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Abstract

We used simulated data to investigate both the small and large sample properties of the within-groups (WG)
estimator and the first difference generalized method of moments (FD-GMM) estimator of a dynamic panel
data (DPD) model. The magnitude of WG and FD-GMM estimates are almost the same for square panels.
WG estimator performs best for long panels such as those with time dimension as large as 50. The advantage
of FD-GMM estimator however, is observed on panels that are long and wide, say with time dimension at
least 25 and cross-section dimension size of at least 30. For small-sized panels, the two methods failed since
their optimality was established in the context of asymptotic theory. We developed parametric bootstrap ver-
sions of WG and FD-GMM estimators. Simulation study indicates the advantages of the bootstrap methods
under small sample cases on the assumption that variances of the individual effects and the disturbances are
of similar magnitude. The boostrapped WG and FD-GMM estimators are optimal for small samples.

Keywords: Dynamic Panel Data Model, Within-Groups Estimator, First-Difference Generalized Method of
Moments Estimator, Parametric Bootstrap

1. Introduction

Panel data combine cross-sectional and time series in-
formation. Since the temporal dependencies for each unit
could vary significantly, a dynamic parameter is desir-
able to relax the parametric constraints into the model.
Dynamic panel data (DPD) model postulates the lagged
dependent variable as an explanatory variable. Just like
in univariate time series analysis, modeling the depend-
ency of the time series on its past value(s) gives valuable
insights on the temporal behavior of the series. [1] noted
that many economic relationships are dynamic in nature
and the panel data allow the researcher to better under-
stand the dynamics of structural adjustment exhibited by
the data.

A good number of dynamic panel data estimators have
been proposed and thoroughly characterized in the lit-
erature. The within-group (WG) estimator, among the
early estimation method for DPD, provides consistent
estimate for static models. In DPD models, [2] showed
that the WG estimator of the coefficient of the lagged
dependent variable parameter is downward biased and
the bias only disappears as the number of time units
grows larger. Thus, the WG estimator is known to be
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biased whenever the time-dimension 7' is fixed, even if
the cross-section dimension N is large.

The inconsistency of the WG estimator leads to the
development of DPD coefficient parameter estimators
that are consistent for large N and fixed or large T,
e.g., the use of instrumental variables (IV). For the IV
estimators, [3] used either the dependent variable lagged
two periods or its first-differences as instruments. Even
the development of the generalized method of moments
(GMM) estimators for DPD coefficient parameters is
based on the IV approach. [4] proposed GMM estimator
that uses all available lags at each period as instruments
for the equations in first differences, this is now known
as the first-difference generalized method of moments
estimator (FD-GMM). [5] proposed the level GMM es-
timator which is based on the level of the model and uses
lagged difference variables as instruments. [6] further
proposed the now called system GMM estimator which
uses both the lags of the level and first difference as in-
struments.

The DPD model estimators have exhibited good as-
ymptotic properties, see for example [2], [7], and [8].
Some work investigated the small sample properties of
the said estimators, e.g., [9] and [10]. There are numer-
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ous studies on the properties of dynamic panel data
model but are mostly focusing on data sets with large
cross-section and small time dimensions. Other studies
highlight datasets with sizeable cross-section dimensions
and moderately-sized time dimensions.

We used intensive simulations to investigate both the
small and large sample properties of two of the simplest
and oldest DPD estimators, the within-groups and
first-difference generalized method of moments estima-
tors of the AR(1) DPD model. We also propose the use
of parametric bootstrap procedure in the WG and
FD-GMM for the boundary scenario, i.e., when asymp-
totic optimality of WG and FD-GMM fail.

As [11] pointed out, the application of bootstrap meth-
odology in panel data analysis is currently in its embry-
onic stage. The bootstrap estimators proposed in this
study can answer the possible limitations of the estima-
tors by [8]. Over a short period, it is common for proc-
esses over time to be easily affected by random shocks.
Thus, if long period data are used, it is very likely that
structural change will manifest and the modeler will ei-
ther incorporate the change into the model (more com-
plicated), or analyze the series by shorter periods, lead-
ing to small sample data where the proposed estimator is
applicable.

2. Dynamic Panel Data Model

Suppose the dynamic behavior of a time series for unit
(yi,) s characterized by the presence of a lagged depend-
ent variable among the regressors, i.e.

yit:ayi,t—l-‘rxi’tﬂ-i_ll’lit i=L-- N t=1---,T (1)

where o is a constant, X; is 1xK vector of ex-
planatory/exogenous variables, and S is K x1 vector
of regression coefficients. y, follows a two-way error
component model p, =7, +4, +v, where 7, and 4,

are the (unobserved) individual and time specific effects,

which are assumed to stay constant for given i over ¢
and for a given ¢ over i, respectively; and v, repre-
sents the unobserved random shocks over i and ¢. The
unobserved individual-specific and/or time-specific ef-
fects 7, and A, are assumed to follow either the fixed
effects model (FE) or the random effects model (RE). If
Equation (1) assumes a RE model and if g, follow a
one-way error component model , =7, +v, , then the
individual and time specific effects are 7, ~ HD(O, 0',12)
and v, ~ IID(O, o ) independent of each other and
among themselves. When 7, and A, are treated as
fixed constants, the usual assumptions are
(YN)Y" 72 =0(1) and (YT)3. 22 =0(1). [12],
[1] and [13] give detailed discussions on dynamic panel
data models.

Consider the following AR(1) dynamic panel data
model without exogenous variable

Yu=ay, +n+v, i=12,- N;t=12,--T (2)

where y, is the dependent variable, « is the regres-
sion coefficient (parameter of interest) with |a| <1, n,
is the unobserved heterogeneity or individual effect
which has mean 0 and variance 0': (20) and v, is
unobserved disturbance with mean 0 and variance
o, (>0). To facilitate the computations of estimators of
model 2, let x, =y, Y, = (yz'la"'»yz'r),;
X, = (X0, %7 )5V, =(Viseuvip )5 and g =(1,-4,1)°

(a T'x1 wvector of ones). Equation (2) can be written as
Y, =aX +nq,1, +V, 3)

[8] considered several estimators of « , e.g., the
within group/covariance (WG) estimator (also called
fixed effects (FE) estimator), covariance (CV) estimator
(or least squares dummy variable (LSDV) estimator),
and the first-difference generalized method of moments
(FD-GMM) estimator (one-step level GMM estimator
proposed by [4]). In the computation of ¢, and
Qep.ouv further notations are used:

1 | | 1 1
(r-y) (- (- (T-1) (1)
0 1 | IR
A=diag[g, ’l}l/: (T—2) (T—2) (T—2) (T—2)
T 2 : : : :
0 0 0 | _1 1
2 2
0o 0 0 0 | -1
. | (T-1) 1
.= (T—t+1){ ; (T—t)(xi’*1+"'+x’7)
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iT-1

!

Z, = (xilﬂ"'7xit) Xt* = I:xl*t’x;t '”xj*Vt:| Zt, :|:let Zét ”'ZIIVt:I
[8] defined the WG estimator as

N
L2 XY
Ay = Nl—,r )
Zi:l X; QT X;
where Q, =1, -t,1;/T, Q, is called the WG opera-
tor of order 7. WG estimator may also be written in
terms of the forward orthogonal deviations operator A,
an upper triangular-like matrix, with dimension
(T-1)xT and with the following characteristics:
AA=Q,, AA'=1,, and Al,=0.Let X" =Ax and
y* = Ay, then WG estimator is given by
. X"y
a = — 5
WG X* X* ( )
[8] further analyzed an asymptotically efficient FD-GMM
estimator given by

) x'z(zz)'zy
Xepovm = —, .
x"Z(2'2) z'

(6)

where Z =(Z/,---,Z} )'. A computationally useful al-
ternative expression for &, s, 1S

- .
Z X[ Ml y[

5 =

Uppomv =77 ™

*/ *
z Xt M t Xt
t=1

where X’ and Yy’ are the Nxl vectors whose i"
elements are X and Y, respectively,

M,=2,(2/2,)'z and Z, is the Nxr matrix
whose i" row is Z!. As pointed by [8], Z'Z is non-
singular when N >T7 —1, but the projections involved
remain well defined in any case. Without loss of general-
ity, the condition N >T7 -1 was maintained because
the FD-GMM estimator is motivated in a situation where
T is smaller than N and it is straightforward to extend the
results in their paper to allow for any combination of
values of T and N by considering a generalized formula-
tion of 7 using M, =Z,(Z/Z,)" Z;, where (Z,Z,) is
the Moore-Penrose inverse of (Z;Zt). In this way,

M,=2,(2/2,)'2 if t<N and M, =1, if (2N,

Thus, the contribution of terms with ¢ > N to the FD-
GMM formula coincide with the corresponding terms for
WG.

[8] derived the asymptotic properties of several dy-
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namic panel data estimators namely, within groups (WG),
first-difference generalized method of moments (FD-GMM),
limited information maximum likelihood (LIML), crude
GMM and random effects ML estimators of the AR(1)
parameter of a simple DPD model with random effects.

As observed by [8], &y is consistent for 7 — oo,
regardless of N . However, as N — o, the asymptotic
distribution of @y, may contain an asymptotic bias
term, depending on the relative rates of increase of T
and N . When 0<lim(7/N)<o , the asymptotic
variance of WG estimator is the same as the of GMM
estimator and they have similar (negative) asymptotic
biases in which for WG has order (1+a)/T . On the
other hand, &y 1S @ consistent estimator for o as
both N o and T — oo, provided that
(logT )2 /N — 0. Also, the number of the FD-GMM
orthogonality conditions g =T (T —1) / 2 tends to infin-
ity as T —>o. The F &y IS asymptotically nor-
mal, provided that T —o and lim(7/N)=0. When
O<1im(T /N)<oo , the asymptotic variance of FD-
GMM estimator is the same as the WG estimator and
they have similar expression for their (negative) asymp-
totic biases in which for FD-GMM has order (1+a)/N .
When T < N, the asymptotic bias of GMM is smaller
than the bias of WG. When T = N, the two asymptotic
biases are equal and when N/T — 0, the asymptotic
bias in the WG estimator disappears.

From a simulation study, [7] observed that the vari-
ance of the WG estimators is usually much smaller than
the variance of consistent GMM estimators, see [2], [7-9],
[14], and [8] for further details.

3. The Bootstrap Method

The bootstrap is a useful tool for estimation in finite
samples. Bootstrap procedure entails the estimation of
parameters in a model through resampling with a large
number of replications, [15]. [16] developed the idea of
bootstrap procedure known as a nonparametric method
of resampling with replacement and it stems from older
resampling methods such as the jackknife method and
delta method. Originally, the bootstrap requires inde-
pendent observations, i.e., X consisting of n observa-
tions x,, X,, ..., X,, a random sample from the true
distribution F (x) generating the data. The data gener-
ates the empirical distribution F'(x), a discrete distribu-
tion that assigns equal probability to the »n observations
of the observed sample, hence,

p(x)=p(x,)=-=p(x,)=1/n . The b™ bootstrap
sample is a vector X, consisting of n observations
Xpis Xyps e %, (b=1,--+,B), obtained by sampling
with replacement B times from the empirical distribution
F(x).Ineach of the B bootstrap samples, the estima-
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tor of a parameter in a particular model is computed,
resulting to t(xl*), t(xﬁ, - t(x;), where () is
an estimator of a parameter, say 6.

For time series models, the sieve bootstrap and the
block bootstrap are recently introduced. The sieve boot-
strap starts by fitting the most adequate model and the
behavior of the empirical distribution of the residuals is
analyzed. The bootstrap errors & are generated by re-
sampling 7 +k times from the empirical distribution
F(£), k>p. In order to generate the b" bootstrap
sample y, = [y;b,yf’b,n-,y;ﬁ, each element of y, is
determined by the recursion” y;, =>" dy’., +&, .
where the starting values for y,, are set to zero and the
first & generated values are thrown away, so that the
needed 5" bootstrap sample Y :[yl*’b,yl*,b,---,y;b] is
obtained.

On the other hand, the block bootstrap resamples from
overlapping blocks of consecutive observations to gener-
ate the bootstrap replicates, see [17] and [15] for a more
comprehensive discussion of bootstrap methods for time
series models.

To define the bootstrap for dynamic panel data models,
suppose y is defined as measurements from different
cross-section units of the population over different time
periods, so that the data can be represented by

i Y Y2 o Nra Yir 1T Yo ]

Yau Y Yora Yor Yea

Yop = : : : : _|
Ynag Yo Ynar—t Ynar Yova
Yvi w2 Ynrar Inr | L Y |

:|:yt1 Yo Yo ytT:'

®)
The b™ bootstrap sample is the Nx7T matrix Y,
given by

B * * * *
N Ni2p Nr-1p N
* * * *
Varp You YVor-ip YVorp
y, = : :
* * * *
Yvaap  Yn-12p Ynarap Yu-nrs
* * * *
L Yvs Ynop 0 VYNr-p Ynrp |
L ©)
ycl,b
.
ycz,h
. * * * *
= : = |:yt1,b Yo Yir-1p ytT,b:'
*
ycN—l,b
*
L ycN,h N

y, is generated by doing the AR-sieve bootstrap pro-
cedure for panel data. [11] identified five bootstrap
methodologies for panel data namely: i.i.d. bootstrap,
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individual bootstrap, temporal bootstrap, block bootstrap
and double resampling bootstrap. The i.i.d bootstrap re-
fers to the bootstrap procedure defined by [16]. Each of
the NxT elements of the observed data matrix Y,, is
given 1/NT probability in the empirical distribution
F ( y) . The elements of the 5" bootstrap sample y; in
(9) are obtained by resampling with replacement from
the empirical distribution F ( y) .

The rows of Yy,, in (8) are resampled with replace-
ment in order to determine the b™ bootstrap sample y,
of the form in (9) in the individual bootstrap procedure.
On the other hand, in the temporal bootstrap procedure,
the columns of Y,, in (8) are resampled with replace-
ment in order to create the ™ bootstrap sample y, of
the form (9). The resampling procedure for the block
bootstrap is in the temporal dimension, so that the data
matrix of the form (8) is used. The difference between
the block bootstrap and the temporal bootstrap is on the
sampling of blocks of columns of Y,, in (8) instead of
single column/period in the temporal bootstrap case. Let
T =KI,where [ isthe length of a block and thus, there
are K non-overlapping blocks. Block bootstrap resam-
pling entails the construction of Yy, such as (9) with
columns obtained by resampling with replacement the
K mnon-overlapping blocks columns of Y,, in (8).

Given the data matrix Y,,, double resampling is a
procedure that constructs the 5™ bootstrap sample Yy,
by resampling columns and rows of Y,,. Two schemes
can be chosen, the first is a combination of individual
and temporal bootstrap and the second is a combination
of individual and block bootstrap. Therefore, as the name
of this bootstrap procedure implies, it involves two/dou-
ble stages. The first stage is to construct an intermediate
bootstrap sample Yy, by performing individual boot-
strap. The second stage uses the intermediate bootstrap
sample Yy, as a matrix where either temporal bootstrap
or block bootstrap is applied to produce the ™ bootstrap
sample Y, .

4. Bootstrap Procedure for Dynamic Panel
Data Estimators

While the literature clearly illustrates the asymptotic op-
timality of WG and FD-GMM estimators, there are
doubts on their performance under small samples. Many
panel data are usually formed from small samples of time
points and/or panel units because of the structural change
or random shocks that may occur in bigger/larger data-
sets. For small samples, we propose to use parametric
bootstrap on WG and FD-GMM in mitigating the bias
and inconsistency that these estimators are known to
exhibit for small samples.
We consider the AR(1) dynamic panel data model:
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Yo=0y, +n+v,,i=12,-- N, t=12,--,T (10)

where « 1is the parameter, 7, is the individual effect
with mean zero and variance o, and disturbances v,
with mean zero and variance o, . The bootstrap proce-
dure below uses AR Sieve in replication, steps follow:

Step 1: Given { y,.,} generated from the model in 10,
we have N time-series data

i Yo Yu o Nir
{yit}z y:2 _| Yo Du : v Yor (11)
Yn Yvo Va1 0 Iar

For each cross-section unit i, we assume an AR(1)
model with slope «; and intercept 7, ,i.e.,
Yy =y, +n +v,, t=12,---,T . Using the method
of least squares we obtain the estimators ¢, and 7,
for the parameters.

Step 2: Compute « , the average of all ¢, ’s over all
N

cross-section units, i.e., o =-"—
Step 3: For a fixed cross-section unit i, the predicted
values 3, =a,y, ,+7,,t=1,2,---,T is computed and

T
used to compute the MSE=36,, = > (y, - J, )2/(T -2).
t=1

Simulate B setsof v, from N (0,&3’1.).

Step 4: Reconstruct the panel data { y;} using @ in
step 2, 7, in step 1 and one of the B sets of v, in
step 3. The reconstructed panel data { y;} is obtained
using equation (10), i.e., y, =ay, ,+n0,+Vv,,
t=12,---,T, where y, =y, comes from {yﬁ}, the
ith element of the first column of matrix 11.

Step 5: Do step 4 B times, taking note that the used set
of v, should not be used again in subsequent recon-
struction of the panel data. There will result to B panel
data { yn} .

Step 6: Compute WG and FD-GMM estimators using
Equations (5) and (7) respectively, for each of the B
panel data sets.

Step 7: Resample the B WG and FD-GMM esti-
mates in step 6.

When sample size is small, there is a tendency for es-
timators based on asymptotic optimality to become er-
ratic. The AR sieve is used to reconstruct as many time
series as possible that capture the same structure as the
original data. Resampling from each of the recreated data
and computation of WG and FD-GMM for each resam-
ples can alleviate instability caused by small samples,
inheriting the optimal properties of the bootstrap meth-
ods.
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5. Simulation Study

In the simulation study, we used AR(1) with individual
random effects model given in Equation (10), i.e.,
Ve=ay, +n+v,,i=12, - N, t=12, -, T. We
used a Monte Carlo design that aims to examine both the
asymptotic and finite (small) sample properties of the
two estimators of the parameter o. Where the asymptotic
properties are examined, the cross-section dimension go
as large as 500 (see [18]) or as small as 50 (see [8]). We
consider N =50 corresponding to the large cross-sec-
tion dimension scenario. On the other hand, 7' =50 is
the largest time dimension used in studies about asymp-
totic properties (see [8]). Some studies use smaller 7'
values suchas 7 =10 and 7 =25 along with N =50
and N =100 to show the asymptotic properties of es-
timators, especially the GMM type, see [8]. We assume
large time dimension with 7 =50. When smaller 7T is
used such as, T=4 and T =6 (see [10], [19]), even
N is as large as 100, it still exhibit small sample prop-
erties of the estimator, specifically the GMM estimator.
We consider as small time dimensions cases with 7 =3
and 7 =5. If the objective is to examine the finite sam-
ple properties of estimators especially the WG estimator,
small to moderate sizes for both the cross-section and
time dimensions are commonly used, e.g., N =20;
N=100 and T=5; T=10;7=20;T =30, for de-
tails, see [9].

There are few studies where the time series and cross-
section dimensions are both small such, e.g., N, T=10,
20, see [7]. Small cross-section dimensions considered
are N=10 and N =20, and moderate cross-section
dimensions are N =30 and N =40. We also consider
as moderate time dimension cases where 7 =10 and
T =25. Therefore, the values for 77 and N can cap-
ture the settings for both short and wide panel, typical of
a micro-panel and long and narrow panel, which is a
common set-up for macro-panels.

In panel data, the observations in a particular cross-
section unit comprise a time series. Since, we employ a
dynamic panel data model, the AR(1) coefficient pa-
rameter ¢, can be viewed as the common slope pa-
rameter for the N time series in an N xT panel data.
Thus, given a time series with 7 observations, our
choice of the values of the AR(1) coefficient parameter
o ranges from an almost white noise series, where «
is very small, e.g., when « =0.1 to an almost unit root
series where « is very near to one, that is, when
a=09.

The values for the variance of the individual effects
accounts for both fixed effects when O',f =0 and ran-
dom effects, that is, o> # 0 . The variance of the random

n
disturbance is set at o> =1. Table 1 presents the dif-
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ferent combination of parameter values for a total of 625
parameter combinations.

First, we assume values of the ratio of the individual
effects variance to the random disturbance variance, the
possible values of the cross-section unit and time unit
sizes that are considered small samples and varying val-
ues of the slope parameter. Then we generate N sets of
10,000 v,’s where v, ~N(0,1) and we generate N

1,’s where 7, ~N (O, o-,f), by choosing one value for

the variance ratio o7 /o7 from Table 1. The generated
v,’s and the individual effect for the i cross-section 7,
is used to compute the initial value y, for each
cross-section unit i, using Equation (10), the initial

. 7, .
value is y,, =ﬁ+a)io,where @y =2 v, (=)

Also, we generate NxT v,’s where v, ~N (0,1) .
Then a value for ¢ is chosen from Table 1 and using
the N n,’s and NxT v,’s, a set of dynamic panel
data {y,}, i=12,-,N; t=1,2,--,T can be gener-
ated from Equation (10), i.e., y, =ay, , +7n, +v,. This
will give rise to a data matrix of the form 11,

i Yo Yu o e
Yoy = {yit} _ y:z _| Yo Yu : v or
Y Yvo Va1 0 ar

The analysis for the asymptotic and finite sample
properties of the WG and FD-GMM estimators was done
using 100 replications, in this case, 100 panel data sets
Yy, for each of the 625 designs/parameter combinations.
The WG and FD-GMM estimates for a total of 62,500
data sets using Equations 5 and 7 respectively. The mean,
median, quartiles of WG and FD-GMM estimate for each
of the 625 sets containing 100 replicates of data are
computed.

We compare the performance of the two estimators
Qe and App i, Using the sample medians and in-
terquartile ranges. Note that the two estimators are both
downward biased, so that comparisons will be more
meaningful if resistant measures are used to assess the
bias and efficiency. Hence, in assessing the finite sample
properties of the two estimators, the median bias and
median percent bias are used. On the other hand, effi-
ciency is examined by looking at the dispersion using a
more resistant measure like the interquartile range as
compared to the standard deviation.

If we denote the WG and FD-GMM estimates from
the rth replicate by ayg, and Qg » We get
2 2 Aygioo A4 Crpoumy s
Appouma o+ Cppoumace  Tespectively.  Denote  the
sorted values of d,, by dWG’(r) and Gy gy, bY

a . The sample median for a particular design is

Awgy >  CAwga s

FD-GMM,(r)

Copyright © 2011 SciRes.
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Table 1. Monte carlo designs.

cr,f/af N T a
0 10 3 0.1
0.2 20 5 0.2
0.8 30 10 0.5

1 40 25 0.8
1.25 50 50 0.9

. N I . N
given by Md(dry ) :E[O‘WG,(so) +aWG‘(51)J for the WG

estimator and

N Ir. N
Md(aFD-GMM) = E[aFD-GMM,(SO) + aFD-GMM,(Sl):' for the
FD-GMM estimator. The interquartile range for WG
estimator is

. 174 . 17 . N
IQR (aWG ): E[awc,(ﬁ) +aWG,(76) J_E[awc,(zs) + awc,(zs):l
and the corresponding interquartile range for the FD-
GMM estimator is equal to

N Ir. .
IQR (aFD-GMM ) = E[aFD-GMM,US) + aFD—GMM,(76):|

Ir. .
- E[aFD—GMM,(ZS) + aFD-GMM,(Zb):|
[8] computed the asymptotic approximations to the

bias given by (l+a)/T and (l+a)/N for WG and
FD-GMM estimators, respectively.

6. Results and Discussion

We report the Monte Carlo simulations on the WG and
FD-GMM estimators for various combinations of values
of N and T, and relatively wide range of values for
a and 0'; / o’ . The main focus of the analysis is on
the bias of the WG and FD-GMM estimators as the
number of cross-section dimension N and the number
of time dimension 7 changes. The change in bias as
the true value of the coefficient parameter « varies is
also shown. The effect of the variance ratio between the
individual effect and the random disturbance on the bias
of the two estimators is explored.

6.1. Effect of the Sample Size on the Bias

The marginal effect of varying the cross-section dimen-
sion N and the time dimension 7 are presented
separately. The joint effect of N and 7 is also pre-
sented as [8] emphasized that the asymptotic bias of the
DPD estimators depend on the relative rates of increase
of N and T.

In theory, the cross-section dimension N has no ef-
fect on the bias of the WG estimator. This is confirmed
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in the simulation exercise, where the bias of WG estima-
tor is relatively constant as N varies, given that T is
fixed. On the other hand, the theory is that the FD-GMM
estimator has a bias of order 1/N, that is, the bias de-
creases as N becomes large. This pattern is not per-
fectly observed in the simulation. For instance, when the
variance ratio o, /o7 =1, only 10 out of the 25 cases
have shown the pattern of decreasing bias of the
FD-GMM estimates as the number of cross-section di-
mension increases. Also, when the variance ratio

L. A.SANTOS ET AL.

o, /o =0, only 10 out of the 25 cases have shown the
pattern of decrease in bias as N increases. A summary
of the range of values of bias as percentage of the true
parameter value for the FD-GMM estimator focusing on
varying the cross-section dimension N is presented in
Table 2. For a moderate time dimension 7 =10, we
could expect a FD-GMM estimate with a bias from 14%
to 47% for N =30, from 8% to 39% for N =40 and
from 6% to 38% of the true value of the coefficient even
when N =50.

Table 2. Percent bias of @,y -

o, /cl=0 o, [ol=02 o, /ol =08 o, ol = o, ol =125
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
T=3
N=10 66 114 75 130 77 183 73 189 84 162
N=20 41 138 33 95 62 103 28 101 48 95
N=30 14 46 30 81 15 81 38 82 28 88
N=40 9 70 12 72 10 83 33 126 9 68
N=50 15 21 15 75 11 74 7 85 20 88
=5
N=10 53 109 52 136 56 141 58 111 52 161
N=20 27 74 33 101 28 69 40 80 37 74
N=30 22 52 25 50 23 62 24 67 25 59
N=40 14 59 22 48 16 61 13 67 18 61
N=50 3 29 14 48 17 61 12 49 18 59
T=10
N=10 28 124 30 127 34 95 36 97 32 101
N=20 18 83 21 44 19 55 27 39 26 71
N=30 14 32 15 27 16 34 18 47 19 43
N=40 8 39 10 29 11 32 14 32 11 34
N=50 8 26 11 38 8 28 10 30 6 31
T=125
N=10 12 55 12 29 13 49 13 37 12 41
N=20 11 42 13 55 11 43 13 53 13 44
N=30 9 41 11 28 11 29 10 28 12 45
N=40 6 23 9 54 9 34 8 30 7 27
N=50 6 23 7 22 8 22 7 18 5 25
T=50
N=10 5 18 6 18 5 16 5 25 5 31
N=20 5 24 6 24 5 18 6 20 6 20
N=30 5 23 5 27 6 22 5 21 5 22
N=40 5 17 27 6 24 22 20
N=50 4 23 6 21 6 20 6 23 5 21
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The time dimension T affects the bias of the WG es-
timator. The WG estimator has bias of order 1/ T, that is,
as T becomes larger, the WG bias becomes smaller.
This is also observed in the simulation. As expected, as
T increases from 3 to 50, the bias reduces tremendously
within acceptable levels as T is nearing 50. This pattern
is implied by the increase of the magnitude of the
medi-ans as 7 becomes larger.

The FD-GMM estimator is known to be affected by
the cross-section dimension N, and the order of bias is
/N and does not involve T . [8] noted that consistency
of the FD-GMM estimator requires (logT )2 /N -0
where N —> o and T — o . This means that the bias
of the FD-GMM estimator does not depend on N alone
but also 7. The FD-GMM estimates in the simulation
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Table 2, a FD-GMM estimate is within 6% to 127% of
the true value, when 7 =10, within 6% to 55% of the
true value when 7 =25 and within 4% to 27% of the
true value of the coefficient, implying the magnitude of
FD-GMM bias decreases as T increases.

A summary of the range of values of bias as percentage
of the true parameter value for the WG estimator with
varying time dimension 7 is presented in Table 3. For
a small cross-section dimension N =10, one could ex-
pect a WG estimate with a bias from 27% to 132% for
T =10, from 10% to 54% for T =25 and from 5% to
28% of the true value of the coefficient when 7 =50.
Even for large cross-section dimension, say N =50, the
WG estimates have similar range of percent bias as those
estimate when N =10. This indeed shows that there is

exercise illustrate the decrease in bias as the time dimen- notable decrease in the bias of WG estimates as 7 in-
sion increases, most specially for a>0.5. Also, from creases whatever the value of N .
Table 3. Percent bias of &,
o) [ol =0 o, [o; =02 o, /ol =08 o, ol =1 o) [0l =125
MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX
N=10
= 81 533 76 569 82 552 82 514 81 561
= 55 254 51 305 53 276 56 260 58 313
T=10 28 130 29 132 27 120 29 120 30 119
T=25 11 54 10 26 10 54 11 39 11 41
=50 5 19 5 19 5 16 5 25 5 28
N=20
T=3 79 573 80 559 79 547 81 535 79 543
T= 52 285 53 306 56 283 51 286 55 290
T=10 26 136 29 109 28 118 25 101 28 131
T=25 10 41 10 52 11 41 11 57 10 45
=50 5 24 5 24 4 18 5 20 5 18
N=30
T=3 78 558 82 557 81 551 82 547 82 545
T=5 53 273 53 272 51 298 53 289 55 267
T=10 29 124 28 121 29 115 30 126 28 113
T=25 11 55 10 40 11 42 10 42 12 49
T=50 5 22 5 26 5 23 5 22 5 23
N=40
T= 83 554 90 557 84 541 80 543 80 551
T= 53 283 53 267 53 276 54 290 53 287
T=10 28 133 27 122 28 124 27 130 27 132
T=25 11 42 11 54 11 52 10 46 11 45
T=50 5 19 5 25 5 24 5 22 5 22
N=150
=3 79 546 80 542 80 537 78 535 80 530
T=5 53 259 52 266 52 283 54 282 54 265
T=10 28 122 28 126 28 124 26 124 29 124
7=25 11 45 11 45 11 46 10 43 11 51
T=50 5 25 5 23 5 2 5 24 5 23
Copyright © 2011 SciRes. 0JS
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It is interesting to note that the relationship between
bias and the sample size represented by the pair (N,7)
also takes into account the relative rates of increase of
N with respect to 7 for the WG estimator and T
with respect to N for the FD-GMM estimators. When
we have a square panel, that is when the sample size is
either, (N=10,T7=10) or (N=50,7 =50), the WG
estimates and GMM estimates are almost the same. The
similarity of the WG estimates to the GMM estimates is
also seen for an almost square panel, such as

(N=20,T=25),(N=30,T=25),and N =40, T = 50.

This confirms the theory of [8] that the asymptotic bias
of WG and FD-GMM are the same when N =T, we
confirmed here to be also true for moderate samples and
even small samples. When T =50, regardless of the
size of N, the value of WG estimates are similar to the
value of FD-GMM estimates. This is attributed to the
fact that in the previously stated scenario, the time-series
dimension is always greater than or equal to the
cross-section dimension, in this case the workable for-
mula for FD-GMM whenever 7> N is almost identical
to the WG formula.

6.2. Effect of Parameter Values on the Bias

The first-order DPD model considered in this study has
three parameters, but we focused only on the coefficient
of the lagged dependent variable (). The two other
parameters are the variances of the one-way random ef-
fects error component, namely the variance of the indi-
vidual effect 0'; and the variance of the random dis-
turbance o . Instead of analyzing the effect of & and
o, separately, we focus on the variance ratio o, /o, .

Both the WG and FD-GMM estimators are downward
biased, that is, the estimates are smaller than the true
value of the coefficient parameter « . As shown by [2]
for WG estimator, the bias decreases as « increases.
This is true for both the WG and FD-GMM estimators as
illustrated in the study. Also, one may think that the per-
cent bias will increase as we decrease the value of « ,
since the smaller the value of the denominator the larger
the fraction becomes. This is confirmed in the results of
simulation, the FD-GMM bias decrease as 7 increase
provided that « is large.

The exact distribution of WG estimator is said to be
invariant to both the variance of the individual effect O'j
and the variance of the random disturbance o, while
the distribution of the FD-GMM estimator is invariant
only to the variance ratio o, / o’ , see [8]. In the simula-
tion exercise, varying the variance ratio does not show
sizeable changes on the bias, when the sample size
(N,T) and the value of the parameter coefficient o
are fixed.

Copyright © 2011 SciRes.

6.3. Other Asymptotic and Finite Sample
Properties of WG and FD-GMM Estimators

We compare the median of the estimators to the ap-
proximate bias values computed by [8]. Percent different
between the computed bias and the approximate bias are
reported in Table 4. The following asymptotic properties:
(a) when T <N , the asymptotic bias of GMM is
smaller than the WG bias, (b) when T = N, the expres-
sion for the two asymptotic biases are equal and (c) when
N/T — 0, the asymptotic bias in the WG estimator dis-
appears, derived by Alvarez and Arellano (2003) still
hold for smaller samples considered in this study. The
findings of [7] that the WG is more efficient than GMM
is also supported by the simulation study. Since the bias
of WG estimator does not depend on N, the values are
similar, that is, the number of WG estimates with percent
difference values less than 5% is almost the same for
different values of N . On the other hand, percent dif-
ference of FD-GMM estimate increases with N . The
asymptotic approximation of [8] performs well for
N > 40, since 72.8% of the MC medians of FD-GMM
estimates are within 20% of the approximated value.

Table 4. Percent difference of bias estimates from asymp-
totic biases.

%Difference WG FD-GMM
N=10
<20 70 (56%) 35 (28%)
<10 58 (46.4%) 13 (10.4%)
<5 39 (31.2%) 6 (4.8%)
N=20
<20 71 (56.8%) 56 (44.8%)
<10 66 (52.8%) 46 (36.8%)
<5 43 (34.4%) 26 (20.8%)
N=30
<20 76 (60.8%) 81 (64.8%)
<10 61 (48.8%) 59 (47.2%)
<5 46 (36.8%) 40 (32%)
N=40
<20 75 (60%) 91 (72.8%)
<10 64 (51.2%) 72 (57.6%)
<5 46 (36.8%) 52 (41.6%)
N=50
<20 73 (58.4%) 96 (76.8%)
<10 61 (48.8%) 76 (60.8%)
<5 49 (39.2%) 57 (45.6%)
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The bias of FD-GMM is smaller than the bias of WG
estimates, that is 71 (56.8%) out of 125 cases follow this
pattern. Note that 60% of the cases have the set-up
T < N, and the other 40% have the set-up 7> N . It is
interesting to note that only when the variance of the
individual effect o-j equal to zero, we see that majority,
that is, 20 out of the 25 cases considered have bias of
FD-GMM less than the bias of WG. On the other hand,
when 0: > 0, half of the cases have bias of FD-GMM
smaller than bias of WG and the other half have bias of
WG less than or equal to bias of FD-GMM. The cases
where bias of WG is less than or equal to the bias of
FD-GMM estimates have moderate to large 7, but
when T =10, the bias of WG is smaller and closer to
the FD-GMM bias only when « is at least 0.5. Spe-
cifically, bias of WG is close to bias of FD-GMM for
square panels where « >0.5 and for 7 >25.

We also analyzed moderately-sized cross-section di-

mension, i.e., N =30. This allows for 80% of the 125
cases to have 7T <N and the other 20% are designs
where T > N . We expect that more percentage of FD-
GMM estimates have smaller bias than WG estimates as
compared to where the cross-dimension size is small.
There are 90 (72%) of the 125 cases where bias of
FD-GMM is smaller than the bias of WG. The other 35
(28%) cases have either large time-dimension, that is
T =50 or larger value for the coefficient parameter,
which is « >0.8. This is intuitively true, since when
T=50, N<T and the bias of WG is expected to be
less than the bias of FD-GMM. For moderately-sized
cross-section dimension, about 73% of the FD-GMM
estimates have smaller bias than their WG counterpart
and the other 27% have designs where the time dimen-
sion is large or the value of the coefficient of parameter
is close to one.

Some 80% of the 125 cases have designs where 7'< N

Table 5. Comparison of bias of WG and FD-GMM estimates.

Cases Number of cases with Bias(FD-GMM) < Bias(WG) Set-up not satisfying the inequality

N=10, o,=0 15 (60%) moderate to large 7, « close to 1
N=10, a: =02 11 (44%) moderate 7, « close to 1
N=10, 0,=038 12 (48%) moderate 7, « close to 1
N=10, U; =1.0 14 (56%) moderate to large 7, o close to 1
N=10, aj =125 14 (56%) moderate to large 7, « close to 1

Total 66 (52.8%)

N=20, o,=0 20 (80%) moderate Tor « close to 1
N=20, o, =02 14 (56%) moderate to large 7, o close to 1
N=20, o,=08 13 (52%) moderate to large 7, « close to 1
N=20, o;=1.0 12 (48%) moderate to large 7, « close to 1
N=20, o, =125 12 (48%) moderate to large 7, « close to 1

Total 71 (56.8%)

N=30, o, =0 22 (88%) T=50. =0.1,0.8,09
N=30, 0,=02 18 (72%) T=25,50, a not0.5
N=30, o, =08 17 (68%) T=500r a closetol
N=30, 0': =1.0 17 (68%) T=50or o closetol
N =130, 0; =1.25 16 (64%) T=500r a closetol

Total 90 (72%)

N =40, 0; =0 21 (84%) almost the same bias for T = 50
N =40, o-j =02 18 (72%) T=25o0r500r a closeto l
N =40, cfj =0.8 18 (72%) T=25o0r500r a closeto 1l
N=40, 0': =1.0 17 (68%) T=25o0r500r a closeto 1
N =40, o-j =1.25 17 (68%) T=25o0r500r a closeto 1l

Total 91 (72.8%)

N=50, o, =0 25 (100%)

N=50, 0,=02 23 (92%) T=50and « closeto l
N=350, o,=08 21 (84%) T=50o0r «closetol

N=50, o, =10 19 (76%)

N=150, o-j =1.25 16 (64%) T=500r o closetol
Total 104 (83.2%)
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and 20% of the cases come from square panel, that is,
N =T =50. We expect that most of the FD-GMM esti-
mates have smaller bias than the WG estimates and when
square panels are considered the biases are the same.
There are 104 (83.2%) of the 125 cases considered has
FD-GMM bias smaller than their WG counterpart. The
other 21 (16.8%) cases have designs where the time di-
mension is large, that is, 7 =50 and the coefficient
parameter is close to one, thatis, « =0.8 or 0.9.

Table 6 summarizes comparison of the variability of
WG and FD-GMM estimates as measured by the inter-
quartile range (IQR). The WG estimates generally have
less variability than FD-GMM estimates, for the mode-

Table 6. Comparison of variability of WG and FD-GMM
estimates.

Cases Interquartile Range (WG) < Interquartile

Range (GMM)
N=10, o, =0 21 (84%)
N=10, o,=02 18 (72%)
N=10, o,=0.8 20 (80%)
N=10, o, =10 20 (80%)
N=10, o, =125 18 (72%)
Total 97 (77.6%)
N=20, 0,=0 22 (88%)
N=20, 0,=02 22 (88%)
N=20, 0,=0.8 23 (92%)
N=20, o, =10 23 (92%)
N=20, o, =125 21 (84%)
Total 111 (88.8%)
N=30, 0,=0 17 (68%)
N=30, 0,=02 20 (80%)
N=30, 0,=0.8 24 (96%)
N=30, o, =10 22 (88%)
N=30, o, =125 22 (88%)
Total 105 (84%)
N=40, 0,=0 22 (88%)
N=40, 0,=02 22 (88%)
N=40, 0,=0.8 20 (80%)
N=40, o, =10 24 (96%)
N=40, o, =125 24 (96%)
Total 112 (89.6%)
N=50, o,=0 24 (96%)
N=350, o,=02 23 (92%)
N=50, o,=0.8 23 (92%)
N=50, o, =10 22 (88%)
N=50, o, =125 21 (84%)
Total 113 (90.4%)

rate size cross-section dimension. There are 105 (84%)
cases where IQR of WG is less than IQR of FD-GMM.
The strongest evidence that the WG estimator has
smaller variability than FD-GMM is seen in the sum-
mary of Table 6, particularly, 113 (90.4%) of the 125
cases have IQR of WG smaller than IQR of FD-GMM.

6.4. Comparison of Bootstrapped DPD and
Conventional DPD Estimators

To be able to assess the benefits from boostrapping the
WG and GMM estimators, we identified settings in the
simulation scenarios where they yield the largest bias.
We report in Tables 7 and 8 the top 25 of estimates with
the largest bias for both WG and GMM, together with
their respective design specifications.

Table 7. 25 Largest bias of WG estimates and their design
specifications.

Rank Bias a N T o,
1 0.749 0.9 40 3 0
2 0.746 0.9 10 3 0.8
3 0.743 0.9 40 3 0.8
4 0.741 0.9 10 3 1
5 0.739 0.9 30 3 0.2
6 0.739 0.9 30 3 1.25
7 0.737 0.9 20 3 1
8 0.735 0.9 50 3 1.25
9 0.733 0.9 30 3 1
10 0.731 0.9 30 3 0.8
11 0.731 0.9 50 3 0.2
12 0.730 0.8 50 3 1.25
13 0.728 0.8 40 3 0.2
14 0.726 0.9 40 3 1
15 0.725 0.9 10 3 0
16 0.725 0.9 10 3 1.25
17 0.724 0.9 50 3 0.8
18 0.721 0.9 40 3 0.2
19 0.720 0.9 20 3 0.2
20 0.720 0.9 40 3 1.25
21 0.719 0.9 20 3 1.25
22 0.719 0.9 20 3 0.8
23 0.719 0.8 30 3 1
24 0.716 0.8 10 3 0
25 0.715 0.8 20 3 1
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Table 8. 25 Largest bias of FD-GMM estimates and their
design specifications.

Rank Bias a N T o,
1 0.951 0.9 50 3 1
2 0.922 0.9 10 3 1
3 0.882 0.9 20 3 1.25
4 0.871 0.9 40 3 0.8
5 0.858 0.9 20 3 1
6 0.857 0.9 40 3 1
7 0.854 0.9 20 3 0.8
8 0.820 0.9 50 3 1.25
9 0.799 0.8 10 3 1
10 0.784 0.9 30 3 1.25
11 0.765 0.9 10 3 0.8
12 0.756 0.8 10 3 1.25
13 0.747 0.9 20 3 0.2
14 0.741 0.9 40 3 1.25
15 0.739 0.9 30 3 0.2
16 0.738 0.8 20 3 1
17 0.722 0.9 30 3 0.8
18 0.703 0.8 20 3 1.25
19 0.690 0.8 20 3 0.8

20 0.684 0.9 50 3 0.2
21 0.678 0.8 50 3 1
22 0.669 0.8 30 3 1
23 0.662 0.9 10 3 1.25
24 0.661 0.8 10 3 0.2
25 0.660 0.8 10 3 0.8

The order of bias of the WG estimator is 1/7 and
therefore, as T increases the bias decreases. The order
of bias of the GMM estimator is 1/N and thus, as N
increases, the bias decreases. In terms of the bias, the
worst WG and GMM estimates came from designs with
very small time dimension. This is congruent to the
theoretical properties of the WG estimator, but at first
quite surprising for GMM estimator. When 7 =3,
FD-GMM estimator uses only one instrument and thus
equivalent to the IV estimator, less appealing than the
GMM estimators. Moreover, the FD-GMM estimator
when T =3, does not show a decrease in bias as N
becomes larger.

It is known that the bias of WG estimator increases
with the coefficient parameter « , see [2] and [7]. In this
simulation exercise, all the WG and GMM worst esti-
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mates came from designs with large « , see Table 9. As
the autoregression component of the model becomes
nearly nonstationary, both WG and FD-GMM estimates
can suffer tremendously.

Table 9. Monte carlo designs yielding worst estimates (33
parameter combinations).

Design a N T o, o,
1 0.8 10 3 0 1
2 0.8 10 3 0.2 1
3 0.8 10 3 0.8 1
4 0.8 10 3 1 1
5 0.8 10 3 1.25 1
6 0.8 20 3 0.8 1
7 0.8 20 3 1 1
8 0.8 20 3 1.25 1
9 0.8 30 3 1 1
10 0.8 40 3 0.2 1
11 0.8 50 3 1 1
12 0.8 50 3 1.25 1
13 0.9 10 3 0 1
14 0.9 10 3 0.8 1
15 0.9 10 3 1 1
16 0.9 10 3 1.25 1
17 0.9 20 3 0.2 1
18 0.9 20 3 0.8 1
19 0.9 20 3 1 1
20 0.9 20 3 1.25 1
21 0.9 30 3 0.2 1
22 0.9 30 3 0.8 1
23 0.9 30 3 1 1
24 0.9 30 3 1.25 1
25 0.9 40 3 0 1
26 0.9 40 3 0.2 1
27 0.9 40 3 0.8 1
28 0.9 40 3 1 1
29 0.9 40 3 1.25 1
30 0.9 50 3 0.2 1
31 0.9 50 3 0.8 1
32 0.9 50 3 1 1
33 0.9 50 3 1.25 1
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The variances of the individual effect for the worst (b)
GMM estimates are mostly large, in fact 15 out of the 25 Bias Std. Dev. MSE
designs considered have G; >1 and 21 out of the 25 9 WG 0.719 0.127 0.533
cases considered have G; >0.8. The variances of the WGb 0.964 0.051 0.932
individual effects of the 25 worst WG estimates are FD-GMM 0.669 0.555 0.756
similar. FD-GMMb 0.936 0.164 0.902
When we combine the designs for the 25 largest bias 10 WG 0.728 0.096 0.539
of WG apd 25 largest bias. of GMM, they have 17 com- WGb 0.768 0.076 0.595
mon des1'gns, thus 33 d§51gns in Table 9 represent the FD-GMM 0.448 0.765 0.786
worst estimate (largest bias) both from WG and GMM. FD.GMMb 0.829 0.463 0.901
The bootstrap methodology is used for these 33 de- o
. . c L [rvesmm - WG 0.698 0.09 0.495
signs. The bias, standard deviation and the root mean
square error for the original estimators WG and FD- wab 0437 0006 0.191
GMM together with the bootstrap estimators WGb and FD-GMM 0.678 0688 0.933
FD-GMM b are presented in Tables 10(a)-(e). FD-GMMb 0.433 0.021 0.188
12 WG 0.73 0.091 0.541
Tables 10. (a) Estimates for = 0.8, N = 10, 20; (b) Esti- WGb 1.014 0.016 1.029
mates for a = 0.8, N =30, 40, 50; (c) Estimates for « =0.9, FD-GMM 0.502 0.867 1.004
N = 10, 20; (d) Estimates for a = 0.9, N = 30, 40; (e) Esti- FD-GMMb 1.007 0.080 1.021
mates for a =0.9, N =50.
(a) (©
Design Bias Std. Dev. MSE Bias Std. Dev. MSE
1 WG 0716 0221 0.561 13 WG 0.725 0.254 0.590
WGb 0.751 0.117 0.578 WGb 1.468 0.243 2215
FD-GMM 0.614 1.119 1.629
FD-GMM 0.596 0.662 0.793
FD-GMMb 1.230 0.443 1.710
FD-GMMb 0.701 0.137 0.510 l4vesn WG 0.746 0.249 0.619
2 WG 0705 0215 0.543 WGb 0.618 0.018 0.382
WGb 1.264 0.259 1.665
FD-GMM 0661 0.692 0916 FD-GMM 0.765 0.785 1.201
FD-GMMb 1.226 1.004 2511 FD-GMMb 0.614 0.029 0.377
3 WG 0.678 0.200 0.500 15™eem WG 0.741 0.217 0.596
WGb 1.196 0.162 1.457 WGb 0.216 0.058 0.050
FD-GMM 0.660 0.905 1.255 FD-GMM 0.922 0.950 1.753
FD-GMMb 1.291 0.699 2.156 FD-GMMb 0.203 0.086 0.049
grveemm WG 0.708 0.189 0.537 16 WG 0.725 0.254 0.590
WGb 0.489 0.063 0.243 WGb 1.088 0.026 1.184
FD-GMM 0.799 1.242 2.181 FD-GMM 0.662 0.787 1.058
FD-GMMb 0.518 0.261 0.337 FD-GMMb 1.075 0.168 1.183
stvesmm WG 0.713 0.215 0.555 177veemm WG 0.720 0.167 0.546
WGb 0.706 0.019 0.498 WGb 0.396 0.022 0.158
FD-GMM 0.756 0.744 1.125 FD-GMM 0.747 0.760 1.136
FD-GMMb 0.705 0.085 0.504 FD-GMMb 0.393 0.072 0.160
6 WG 0.684 0.167 0.496 18 WG 0.719 0.157 0.542
WGb 0.965 0.036 0.933 WGb 0.864 0.055 0.750
FD-GMM 0.690 1.062 1.604 FD-GMM 0.854 0.738 1.274
FD-GMMb 0.966 0.253 0.997 FD-GMMb 0.869 0.204 0.797
7 WG 0.715 0.162 0.537 19 WG 0.737 0.172 0.573
WGb 0.889 0.061 0.794 WGb 1.150 0.030 1.324
FD-GMM 0.738 1.334 2.324 FD-GMM 0.858 0.832 1.428
FD-GMMb 0.865 0.264 0.819 FD-GMMb 1.144 0.069 1.314
8 WG 0.674 0.127 0.470 20 WG 0.719 0.163 0.544
WGb 0.990 0.052 0.982 WGb 1.316 0.026 1.733
FD-GMM 0.703 0.864 1.241 FD-GMM 0.882 0.808 1.431
FD-GMMb 0.977 0.223 1.004 FD-GMMb 1.314 0.057 1.729
Copyright © 2011 SciRes. 0JS
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(d) O]
Bias Std. Dev. MSE Bias Std. Dev. MSE
21 WG 0.739 0.120 0.561 30 WG 0.731 0.096 0.544
WGb —0.873 0.000 0.762 WGb 1.208 0.025 1.460
FD-GMM 0.596 0.875 1.121 FD-GMM 0.687 0.691 0.949
FD-GMMb —0.873 0.001 0.762 FD-GMMb 1.189 0.084 1.420
22 WG 0.731 0.128 0.551 31 WG 0.724 0.103 0.535
WGb 1.145 0.010 1.311 WGb 0.776 0.016 0.603
FD-GMM 0.722 0.710 1.025 FD-GMM 0.651 0.709 0.926
FD-GMMb 1.141 0.024 1.301 FD-GMMb 0.765 0.120 0.600
23 WG 0.733 0.132 0.555 32mE WG 0.708 0.104 0.512
WGb 0.907 0.024 0.823 WGb 0.698 0.021 0.487
FD-GMM 0.607 0.665 0.811 FD-GMM 0.951 2.010 4.945
FD-GMMb 0.894 0.090 0.808 FD-GMMb 0.686 0.111 0.483
24 WG 0.738 0.121 0.559 33 WG 0.735 0.094 0.549
WGb 0.753 0.013 0.567 WGb 0.936 0.016 0.875
FD-GMM 0.784 0.647 1.033 FD-GMM 0.819 0.755 1.241
FD-GMMb 0.747 0.026 0.559 FD-GMMb 0.940 0.109 0.896
25 WG 0.749 0.111 0.573
When the true value of the coefficient o is equal to
WGb 0.953 0.074 0-914 0.8, the bootstrap estimators WGb and FD-GMMb work
FD-GMM 0317 0.603 0.464 well under the smallest sample case scenario, i.e., when
=10 and T = here the variance of the indivi
ED-GMMb 0.897 0.205 0.847 N 0. and 3 where the variance of the individual
effect is at least one. Also, for the largest N and
26 WG 0.721 0.116 0.533 smallest 7 combination, ie., when N =50 and
WGb 0.825 0.023 0.682 T =3 and the variance of the individual effect is equal
to one, both bootstrap estimators perform better than the
FD-GMM 0.650 0.868 1176 conventional estimators. The bootstrap estimators for
FD-GMMb 0.820 0.177 0.704 a =0.9 are also better than the conventional estimators
- WG 0743 0.109 0564 for the smallest sample case and when the variance of the
: : ’ individual effect is as large as 0.8 and 1.0. However,
WGb 1.428 0.017 2.040 when o-j =1.25, the bootstrapped estimators perform as
FD-GMM 0.871 0.828 1.444 badly as the conventional estimators. Stﬂl under §mall
sample case, N =20 and 7 =3, and time the variance
FD-GMMb 1.420 0.034 2.019 of the individual effect is small but nonzero, i.e.,
28" WG 0.726 0115 0,540 O',f =0.2, we obtain the most improved bootstrap esti-
mates for both WG and FD-GMM.
WGb 0.785 0.019 0.616 Given moderate size cross-section dimension ( N =30
FD-GMM 0.857 0.652 1.160 and N =40), the bootstrap FD-GMM s better than the
nventional FD-GMM for here th rian
FD-GMMb 0.790 0.117 0.638 co \./e tO a G . or cases where the variance of
the individual effect is as large as 1 or 1.25. Also, the
29 WG 0.719 0.113 0.530 bootstrap WG has smaller bias than the conventional
WGb 0.614 0.014 0.378 WG when N =40 and O'; =1.25.
FD-GMM 0741 0.762 1130 Both the bootstrap WQ and boqtstrap FD-GMM are
better estimators than their conventional counterparts for
FD-GMMb 0.609 0.044 0.372
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the largest N and smallest 7 case where the variance
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of the individual effect is equal to one.
7. Conclusions

In estimating a dynamic panel data (DPD) model using
WG and FD-GMM estimators, the cross-section dimen-
sion N has no effect on the bias of the WG estimator,
but the bias of FD-GMM decreases as N increases in
some cases. The bias of WG estimator decreases as T

increases quite consistently in most cases, however, the
bias of FD-GMM decreases as 7T increases. In square
panels such as panels with dimensions, e.g., N=10=T,
N=50=T, the WG and FD-GMM estimates are simi-
lar. However, when N =10=T, the two estimators are
similar only when « >0.5. Also, the WG estimates are
similar to FD-GMM estimates for almost square panels
such as panels, e.g., (N =20,T =25), (N =30,T =25),
and (N=40,T=50). When T =50 regardless of the
value of N, WG and FD-GMM estimates are similar.

WG and FD-GMM estimators are both downward bi-
ased, the bias increases with « . However, the bias as a
percentage of the true value of « decreases as «
increases. Varying the variance ratio (variance of the
individual effect divided by the variance of the random
disturbance) does not show sizeable changes on the bias.
The bias differs by at most 20% from the approximate
bias provided by Alvarez and Arellano (2003) for WG
when 7=10 and «>0.5 or when 7 >25. For the
FD-GMM, at most 20% bias difference from the ap-
proximate large sample bias happen when (N =10, 20,
a>02 and T=10)or (N >30, «>0.2 and 7= 10,
20).

WG estimates are less variable than FD-GMM esti-
mates based on the interquartile range. The WG estima-
tor is best to use when the time-series dimension is as
large as 50 and the cross-section dimension as low as 10
for models where the ratio of the variance of the indi-
vidual effect to the variance of the random disturbance to
be less than one and regardless of the true value of the
coefficient parameter. Also, when the 7 =50, N =20
and o, /o >1, the WG estimates are good. These con-
ditions will assure that the percent bias of the WG esti-
mate will not exceed 20%. The FD-GMM estimator has
bias not exceeding 20% of the true value of the parame-
ter coefficient for small and moderate samples in terms
of N when: (1) N=10 and T =50, for o, /o] <1,
(2) N=20 and T =50, for o-j/o-f >1. The impor-
tance of having large N to reduce the bias and percent
bias is evident for designs where the time-series dimen-
sion is as large as 25.

The bootstrap estimators for both WG and FD-GMM,
labeled as WGb and FD-GMMD respectively, work well
for the smallest sample size, i.e., N=10 and 7T =3

Copyright © 2011 SciRes.

and the extreme sample size set-up where N =50 and
T =3, provided that the ratio of the variance of the indi-
vidual effect to the variance of the random disturbance is
equal to one.
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