterized by the presence of a lagged depend-
ent variable among the regressors, i.e. 

, 1 1, , 1, ,it i t it ity y i N t       x   (1) 

where   is a constant, itx  is  vector of ex-
planatory/exogenous variables, and 

1 K
  is 1K   vector 

of regression coefficients. it  follows a two-way error 
component model it i t it      where i  and t  
are the (unobserved) individual and time specific effects, 

 

which are assumed to stay constant for given  over  
and for a given  over , respectively; and it

i t
t i   repre-

sents the unobserved random shocks over i  and t . The 
unobserved individual-specific and/or time-specific ef-
fects i  and t , are assumed to follow either the fixed 
effects model (FE) or the random effects model (RE). If 
Equation (1) assumes a RE model and if it  follow  
one-way error component model it i it

 a
    

individual and time specific effects are 
 , then the

 2~ IID 0,i    
and  2

it v  each other and 
among themselves. When i

~v IID 0, in pendde ent of 
  and t  are eated  

fixed constants, the usual assumptions are 
tr as

   2
1 ii

 and 1 1N O
N    1 12T

tT 
 1t

. [12], 
[1] and [13] give detailed discussions on dynamic panel 
data models. 

O

Consider the following AR(1) dynamic panel data 
model without exogenous variable 

1 1, 2, , ; 1, 2, ,it it i ity y i N t T          (2) 

where it  is the dependent variable, y   is the regres-
sion coefficient (parameter of interest) with 1  , i  
is the unobserved heterogeneity or individual effect 
which has mean 0 and variance   and it 0 2   is 
unobserved disturbance with mean 0 and variance 

 02  . To facilitate the computations of estimators of 
model 2, let 1it itx y  ;  iT1i i , ,y y y ’; 

 iT1i i , ,x xx  ’;  iT1, ,i i v ’; and  11, ,T ’ 
(a 


1T   vector of ones). Equation (2) can be written as 

i i i iT    y x v            (3) 

[8] considered several estimators of  , e.g., the 
within group/covariance (WG) estimator (also called 
fixed effects (FE) estimator), covariance (CV) estimator 
(or least squares dummy variable (LSDV) estimator), 
and the first-difference generalized method of moments 
(FD-GMM) estimator (one-step level GMM estimator 
proposed by [4]). In the computation of WG̂  and 

FD-GMM̂  further notations are used: 

         

       1 2

1 1 1 1 1
1

1 1 1 1 1

1 1 1 1
0 1

2 2 21 1
diag , ,

2

1 1
0 0 0 1

2 2
0 0 0 0 1 1

T T T T T

T T T TT

T

           
 

    
           

 
   
 

  






     





A
2

 

 

 
     *

1

1
...

1it it it iT

T t
x x x

T t T t  x
 

    
    
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1

2

1

i

i
i

iT 

 
 
 
 
 
 

z

z
Z

z

 

 1 1 2 1 2,..., ,it i it t t t Nt t t t Ntx x x x x z z              z x Z z   

[8] defined the WG estimator as 

1
WG

1

ˆ
N

i T ii
N

i T ii

 










x Q y

x Q x
           (4) 

where T T T T T Q I t l , T  is called the WG opera-
tor of order T. WG estimator may also be written in 
terms of the forward orthogonal deviations operator 

Q

A , 
an upper triangular-like matrix, with dimension 

 and with the following characteristics: 
, 1T   and . Let  and 

, then WG estimator is given by 

 1T  
T A A Q

 y Ay

T
x AA I 0T Al  x A

WG̂
 

 
x y

x x
             (5) 

[8] further analyzed an asymptotically efficient FD-GMM 
estimator given by 

 
 

1

FD-GMM 1
̂

 

 

  


  

x Z Z Z Z y

x Z Z Z Z x
      (6) 

where . A computationally useful al-
ternative expression for 

 1, , N
  Z Z Z

ˆ


FD GMM   is: 
1

1
FD-GMM 1

1

ˆ

T

t t t
t
T

t t t
t




 




 












x M y

x M x
        (7) 

where t  and t  are the  vectors whose ith 
elements are  and it , respectively, 

t t t t  and t  is the  matrix 
whose ith row is . As pointed by [8],  is non-
singular when , but the projections involved 
remain well defined in any case. Without loss of general-
ity, the condition 1  was maintained because 
the FD-GMM estimator is motivated in a situation where 
T is smaller than N and it is straightforward to extend the 
results in their paper to allow for any combination of 
values of T and N by considering a generalized formula-
tion of 7 using t t t t , where t t

x y

1
Z

itZ
N T

 



1N 

Z Z

it
x

 Z

y


1

N T

M Z

tM Z Z Z



Z

N t
Z Z

t 

t N I

N

Z Z  is 
the Moore-Penrose inverse of  t t . In this way, 

t t t t t  if t  and  if . 
Thus, the contribution of terms with  to the FD- 
GMM formula coincide with the corresponding terms for 
WG.  

Z Z
NM Z Z  1 Z


Z  M

t 
t N

[8] derived the asymptotic properties of several dy-

namic panel data estimators namely, within groups (WG), 
first-difference generalized method of moments (FD-GMM), 
limited information maximum likelihood (LIML), crude 
GMM and random effects ML estimators of the AR(1) 
parameter of a simple DPD model with random effects.  

As observed by [8], WG̂  is consistent for , 
regardless of . However, as , the asymptotic 
distribution of WG

T 
N

ˆ
N 

  may contain an asymptotic bias 
term, depending on the relative rates of increase of  
and . When 

T
N  0 l T Nim  



, the asymptotic 
variance of WG estimator is the same as the of GMM 
estimator and they have similar (negative) asymptotic 
biases in which for WG has order 1 T . On the 
other hand, FD-GMM̂  is a consistent estimator for   as 
both  and T , provided that N
 

  
2

logT N 0 . Also, the number of the FD-GMM 
orthogonality conditions  1 2q T

FD-G
ˆ

T   tends to infin-
ity as . The F MMT    is asymptotically nor-
mal, provided that  and T   lim 0T N  . When 

 0 lim T N   , the asymptotic variance of FD- 
GMM estimator is the same as the WG estimator and 
they have similar expression for their (negative) asymp-
totic biases in which for FD-GMM has order  1 N . 
When T N , the asymptotic bias of GMM is smaller 
than the bias of WG. When , the two asymptotic 
biases are equal and when 

T  N
0N T , the asymptotic 

bias in the WG estimator disappears. 
From a simulation study, [7] observed that the vari-

ance of the WG estimators is usually much smaller than 
the variance of consistent GMM estimators, see [2], [7-9], 
[14], and [8] for further details. 

 
3. The Bootstrap Method 

 
The bootstrap is a useful tool for estimation in finite 
samples. Bootstrap procedure entails the estimation of 
parameters in a model through resampling with a large 
number of replications, [15]. [16] developed the idea of 
bootstrap procedure known as a nonparametric method 
of resampling with replacement and it stems from older 
resampling methods such as the jackknife method and 
delta method. Originally, the bootstrap requires inde-
pendent observations, i.e.,  consisting of  observa-
tions 1

x n
x , 2x , …, nx , a random sample from the true 

distribution  F x  generating the data. The data gener-
ates the empirical distribution  F x , a discrete distribu-
tion that assigns equal probability to the  observations 
of the observed sample, hence, 

n

     1 2 . The bth bootstrap 
sample is a vector 

1np x p x n 
b

p x   
x  consisting of  observations 

,1b

n
x , ,2bx , …, ,b nx  ( 1, ,b B  ), obtained by sampling 
with replacement B times from the empirical distribution 
 F x B. In each of the  bootstrap samples, the estima-
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tor of a parameter in a particular model is computed, 
resulting to , , …,  1t x  2t x  Bt x , where  t x  is 
an estimator of a parameter, say θ.  

For time series models, the sieve bootstrap and the 
block bootstrap are recently introduced. The sieve boot-
strap starts by fitting the most adequate model and the 
behavior of the empirical distribution of the residuals is 
analyzed. The bootstrap errors t

  are generated by re-
sampling  times from the empirical distribution T k
 tF   , . In order to generate the bth bootstrap 

sample 1, 1, ,b b b T b  , each element of 
k  p

y y  , , ,  y y b
y  is 

determined by the recursion , , ,0 i t i b t bi

p
y yt b  

,, T by

1

2

1

c

c

cN

cN



 


1,, ,by y 






, 

where the starting values for ,t b  are set to zero and the 
first  generated values are thrown away, so that the 
needed bth bootstrap sample  is 
obtained.  



1,b b
 

, 1

, 1

1, 1

, 1

N T

N T

y

y

y

y





 



y

y
k

On the other hand, the block bootstrap resamples from 
overlapping blocks of consecutive observations to gener-
ate the bootstrap replicates, see [17] and [15] for a more 
comprehensive discussion of bootstrap methods for time 
series models. 

To define the bootstrap for dynamic panel data models, 
suppose  is defined as measurements from different 
cross-section units of the population over different time 
periods, so that the data can be represented by 

y

11 1 1,

21 2 2,

1,

, ,

T T

T T

PD

N N T

N N T

t

y

y

y

y


12

22

1,1

,1

1 2

N

N

t tT

y y

y y

y y

y y
 1,2

2

1 tT

   
   
   
   



  

   
    



y

y

y

y
  







y




 y

y y

 

 y



N

 

(8) 
The bth bootstrap sample is the  matrix T b

y

,

T b

T b

, 
given by 

1 1, ,

2 2, ,

1,

, ,

b

b

b

1,

1,

1,1,

,1,

1,

2,

1,

,

12,

22,

1,2,

,2,

b b

b b

1, 1,

2, 1,

1, 1,

, 1,

T

T

N b N

N b

c b

c b

b

b

y y

y y

y y

y y

 



 
 
 
  
 
 
 
 

b

N b

t

 

 

 
 

 

y 1, 1,b t
 

N T

N T b

y

y

y

y















1,tT b

y y

b N

N T

cN

cN

y




























y

y

y

y

y

,b tT b
  y

T b

b

y

y

y









 
 

 
 











N T

  (9) 

b  is generated by doing the AR-sieve bootstrap pro-
cedure for panel data. [11] identified five bootstrap 
methodologies for panel data namely: i.i.d. bootstrap, 

individual bootstrap, temporal bootstrap, block bootstrap 
and double resampling bootstrap. The i.i.d bootstrap re-
fers to the bootstrap procedure defined by [16]. Each of 
the 

y

  elements of the observed data matrix PDy  is 
given 1 NT  probability in the empirical distribution 
 F y . The elements of the bth bootstrap sample b

y  in 
(9) are obtained by resampling with replacement from 
the empirical distribution  F y . 

The rows of PDy  in (8) are resampled with replace-
ment in order to determine the bth bootstrap sample b

y  
of the form in (9) in the individual bootstrap procedure. 
On the other hand, in the temporal bootstrap procedure, 
the columns of PDy  in (8) are resampled with replace-
ment in order to create the bth bootstrap sample b

y  of 
the form (9). The resampling procedure for the block 
bootstrap is in the temporal dimension, so that the data 
matrix of the form (8) is used. The difference between 
the block bootstrap and the temporal bootstrap is on the 
sampling of blocks of columns of PDy  in (8) instead of 
single column/period in the temporal bootstrap case. Let 
T Kl , where  is the length of a block and thus, there 
are 

l
K  non-overlapping blocks. Block bootstrap resam-

pling entails the construction of b  such as (9) with 
columns obtained by resampling with replacement the 

 non-overlapping blocks columns of 

y

K PDy  in (8).  
Given the data matrix PDy , double resampling is a 

procedure that constructs the bth bootstrap sample b
y  

by resampling columns and rows of PDy . Two schemes 
can be chosen, the first is a combination of individual 
and temporal bootstrap and the second is a combination 
of individual and block bootstrap. Therefore, as the name 
of this bootstrap procedure implies, it involves two/dou- 
ble stages. The first stage is to construct an intermediate 
bootstrap sample b

y  by performing individual boot- 
strap. The second stage uses the intermediate bootstrap 
sample b

y  as a matrix where either temporal bootstrap 
or block bootstrap is applied to produce the bth bootstrap 
sample b

y . 
 
4. Bootstrap Procedure for Dynamic Panel 

Data Estimators 
 
While the literature clearly illustrates the asymptotic op-
timality of WG and FD-GMM estimators, there are 
doubts on their performance under small samples. Many 
panel data are usually formed from small samples of time 
points and/or panel units because of the structural change 
or random shocks that may occur in bigger/larger data-
sets. For small samples, we propose to use parametric 
bootstrap on WG and FD-GMM in mitigating the bias 
and inconsistency that these estimators are known to 
exhibit for small samples.  

We consider the AR(1) dynamic panel data model: 
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T1 , 1,  2, , , 1,  2, , it it i ity y i N t         (10) 

where   is the parameter, i  is the individual effect 
with mean zero and variance 2

 , and disturbances it  
with mean zero and variance 2

 . The bootstrap proce- 
dure below uses AR Sieve in replication, steps follow: 

Step 1: Given  ity  generated from the model in 10, 
we have  time-series data N

 
1 10 11 1

2 20 21 2

0 1

T

T
it

N N N NT

y y y y

y y y y
y

y y y y

   
   
    
   
   
   




 


     (11) 

For each cross-section unit , we assume an AR(1) 
model with slope 

i

i  and intercept i , i.e., 

1it i it i ity y    , . Using the method 
of least squares we obtain the estimators 

1, 2,t  , T
ˆ

i  and î  
for the parameters. 

Step 2: Compute  , the average of all ˆ
i ’s over all  

cross-section units, i.e., 1

ˆ
N

i
i

N





 . 

Step 3: For a fixed cross-section unit , the predicted 
values 

i

1
ˆ ˆˆ , 1, 2, ,it i it iy y t T      is computed and  

used to compute the MSE=    22
,

1

ˆ ˆ 2
T

i it ity y T


  
t

.  

Simulate  sets of B it   from .  2
,ˆ0, iN 

Step 4: Reconstruct the panel data  using  ity   in 
step 2, î  in step 1 and one of the  sets of itB    in 
step 3. The reconstructed panel data  ity

ˆ
i

 is obtained 
using equation (10), i.e., 1 it

ˆ
it ity y    




T
, 

, where 0 0i i1, 2,t  , y y  comes from  ity , the 
ith element of the first column of matrix 11. 

Step 5: Do step 4 B times, taking note that the used set 
of it 


 should not be used again in subsequent recon- 

struction of the panel data. There will result to  panel 
data 

B
ity . 

Step 6: Compute WG and FD-GMM estimators using 
Equations (5) and (7) respectively, for each of the  
panel data sets. 

B

Step 7: Resample the  WG and FD-GMM esti- 
mates in step 6. 

B

When sample size is small, there is a tendency for es- 
timators based on asymptotic optimality to become er- 
ratic. The AR sieve is used to reconstruct as many time 
series as possible that capture the same structure as the 
original data. Resampling from each of the recreated data 
and computation of WG and FD-GMM for each resam- 
ples can alleviate instability caused by small samples, 
inheriting the optimal properties of the bootstrap meth- 
ods. 

5. Simulation Study 
 
In the simulation study, we used AR(1) with individual 
random effects model given in Equation (10), i.e., 

1it it i ity y     , 1,  2, , , 1,  2, , i N t T   . We 
used a Monte Carlo design that aims to examine both the 
asymptotic and finite (small) sample properties of the 
two estimators of the parameter α. Where the asymptotic 
properties are examined, the cross-section dimension go 
as large as 500 (see [18]) or as small as 50 (see [8]). We 
consider 50N   corresponding to the large cross-sec- 
tion dimension scenario. On the other hand, 50T   is 
the largest time dimension used in studies about asymp-
totic properties (see [8]). Some studies use smaller T  
values such as 10T   and  along with 25T  N 50  
and 100N   to show the asymptotic properties of es-
timators, especially the GMM type, see [8]. We assume 
large time dimension with . When smaller  is 
used such as, 

50T  T
4T   and  (see [10], [19]), even 

 is as large as 100, it still exhibit small sample prop-
erties of the estimator, specifically the GMM estimator. 
We consider as small time dimensions cases with 

6T 

T

N

3  
and 5T  . If the objective is to examine the finite sam-
ple properties of estimators especially the WG estimator, 
small to moderate sizes for both the cross-section and 
time dimensions are commonly used, e.g., 20N  ; 

100N   and 5T  ; 10T  ; ; , for de-
tails, see [9].  

20T  30T 

There are few studies where the time series and cross- 
section dimensions are both small such, e.g., , T = 10, 
20, see [7]. Small cross-section dimensions considered 
are 

N

10N   and 20N  , and moderate cross-section 
dimensions are 30N   and . We also consider 
as moderate time dimension cases where 

40N 
10T   and 

25T  . Therefore, the values for  and  can cap-
ture the settings for both short and wide panel, typical of 
a micro-panel and long and narrow panel, which is a 
common set-up for macro-panels. 

T N

In panel data, the observations in a particular cross- 
section unit comprise a time series. Since, we employ a 
dynamic panel data model, the AR(1) coefficient pa-
rameter  , can be viewed as the common slope pa-
rameter for the  time series in an  panel data. 
Thus, given a time series with T  observations, our 
choice of the values of the AR(1) coefficient parameter 

N N T

  ranges from an almost white noise series, where   
is very small, e.g., when 0.1   to an almost unit root 
series where   is very near to one, that is, when 

0.9  . 
The values for the variance of the individual effects 

accounts for both fixed effects when  and ran-
dom effects, that is, 

2 0 
2 0  . The variance of the random 

disturbance is set at 2 1  . Table 1 presents the dif-
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ferent combination of parameter values for a total of 625 
parameter combinations. 

First, we assume values of the ratio of the individual 
effects variance to the random disturbance variance, the 
possible values of the cross-section unit and time unit 
sizes that are considered small samples and varying val-
ues of the slope parameter. Then we generate N sets of 
10,000 it ’s where  ~ 0,1it N  and we generate N  

i ’s where  2~ 0,i N   , by choosing one value for  

the variance ratio 2 2
    from Table 1. The generated 

it ’s and the individual effect for the ith cross-section i  
is used to compute the initial value 0i  for each 
cross-section unit , using Equation (10), the initial  

y
i

value is 0 01
i

i iy





 


, where .   0 0
j

i ij
v j 


  

Also, we generate  itN T  ’s where  ~ 0,1it N . 
Then a value for   is chosen from Table 1 and using 
the N i ’s and  itN T  ’s, a set of dynamic panel 
data  ity , ; 1, 2, ,i N 1, 2, ,t T 

y y
 can be gener-

ated from Equation (10), i.e., 1it it i it     . This 
will give rise to a data matrix of the form 11, 

 
1 10 11 1

2 20 21 2

0 1

T

T
PD it

N N N NT

y y y y

y y y y
y

y y y y

   
   
     
   
   
   




 


y  

The analysis for the asymptotic and finite sample 
properties of the WG and FD-GMM estimators was done 
using 100 replications, in this case, 100 panel data sets 

PDy  for each of the 625 designs/parameter combinations. 
The WG and FD-GMM estimates for a total of 62,500 
data sets using Equations 5 and 7 respectively. The mean, 
median, quartiles of WG and FD-GMM estimate for each 
of the 625 sets containing 100 replicates of data are 
computed.  

We compare the performance of the two estimators 
ˆ

WG  and ˆ
FD GMM   using the sample medians and in-

terquartile ranges. Note that the two estimators are both 
downward biased, so that comparisons will be more 
meaningful if resistant measures are used to assess the 
bias and efficiency. Hence, in assessing the finite sample 
properties of the two estimators, the median bias and 
median percent bias are used. On the other hand, effi-
ciency is examined by looking at the dispersion using a 
more resistant measure like the interquartile range as 
compared to the standard deviation.  

If we denote the WG and FD-GMM estimates from 
the th replicate by r WG,

ˆ
r  and FD-GMM,

ˆ
r , we get 

WG
ˆ

,1 , WG,2̂ ,…, WG,100̂  and FD-GMM,1̂ , 

FD-GMM,2̂ ,…, F
ˆ

D-GMM,100  respectively. Denote the 
sorted values of WG,

ˆ
r  by  WG, r̂  and FD-GMM,r̂  by 

 M, rFD-
ˆ

GM . The sample median for a particular design is  

Table 1. Monte carlo designs. 

2 2

v   N  T    

0 10 3 0.1 

0.2 20 5 0.2 

0.8 30 10 0.5 

1 40 25 0.8 

1.25 50 50 0.9 

 

given by  WG
ˆMd  =    WG, 50 WG, 51

1 ˆ ˆ
2
     for the WG 

estimator and  

 FD-GMM
ˆMd  = FD-GMM,(50) FD-GMM,(51)

1 ˆ ˆ
2
     f o r  t h e  

FD-GMM estimator. The interquartile range for WG 
estimator is  

         WG WG, 75 WG, 76 WG, 25 WG, 26

1 1ˆ ˆ ˆ ˆ ˆIQR
2 2

               

and the corresponding interquartile range for the FD- 
GMM estimator is equal to  

     

   

FD-GMM FD-GMM, 75 FD-GMM, 76

FD-GMM, 25 FD-GMM, 26

1ˆ ˆ ˆIQR
2

1 ˆ ˆ
2

  

 

   

   

. 

[8] computed the asymptotic approximations to the 
bias given by  1 T  and  1 N  for WG and 
FD-GMM estimators, respectively. 
 
6. Results and Discussion 
 
We report the Monte Carlo simulations on the WG and 
FD-GMM estimators for various combinations of values 
of  and T , and relatively wide range of values for N
  and 2 2

   . The main focus of the analysis is on 
the bias of the WG and FD-GMM estimators as the 
number of cross-section dimension  and the number 
of time dimension  changes. The change in bias as 
the true value of the coefficient parameter 

N
T

  varies is 
also shown. The effect of the variance ratio between the 
individual effect and the random disturbance on the bias 
of the two estimators is explored. 
 
6.1. Effect of the Sample Size on the Bias  
 
The marginal effect of varying the cross-section dimen-
sion  and the time dimension T  are presented 
separately. The joint effect of  and T  is also pre-
sented as [8] emphasized that the asymptotic bias of the 
DPD estimators depend on the relative rates of increase 
of  and T . 

N
N

N
In theory, the cross-section dimension  has no ef-

fect on the bias of the WG estimator. This is confirmed 
N
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in the simulation exercise, where the bias of WG estima-
tor is relatively constant as  varies, given that  is 
fixed. On the other hand, the theory is that the FD-GMM 
estimator has a bias of order 

N T

1 N , that is, the bias de-
creases as  becomes large. This pattern is not per-
fectly observed in the simulation. For instance, when the 
variance ratio 

N

2 2 1    , only 10 out of the 25 cases 
have shown the pattern of decreasing bias of the 
FD-GMM estimates as the number of cross-section di-
mension increases. Also, when the variance ratio 

2 2 0    , only 10 out of the 25 cases have shown the 
pattern of decrease in bias as  increases. A summary 
of the range of values of bias as percentage of the true 
parameter value for the FD-GMM estimator focusing on 
varying the cross-section dimension  is presented in 
Table 2. For a moderate time dimension 

N

N
10T  , we 

could expect a FD-GMM estimate with a bias from 14% 
to 47% for 30N  , from 8% to 39% for 40N   and 
from 6% to 38% of the true value of the coefficient even 
when 50N  . 

 
Table 2. Percent bias of . FD-GMM̂

 2 2 0   2 2 0.2     2 2 0.8  2 2 1      2 2 1.25           

 MIN MAX  MIN MAX MIN MAX MIN MAX  MIN MAX 

      T = 3      

N = 10 66 114  75 130 77 183 73 189  84 162 

N = 20 41 138  33 95 62 103 28 101  48 95 

N = 30 14 46  30 81 15 81 38 82  28 88 

N = 40 9 70  12 72 10 83 33 126  9 68 

N = 50 15 21  15 75 11 74 7 85  20 88 

      T = 5      

N = 10 53 109  52 136 56 141 58 111  52 161 

N = 20 27 74  33 101 28 69 40 80  37 74 

N = 30 22 52  25 50 23 62 24 67  25 59 

N = 40 14 59  22 48 16 61 13 67  18 61 

N = 50 3 29  14 48 17 61 12 49  18 59 

      T = 10      

N = 10 28 124  30 127 34 95 36 97  32 101 

N = 20 18 83  21 44 19 55 27 39  26 71 

N = 30 14 32  15 27 16 34 18 47  19 43 

N = 40 8 39  10 29 11 32 14 32  11 34 

N = 50 8 26  11 38 8 28 10 30  6 31 

      T = 25      

N = 10 12 55  12 29 13 49 13 37  12 41 

N = 20 11 42  13 55 11 43 13 53  13 44 

N = 30 9 41  11 28 11 29 10 28  12 45 

N = 40 6 23  9 54 9 34 8 30  7 27 

N = 50 6 23  7 22 8 22 7 18  5 25 

      T = 50      

N = 10 5 18  6 18 5 16 5 25  5 31 

N = 20 5 24  6 24 5 18 6 20  6 20 

N = 30 5 23  5 27 6 22 5 21  5 22 

N = 40 5 17  6 27 6 24 6 22  6 20 

N = 50 4 23  6 21 6 20 6 23  5 21 
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The time dimension  affects the bias of the WG es-
timator. The WG estimator has bias of order 

T
1 T , that is, 

as  becomes larger, the WG bias becomes smaller. 
This is also observed in the simulation. As expected, as 

 increases from 3 to 50, the bias reduces tremendously 
within acceptable levels as T is nearing 50. This pattern 
is implied by the increase of the magnitude of the 
medi-ans as  becomes larger.  

T

T

T
The FD-GMM estimator is known to be affected by 

the cross-section dimension , and the order of bias is N
1 N  and does not involve T 8] noted that consistency 
of the FD-GMM estimator requires  

. [
2

log 0T N   
and T  s mean he bias 

of the FD-GMM estimator does not depend on N  alone 
but also T . he FD-GMM esti ates in the simulation 
exercise illustrate the decrease in bias as the time dimen-
sion increases, most specially for 0.5

where hi s that t

m

N   

 T

 . T

  . Also, from 

Table 2, a FD-GMM estimate is within 6% to 12 f 
the true value, when 10T

7% o
 , within 6% to 55% f the 

true value when 25T
 o

  and within 4% to 27% of the 
true value of the coefficient, implying the magnitude of 

-GMM bias FD de  increases. creases as T

T

A summary of the range of values of bias as percentage 
of the true parameter value for the WG estimator with 
varying time dimension  is presented in Table 3. For 
a small cross-section dimension , one could ex-
pect a WG estimate with a bias from 27% to 132% for 

10N 

10T  , from 10% to 54% for  and from 5% to 
28% of the true value of the coefficient when 

25T
50T  . 

Even for large cross-section dimension, say 50N  , the 
WG estimates have similar range of percent bias as those 
estimate when 10N  . This indeed shows that there is 
notable decrease in the bias of WG estimates as  in-
creases whatever the value of . 

T
N

 
Table 3. Percent bias of ˆ

WG . 
 2 2 0     2 2 0.2     2 2 0.8     2 2 1     2 2 1.25     

 MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX 

     N = 10     

T 3 81 533 76 569 82 552 82 514 81 561 

N = 20 

T 3 79 573 80 559 79 547 81 535 79 543 

N = 30 

T 3 78 558 82 557 81 551 82 547 82 545 

N = 40 

T 3 83 554 90 557 84 541 80 543 80 551 

N = 50 

T 3 79 546 80 542 80 537 78 535 80 530 

= 

T = 5 55 254 51 305 53 276 56 260 58 313 

T = 10 28 130 29 132 27 120 29 120 30 119 

T = 25 11 54 10 26 10 54 11 39 11 41 

T = 50 5 19 5 19 5 16 5 25 5 28 

         

= 

T = 5 52 285 53 306 56 283 51 286 55 290 

T = 10 26 136 29 109 28 118 25 101 28 131 

T = 25 10 41 10 52 11 41 11 57 10 45 

T = 50 5 24 5 24 4 18 5 20 5 18 

         

= 

T = 5 53 273 53 272 51 298 53 289 55 267 

T = 10 29 124 28 121 29 115 30 126 28 113 

T = 25 11 55 10 40 11 42 10 42 12 49 

T = 50 5 22 5 26 5 23 5 22 5 23 

         

= 

T = 5 53 283 53 267 53 276 54 290 53 287 

T = 10 28 133 27 122 28 124 27 130 27 132 

T = 25 11 42 11 54 11 52 10 46 11 45 

T = 50 5 19 5 25 5 24 5 22 5 22 

         

= 

T = 5 53 259 52 266 52 283 54 282 54 265 

T = 10 28 122 28 126 28 124 26 124 29 124 

T = 25 11 45 11 45 11 46 10 43 11 51 

T = 50 5 25 5 23 5 22 5 24 5 23 
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It is interesting to note that the relationship een 

ia
betw

b s and the sample size represented by the pair (N,T) 
also takes into account the relative rates of increase of 
N  with respect to T  for the WG estimator and T  
with respect to N  for the FD-GMM estimators. When 
we have a square panel, that is when the sample size is 
either, ( 10N  , 10T  ) or ( 50N  , 50T  ), the WG 
estimates and GMM estimates are almost the same. The 
similarity of the WG estimates to the GMM estimates is 
also seen for an almost square panel, such as 
( 20N  , 25T  ), ( 30N  , 25T  ), and N = 40, T = 50. 
This confirms the theory of [8] that the asymptotic bias 
of WG and FD-GMM are the same when N T , we 
confirmed here to be also true for moderate samples and 
even small samples. When 50T  , regardless of the 
size of N , the value of WG estimates are similar to the 
value of FD-GMM estimates. This is attributed to the 
fact that in the previously stated scenario, the time-series 
dimension is always greater than or equal to the 
cross-section dimension, in this case the workable for-
mula for FD-GMM whenever t N  is almost identical 
to the WG formula. 
 

.2. Effect of Para6
 

meter Values on the Bias 

y has The first-order DPD model considered in this stud
three parameters, but we focused only on the coefficient 
of the lagged dependent variable ( ). The two other 
parameters are the variances of the one-way random ef-
fects error component, namely the variance of the indi-
vidual effect 2

  and the variance of the random dis-
turbance 2

 . Instead of analyzing the effect of 2
  and 

2
  separately, we focus on the variance ratio 2 2

   . 
Both the WG and FD-GMM estimators are do ward 
sed, that is, the estimates are smaller than

wn
bia  the true 
value of the coefficient parameter  . As shown by [2] 
for WG estimator, the bias decreases as   increases. 
This is true for both the WG and FD-GMM estimators as 
illustrated in the study. Also, one may think that the per-
cent bias will increase as we decrease the value of  , 
since the smaller the value of the denominator the larger 
the fraction becomes. This is confirmed in the results of 
simulation, the FD-GMM bias decrease as T  increase 
provided that   is large.  

The exact distribution of WG estimator is said to be 
invariant to bo  the varianceth  of the individual effect 2

  
and the variance of the random disturbance 2

 , while 
the distribution of the  FD-GMM estimator is invariant 
only to the variance ratio 2 2

   , see [8]. In the simula-
tion exercise, varying the variance ratio does not show 
sizeable changes on the bias, when the sample size 
 ,N T  and the value of the parameter coefficient   
are fixed.  

 WG and FD-GMM Estimators 
 
We compar

6.3. Other Asymptotic and Finite Sample 
Properties of

 
betw

ported in Table 4. The following asymptotic properties: 

e the median of the estimators to the ap-
proximate bias values computed by [8]. Percent different

een the computed bias and the approximate bias are 
re
(a) when T N , the asymptotic bias of GMM is 
smaller than the WG bias, (b) when T N , the expres-
sion for the two asymptotic biases are equal and (c) when 

0N T  , the asymptotic bias in the WG estimator dis-
appears, der y Alvarez and Arellano (2003) still 
hold for smaller samples considered  study. The 
findings of [7] that the WG is more efficient than GMM 

ported by the simulation study. Since the bias 
of WG estimator does not depend on N , the values are 
similar, that is, the number of WG estimates with percent 
difference values less than 5% is almost the same for 
different values of N . On the other hand, percent dif-
ference of FD-GMM estimate increases with N . The 
asymptotic approximation of [8] performs well for 

40N  , since 72.8% of the MC medians of FD-GMM 
estimates are within % of the approximated value. 
 
Table 4. Percent difference of bias estimates from asymp-

ses. 

%Difference WG FD-GMM 

ived b
 in this

is also sup

20

totic bia

 N = 10 

<20 70 (56%) 35 (28%) 

<10 58 ) 

<5 39 (31.2%) 6 (4.8%) 

N = 20 

(46.4% 13 (10.4%) 

 

<20 71 (56.8%) 56 (44.8%) 

<10 66 (52.8%) 4

<5 43 (34.4%) 26 (20.8%) 

N = 30 

6 (36.8%) 

 

<20 76 (60.8%) 81 (64.8%) 

<10 61 (48.8%) 59 (47.2%) 

<5 46 (36.8%) 40 (32%) 

N = 40  

<20 75 (60%) 91 (72.8%) 

<10 64 (51.2%) 72 (57.6%) 

<5 46 (36.8%) 52 (41.6%) 

N = 50  

<20 73 (58.4%) 96 (76.8%) 

<10 61 (48.8%) 76 (60.8%) 

<5 49 (39.2%) 57 (45.6%) 
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The  of FD-G aller than t  WG 
estim that is 71 t of 125 c  this 
pattern ote that 6 e cases ha up 

d the othe e the set-u

 bias MM is sm he bias of
ates, 

. N
(56.8%) ou
0% of th

ases follow
ve the set-

T N
int

, an r 40% hav p T N . It is 
eresting to note that only when the variance of the 

individual effect 2
  equal to zero, we see that majority, 

that is, 20 out of the 25 cases considered have bias of 
M less than the bias of WG. On the other hand, 

when 2 0  , half of the cases have bias of FD-GMM 
smaller than bias WG and the other half have bias of 
WG less than or equal to bias of FD-GMM. The cases 
where bias of WG is less than or equal to the bias of 
FD-GM timates have moderate to large T , but 
when 10T  , the bias of WG is smaller and closer to 
the FD-GMM bias only when 

FD-GM

of 

M es

  is at least 0.5. Spe-
cifically, bias of WG is close to bias of FD-GMM for 
square panels where 0.5   and for 25T  . 

We nalyzed moderately-sized cross-section di-

mension, i.e., 3N 0 . This 0%  the 125 
ca

 allows for 8 of
ses to have T N  and the other 20% are designs 

where T N . pect that more percentage of FD- 
GMM estimates maller bias than WG estimates as 
compar where the cross-dimension size is small. 
There are 90 (72%) of the 125 cases where bias of 
FD-GMM is smaller than the bias of WG. The other 35 
(28%) cases have either large time-dimension, that is 

50T

We ex
 have s

ed to 

  or larger value for the coefficient parameter, 
which is 0.8  . This is intuitively true, since when 

50T  , N T  and the bias of WG is expected to be 
less than  of FD-GMM. For moderately-sized 

mension, about 73% of the FD-GMM 
estimates have smaller bias than their WG counterpart 
and the other 27% have designs where the time dimen-
sion is large or the value of the coefficient of parameter 
is close to one. 

Some 80% of the 125 cases have designs where T < N also a

the bias
cross-section di

 WG

Cases Numbe tisfying the inequality 

 
Table 5. Comparison of bias of  and FD-GMM estimates. 

r of cases with Bias(FD-GMM) < Bias(WG) Set-up not sa

N = 10,  large T,  2 0  15 (60%) moderate to  close to 1 

N = 10, 2

  0.2  11 (44%) moderate T,  close to 1 

N = 10, 2 0.8   12 (48%) moderate T,  close to 1 

N = 10,  2 1.0  14 (56%) mo  Tderate to large ,  close to 1 

mo  TN = 10,  2 1.25 14 (56%) derate to large ,  close to 1 

l 66  Tota (52.8%)  

N = 20, 2 0   20 (80%) moderate T or  clo

N = 2 moderate to larg T, 

se to 1 

0, 2

  0.2  14 (56%) e  close to 1 

mo , N = 20, 2 0.8    13 (52%) derate to large T  close to 1 

N = 20,  2 1.0  12 (48%) moderate to large T,  close to 1 

N = 20,  2 1.25 12 (48%) moderate to large T,  close to 1 

Total 71  (56.8%)  

N=30, 2 0   22 (88%) T = 50.  = 0.1, 8, 0.9  0.

N = 3 T = 25,0, 2

  0.2  18 (72%)  50,      not 0.5 

N = 30, 82 0.    17 (68%) T = 50 or    close to 1 

N = 30,  2 1.0  17 (68%) T = 50 or    ose to 1 cl

N = 30,  2 1.25  16 (64%) T = 50 or    close to 1 

Total 90 

alm e 0 

N = 4 T = 25 or 50 or

(72%)  

N = 40, 2 0   

0.2

21 (84%) ost the sam  bias for T = 5

0, 2

   18 (72%)    close to 1 

N = 40, 2 0.8   18 (72%) T = 25 or 50 or   close to 1 

N = 40,  2 1.0  17 (68%) T = 25 or 50 or   close to 1 

N = 40,  2 1.25  17 (68%) T = 25 or 50 or   close to 1 

Total 91  
2

N = 5 T = 50 and 

(72.8%)  

N = 50, 0   

0.2

25 (100%)  

0, 2

   23 (92%)   close to 1 

N T = 50 or = 50,  82 0.   21 (84%)   close to 1 

N = 50,  2 1.0  19 (76%)  

N = 50,  2 1.25  16 (64%) T = 50 or   close to 1 

Total 104  (83.2%)  
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an of the cases come from squa that is, 

 expect that most of th  esti-
rate size cross-sectio i are 105 (84%) 
cases where IQR of WG is less than IQR of FD-GMM. 
The strongest evidence that the WG estimator has 
sma riabilit -GMM is seen in the sum-
ma ble 6, articularly, 11 ) of the 125 
cases ha  of WG smaller tha D-GMM. 

h 
 

eir 

d 20% re panel, 
50 . WeN T  e FD-GMM

mates have smaller bias than the WG estimates and when 
square panels are considered the biases are the same. 
There are 104 (83.2%) of the 125 cases considered has 
FD-GMM bias smaller than their WG counterpart. The 
other 21 (16.8%) cases have designs where the time di-
mension is large, that is, 50T   and the coefficient 
parameter is close to one, that is,   0.8 or 0.9. 

Table 6 summarizes comparison of the variability of 
WG and FD-GMM estimates as easured by the inter-
quartile range (IQR). The WG es ates generall

m
tim y have 

less variability than FD-GMM estimates, for the mode- 
 
Table 6. Comparison of variability of WG and FD-GMM 
estimates. 

Cases 
Interquartile Range (WG) < Interquartile 

Range (GMM) 

N = 10, 2 0   21 (84%) 

N = 1

tal 97 

N = 2

tal 111  

N = 3

tal 105 

N = 4

tal 112  

N = 5

Total 113 (90.4%) 

0, 2

  0.2  18 (72%) 

N = 10, 2 0.8   20 (80%) 

N = 10,  2 1.0  20 (80%) 

N = 10,  2 1.25  18 (72%) 

To (77.6%) 

N = 20, 2 0   22 (88%) 

0, 2

 
2

0.2  22 (88%) 

N = 20, 0.8   23 (92%) 

N = 20,  2 1.0  23 (92%) 

N = 20,  2 1.25  21 (84%) 

To (88.8%)

N = 30, 2 0   17 (68%) 

0, 2

  0.2  20 (80%) 

N = 30, 2 0.8   24 (96%) 

N = 30,  2 1.0  22 (88%) 

N = 30,  2 1.25  22 (88%) 

To (84%) 

N = 40, 2 0   22 (88%) 

0, 2

 
2

0.2  22 (88%) 

N = 40, 0.8   20 (80%) 

N = 40,  2 1.0  24 (96%) 

N = 40,  2 1.25  24 (96%) 

To (89.6%)

N = 50, 2 0   24 (96%) 

0, 2

 
2

0.2  23 (92%) 

N = 50, 0.8   23 (92%) 

N = 50,  2 1.0  22 (88%) 

N = 50,  2 1.25  21 (84%) 

n dimens on. There 

ller va y than FD
ry of Ta  p 3 (90.4%

ve IQR n IQR of F
 
6.4. Comparison of Bootstrapped DPD and 

Conventional DPD Estimators 
 
To be able to assess the benefits from boostrapping the 
WG and GMM estimators, we identified settings in the 

mulation scenarios where they yield the largest bias. si
We report in Tables 7 and 8 the top 25 of estimates wit
the largest bias for both WG and GMM, together with

respective design specifications. th
 
Table 7. 25 Largest bias of WG estimates and their design 
specifications. 

Rank Bias   N  T  
2

  

1 0.749 0.9 40 3 0 

2 0.746 0.9 10 3 0.8 

3 0.743 0.9 40 3 0.8 

4 0.741 0.9 10 3 1 

0. 30 3 0.2 

1  

1  

1  

25 0.715 0.8 20 3 1 

5 0.739 9 

6 0.739 0.9 30 3 .25

7 0.737 0.9 20 3 1 

8 0.735 0.9 50 3 1.25 

9 0.733 0.9 30 3 1 

10 0.731 0.9 30 3 0.8 

11 0.731 0.9 50 3 0.2 

12 0.730 0.8 50 3 .25

13 0.728 0.8 40 3 0.2 

14 0.726 0.9 40 3 1 

15 0.725 0.9 10 3 0 

16 0.725 0.9 10 3 1.25 

17 0.724 0.9 50 3 0.8 

18 0.721 0.9 40 3 0.2 

19 0.720 0.9 20 3 0.2 

20 0.720 0.9 40 3 .25

21 0.719 0.9 20 3 1.25 

22 0.719 0.9 20 3 0.8 

23 0.719 0.8 30 3 1 

24 0.716 0.8 10 3 0 
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Ta 8. 2 t  of FD M est ates an  
design spe tions. 

Rank Bias 

ble 5 Larges
cifica

bias -GM im d their

  N  T  
2

  

1 0.951 0.9 50 3 1 

2 0.922 0.9 10 3 1 

3 0.882 0.9 20 3 1.25 

4 0.871 0.9 40 3 0.8 

0.9 20 3 1 

0.

10 

11 0. 0.

12 

13 0.

14 

5 0.858 

6 0.857 0.9 40 3 1 

7 0.854 0.9 20 3 8 

8 0.820 0.9 50 3 1.25 

9 0.799 0.8 10 3 1 

0.784 0.9 30 3 1.25 

765 0.9 10 3 8 

0.756 0.8 10 3 1.25 

747 0.9 20 3 0.2 

0.741 0.9 40 3 1.25 

15 0.739 0.9 30 3 0.2 

16 0.738 0.8 20 3 1 

17 0.722 0.9 30 3 0.8 

18 0.703 0.8 20 3 1.25 

19 0.690 0.8 20 3 0.8 

20 0.684 0.9 50 3 0.2 

21 0.678 0.8 50 3 1 

22 0.669 0.8 30 3 1 

23 0.662 0.9 10 3 1.25 

24 0.661 0.8 10 3 0.2 

25 0.660 0.8 10 3 0.8 

 
 or  bia  the W estimator is The der of s of G 1 T  and 

therefore, as increases the reases. The order 
of s o ator is 

T  bias dec
 bia f the GMM estim 1 N  and thus, as N  

he 
h 

first 

in ses as eases. rms bi
worst WG ates came from designs wit
e small tim  di sion. s is c ruent to the 
eoretical p rties of the WG estimator, but at 

qu

crea , the bi

e
rope

decr  In te of the as, t
and GMM estim

menv
th

ry Thi ong

ite surprising for GMM estimator. When 3T  , 
FD-GMM estimator uses only one instrument and thus 
equivalent to the IV estimator, less appealing than the 
GMM estimators. Moreover, the FD-GMM estimator 
when 3T  , does not show a decrease in bias as N  
becomes larger.  

It is known that the bias of WG estimator increases 
with the coefficient parameter  , see [2] and [7]. s 
simulation exercise, all the WG and GMM worst esti-

mates came from designs with large 

 In thi

 , see Table 9. As 
the autoregression component of the model becomes 
nearly n ationary, both WG and FD-GMM estimat  
can suffer tremend

onst es
ously. 

 
elTable 9. Monte carlo designs yi ding worst estimates (33 

parameter combinations). 

Design   N  T  
2

  2

v  

1 0.8 10 3 0 1 

2 0.8 10 3 

3 

3 

0.2 1 

1 1 

0. 10 1.25 1 

0.

1  

1  

1.

1.

1.  

3 0.8 10 3 0.8 1 

4 0.8 10 

5 8 

6 0.8 20 3 8 1 

7 0.8 20 3 1 1 

8 0.8 20 3 1.25 1 

9 0.8 30 3 1 1 

10 0.8 40 3 0.2 1 

11 0.8 50 3 1 1 

12 0.8 50 3 .25 1 

13 0.9 10 3 0 1 

14 0.9 10 3 0.8 1 

15 0.9 10 3 1 1 

16 0.9 10 3 .25 1 

17 0.9 20 3 0.2 1 

18 0.9 20 3 0.8 1 

19 0.9 20 3 1 1 

20 0.9 20 3 25 1 

21 0.9 30 3 0.2 1 

22 0.9 30 3 0.8 1 

23 0.9 30 3 1 1 

24 0.9 30 3 25 1 

25 0.9 40 3 0 1 

26 0.9 40 3 0.2 1 

27 0.9 40 3 0.8 1 

28 0.9 40 3 1 1 

29 0.9 40 3 1.25 1 

30 0.9 50 3 0.2 1 

31 0.9 50 3 0.8 1 

32 0.9 50 3 1 1 

33 0.9 50 3 25 1 
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T riances of t ndividual effe r the orst 
GMM estim  are m act out of th
desig s consid ha and 21 ut of t 25 
cas onsid  have The variances the 
ind  e ts of st WG ates are 
similar. 

W e ine design for th larges ias 
of

) both 
ology is

rror for the original estimators WG and FD- 
G

(b) 
  ev. 

he va he i ct fo w
ates

ered 
ostly large
ve 

, in f 15 
 o

e 25 
he n 2 1   

2 0.8 
 25 w

es c ered   . of 
ividual ffec the or  estim

hen w  comb the s e 25 t b
 WG and 25 largest bias of GMM, they have 17 com-

mon designs, thus 33 designs in Table 9 represent the 
worst estimate (largest bias from WG and GMM. 

The bootstrap method  used for these 33 de-
signs. The bias, standard deviation and the root mean 
square e

MM together with the bootstrap estimators WGb and 
FD-GMM b are presented in Tables 10(a)-(e). 
 
Tables 10. (a) Estimates for  = 0.8, N = 10, 20; (b) Esti-
mates for  = 0.8, N = 30, 40, 50; (c) Estimates for  = 0.9, 
N = 10, 20; (d) Estimates for  = 0.9, N = 30, 40; (e) Esti-
mates for  = 0.9, N = 50. 

(a) 
Design  Bias Std. Dev. MSE 

1 WG 0.716 0.221 0.561 

 Gb 0.751 0.117 0.

 FD-GMM 0.596 0.662 0.793 

 FD-GMMb 0

W 578 

.701 0.137 0.510 

2 WG 0.705 0.215 0.543 

WGb 

MM 

MMb 

MMb 

4*w m 

5*w m 

 1.264 0.259 1.665 

 FD-

 

G

FD-G

0.661 

1.226 

0.692 

1.004 

0.916 

2.511 

3 WG 0.678 0.200 0.500 

 WGb 1.196 0.162 1.457 

 FD-GMM 0.660 0.905 1.255 

 
g,gm

FD-G 1.291 0.699 2.156 

WG 0.708 0.189 0.537 

 WGb 0.489 0.063 0.243 

 FD-GMM 

MMb 

0.799 1.242 2.181 

 
g,gm

FD-G 0.518 0.261 0.337 

WG 0.713 0.215 0.555 

 WGb 0.706 0.019 0.498 

 FD-GMM 

MMb 

0.756 0.744 1.125 

 FD-G 0.705 0.085 0.504 

6 WG 0.684 0.167 0.496 

 WGb 0.965 0.036 0.933 

 FD-GMM 

MMb 

0.690 1.062 1.604 

 FD-G 0.966 0.253 0.997 

7 WG 0.715 0.162 0.537 

 WGb 0.889 0.061 0.794 

 FD-GMM 

MMb 

0.738 1.334 2.324 

 FD-G 0.865 0.264 0.819 

8 WG 0.674 0.127 0.470 

 WGb 0.990 0.052 0.982 

 

 FD-

FD-GMM 

GMMb 

0.703 

0.977 

0.864 

0.223 

1.241 

1.004 

 Bias Std. D MSE 

9  7  WG 0.719 0.12 0.533

 WGb 0.964 1  

MM  5  

b  4  

  6  

 WGb 0.768 0.076 0.595 

FD-G M 

MMb 

11*w gmm

MMb 

1  

MMb 

0.05 0.932

 FD-G 0.669 0.55 0.756

 FD-GMM 0.936 0.16 0.902

10 WG 0.728 0.09 0.539

 M 0.448 0.765 0.786 

 FD-G 0.829 0.463 0.901 
g, WG 0.698 0.09 0.495 

 WGb 0.437 0.006 0.191 

 FD-GMM 0.678 0.688 0.933 

 FD-G 0.433 0.021 0.188 

2 WG 0.73 0.091 0.541 

 WGb 1.014 0.016 1.029 

 FD-GMM 0.502 0.867 1.004 

 FD-G 1.007 0.080 1.021 

 
(c) 

 S .   Bias td. Dev MSE 

13 WG 0.725 0.254 0.590 

 WGb 1.468 

 

 

14*w WG 0.746 0.249 0.619 

 WGb 0.618 0.018 0.382 

FD-GM  

MMb 

15* gmm

MMb 

1  

0.243 2.215 

 FD-GMM 0.614 1.119 1.629 

 
g,gmm

FD-GMMb 1.230 0.443 1.710 

 M 0.765 0.785 1.201 

 FD-G 0.614 0.029 0.377 
wg, WG 0.741 0.217 0.596 

 WGb 0.216 0.058 0.050 

 FD-GMM 0.922 0.950 1.753 

 FD-G 0.203 0.086 0.049 

6

 

WG 

WGb 

0.725 

1.088 

0.254 

0.026 

0.590 

1.184 

 FD-GMM 0.662 0.787 1.058 

 FD-GMMb 1.075 0.168 1.183 

17*wg,gmm WG 0.720 0.167 0.546 

 WGb 0.396 0.022 0.158 

 FD-GMM 0.747 0.760 1.136 

 FD-GMMb 0.393 0.072 0.160 

18 WG 0.719 0.157 0.542 

 WGb 0.864 0.055 0.750 

 FD-GMM 0.854 0.738 1.274 

 FD-GMMb 0.869 0.204 0.797 

19 WG 0.737 0.172 0.573 

 WGb 1.150 0.030 1.324 

 FD-GMM 0.858 0.832 1.428 

 FD-GMMb 1.144 0.069 1.314 

20 WG 0.719 0.163 0.544 

 WGb 1.316 0.026 1.733 

 FD-GMM 0.882 0.808 1.431 

 FD-GMMb 1.314 0.057 1.729 
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(d) 

 S   Bias td. Dev. MSE 

(e) 

Std.  

2 01 WG .739 0.120 0.561 

 WGb –

0

 FD-

22 WG 

 

M 

 

2  

 

M 

 

24*gmm W

M 

 

25 W

M 

 

26 W

M 

 

27 W

M 

 

28*gmm W

M 

 

29*w  W

 WGb 0.614 0.014 0.378 

 FD- MM 

Mb 

0.873 0.000 0.762 

 FD-GMM .596 0.875 1.121 

GMMb –0.873 0.001 0.762 

0.731 0.128 0.551 

 WGb 1.145 0.010 1.311 

 FD-GM 0.722 0.710 1.025 

 FD-GMMb 1.141 0.024 1.301 

3 WG 0.733 0.132 0.555 

 WGb 0.907 0.024 0.823 

 FD-GM 0.607 0.665 0.811 

 FD-GMMb 0.894 0.090 0.808 

G 0.738 0.121 0.559 

 WGb 0.753 0.013 0.567 

 FD-GM 0.784 0.647 1.033 

 FD-GMMb 0.747 0.026 0.559 

G 0.749 0.111 0.573 

 WGb 0.953 0.074 0.914 

 FD-GM 0.317 0.603 0.464 

 FD-GMMb 0.897 0.205 0.847 

G 0.721 0.116 0.533 

 WGb 0.825 0.023 0.682 

 FD-GM 0.650 0.868 1.176 

 FD-GMMb 0.820 0.177 0.704 

G 0.743 0.109 0.564 

 WGb 1.428 0.017 2.040 

 FD-GM 0.871 0.828 1.444 

 FD-GMMb 1.420 0.034 2.019 

G 0.726 0.115 0.540 

 WGb 0.785 0.019 0.616 

 FD-GM 0.857 0.652 1.160 

 FD-

g,gmm

GMMb 0.790 0.117 0.638 

G 0.719 0.113 0.530 

G 0.741 0.762 1.130 

 FD-GM 0.609 0.044 0.372 

  Bias  Dev. MSE 

30 WG 0.731 0.096 0.544 

 WGb 1.208 0.025 1.460 

 FD-GMM 0.687 0.691 0.949 

 FD-GMMb 1.189 0.084 1.420 

31 WG 0.

 

MM 

 FD-GMMb 0.765 0.120 0.600 

32*w WG 0.708 0.104 0.512 

MM 

Mb 

3  

 MM 

Mb 

724 0.103 0.535 

 WGb 0.776 0.016 0.603 

 FD-G 0.651 0.709 0.926 

g,gmm

 WGb 0.698 0.021 0.487 

 FD-G 0.951 2.010 4.945 

 FD-GM 0.686 0.111 0.483 

3 WG 0.735 0.094 0.549 

 WGb 0.936 0.016 0.875 

FD-G 0.819 0.755 1.241 

 FD-GM 0.940 0.109 0.896 

 
When th e of t fficiee true valu he coe nt   is e

0.8, ootstrap estimators WGb and FD MMb k 
wel der allest sam ase sc , i.e n 

qual to 
 the b
l un

-G
enario

 wor
., whe the sm ple c

10N   d Tan 3  where rianc  ind l 
effect is at least one. Also, for the largest d 

ination, hen

 the va e of the ividua
N  an

smallest T  comb i.e., w  N 50  and 
3T   

 one, b
co

an ce of di
o p estimators perform  the 
d
th
 the varian the in vidual effect is equal 

to  bootstra  better t
es

han
nventional estimators. The bootstrap timators for 

0.9   are also better than the conventional estimators 
for the smallest sample case and when the variance of the 

al effe  as large as 0.8 and 1.0. However, 
when 2 1.25  , the bootstrapped estimators per m as 
badly as conventional estimators. Still mall 

e case, 20N

individu

sampl

ct is

 
for

er sthe  und
  and 3T  , and time the variance 

of the individual effect is small but nonzero, i.e., 
2 0.2  , we obtain the most improved bootstrap esti- 

r both WG and FD-GMM. 
Given moderate size cross-section dimension ( 30N

mates fo
  

and 40N  ), the bootstrap FD-GMM is better than the 
conven -GMM for cases where the variance of 
the individual effect is as large as 1 or 1.25. Also, the 
bootstrap WG maller than the conventional 
WG when 40N

tional FD

 has s bias 
  and 2 1.25  . 

e bootstrap WG and bootstrap FD-GMM are 
better estimators than their conventi

B
onal counterparts for 

the largest  and smallest case where the variance 

oth th

N T  
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of

-GMM , the s-section dimen-
si

however, the
ecreases as In squa

ls with dime , e. T

 the individual effect is equal to one. 
 
7. Conclusions 
 
In estimating a dynamic panel data (DPD) model using 
WG and FD  estimators  cros

on N  has no effect on the bias of the WG estimator, 
but the bias of FD-GMM decreases as N  increases in 
some cases. The bias of WG estimator decreases as T  
increases quite consistently in most cases, 

 increases. 
g., 

 
re bias of FD-GMM d

panels such as pane
T

nsions 10N  
ates are sim

, 
i-50 N T , the WG and FD-GMM estim

lar. However, when 10N T  , the two estimators are 
similar only when 0.5  . Also, the WG estimates are 
similar to FD-GMM estimates for almost square panels 
such as panels, e.g., ( 20N  , 25T  ), ( 30N  , 25T  ), 
and ( 40N  , 50T  ). When 50T   regardless of the 
value of N , WG and FD-GMM estimates are similar. 

WG and FD-GMM estimators are both downward bi- 
ased, the bias increases with  . However, t  

of the true value of 
he bias as a

percentage   decreases as   
increases. Varying th  ratio (variance of the 
individual effect di y the variance of the random 
disturbance) does not show sizeable changes on the bias. 
The bias differs by a 2 m t ro e 
bias p  arez and Ar o (2003) for WG 
when 0T  and 0.5

e varia
vided b

t most  he app xim
rovided by Alv e

nce

0% fro
llan

at

1    or when 25T  . For the 
FD-GMM, at most 20% bias difference from the ap- 
proximate large sample bias happen when ( 10, 20N  , 

0.2   and 10T  ) or ( 30N  , 0.2   and T = 1  
20). 

WG estimates are less variable than FD-GMM esti- 
mates based on the interquartile range. The WG estima- 
tor is best to use when the time-series dimension is as 
large as 50 and the cross-section dimension as low as 10 
for models here th  of the varia f the indi- 
vidual effect to the variance of the random disturbance to 
be less than one and regardless of the true v e 

ent para  t 50 , 20N

0,

 w e ratio nce o

alue of th
coeffici meter. Also, when he T    
and 2 2 1 

tions will assure that the percent bias of the WG esti- 
mate will not exceed 20%. The FD-GMM estimator has 
bias not exceeding 20% of the true value of the parame- 
ter coefficient for small and moderate samples in terms 
of N  when: (1) 10N   and 50T  , for 

   , the WG estima h
di

tes are good. T ese con- 

2 2 1    , 
(2) 20N   and 50T  , for 2 2 1    . The impor- 
tance of having large N  to reduce the bias and percent 
bias is evident for designs where the ti  
sion is as lar s 25.  

The bootstrap estimators for both WG and FD-GMM, 
labeled as WGb and FD-GMMb respectively, work well 
for the smallest sample size, i.e., 10N   and 3T

me-series dimen
ge a

-

  

and the extreme sample size set-up where 50N   and 
T 3 , provided th atio of th riance - 
vidu t to the ce of th  disturbance is 
equal to one. 
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