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ABSTRACT 

If the components in a component-based software system come from different sources, the characteristics of the com-
ponents may be different. Therefore, evaluating the reliability of a component-based system with a fixed model for all 
components will not be reasonable. To solve this problem, this paper combines a single reliability growth model with 
an architecture-based reliability model, and proposes an optimal selecting approach. First, the most appropriate model 
of each component is selected according to the historical reliability data of the component, so that the evaluation devia-
tion is the smallest. Then, system reliability is evaluated according to both the relationships among components and the 
using frequency of each component. As the approach takes into account the historical data and the using frequency of 
each component, the evaluation and prediction results are more accurate than those of using a single model. 
 
Keywords: Optimal Evaluation Approach, Likelihood Estimation, Reliability Evaluation, Component-Based System, 

Optimal Selection Model (OSM) 

1. Introduction 

Component-based software reliability evaluation relates 
to the rationality of system design and the success of 
software systems. The current evaluation approaches 
include black box and white box approaches. Black-box 
approaches regard the system as a whole, only consider 
the system interaction with the external environment, and 
do not consider the internal architecture of the system. 
White box approaches [1-5] consider the system archi-
tecture. These approaches disassemble the system into 
components, establish the relationship among the com-
ponents, and then evaluate the entire system reliability. 
On the contrary, black-box approaches don’t not consider 
the internal architecture of the system and usually as-
sume that the numbers of system errors are proportional 
to the failure rate, so black-box approaches are more 
suitable for the systems developed independently. 
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However, the using frequencies of the components in a 
system is different from each other in fact. If a compo-
nent contains more errors than the other components in 
the system, but the using frequency of the component is 

lower, the effect of the component to the system reliabil-
ity would not be larger. Black-box approaches overesti-
mate this part effect to the reliability of software system, 
so in the practical application the approaches are subject 
to certain restrictions. Component-based white-box ap-
proaches specifically consider the using frequency of 
each component, and no longer have the assumptions that 
system errors are proportional to the system failure rates. 
So these approaches can be more accurate in the evalua-
tion of system reliability. 

With the progress of software development technology, 
components have been commercialized. As many large- 
scale systems have been developed with the COTS 
(Commercial-Off-The-Shelf), component-based software 
system reliability evaluation is becoming more and more 
important. However, most existing component- 
based evaluation approaches usually assume that the re-
liability of each component to be a fixed and known val-
ue without considering the historical data of each com-
ponent. That will cause a bigger deviation in evaluating 
system reliability [6]. Feng and Zou et al. [7,8] have 
presented comprehensive models respectively, but these 
models are for the entire system, rather than the individ-
ual components. 

This paper proposes a component-based optimal selec-
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tion model (OSM). This approach bases on the system 
architecture, fully utilizes the historical data of each 
component, and takes into account the software reliabil-
ity growth. OSM combines the reliability growth model 
of every single component with the architecture-based 
reliability model. It selects the proper evaluation model 
of component according to the specific characteristic of 
each component, and then synthetically evaluates the 
system reliability according to the relationships among 
these components in the overall system. As the proposed 
approach selects the most suitable component evaluation 
model according to the characteristics of each component 
when evaluating component reliability, the evaluation 
result of each component is more accurate. As a result, 
the reliability evaluation result of the system is also more 
accurate. 

The contribution of this paper is that the OSM is pro-
posed. The OSM combines a single reliability growth 
model with an architecture-based reliability model. As 
the new model takes into account the historical data and 
the using frequency of each component, the evaluation 
and prediction results are more accurate.  

The organization of this paper is organized as follows. 
In Section 2, we will give a survey of existing component 
reliability models and component-based system reliabil-
ity models. In Section 3, the OSM operation process is 
described. In Section 4, approach of selecting component 
reliability model is presented. In Section 5, the software 
reliability evaluation approach is discussed. In Section 6, 
case analysis and verification is demonstrated. Finally, 
the conclusion remarks are given in Section 7. 

2. Component Reliability Model and  
Component-Based System Reliability 
Model 

A component usually refers to executable modules that 
encapsulate data and function. Components can be inde-
pendently produced or developed by the third parties. 
Usually these approaches that evaluate the system reli-
ability considering the system as a whole [9-18] can be 
used to evaluate a single component. We can select a 
proper model according to the component’s historical 
data. We can also use a certain model by translating the 
component’s historical data into the form that the model 
can be used. According to different historical reliability 
data that the models can use, the component reliability 
models can be divided into two categories, i.e. the time 
between failure (TBF) models [9-12] and the failure 
count (FC) models [13-18]. TBF models use time-bet- 
ween-failure data, while FC models use the failure count 
data. 

A system constructed by components with logical re-
lation is called component-based system. Component- 

based system reliability evaluation models include path- 
based approach [1,2,19], state-based approach [3-5,20, 
21], and additive model [22]. Path-based approaches [1-2, 
19] evaluate system reliability by considering all the pos-
sible execution paths of the software. A sequence of all 
execution paths are gained by algorithm, experiment or 
simulation. The reliability of each path is estimated, and 
then the system reliability is estimated by calculating the 
average reliability of all paths. State-based models 
[4,5,20,21] regard the execution of the software as a state 
transfer process [6]. This class of models apply stochastic 
process theorem to the analysis of the system reliability. 
Some typical approaches adopt the Markov process the-
ory, which assume that the system change process with 
the state of Markov. The approaches include the discrete 
time Markov model (DTMC) [5,20] and the time con-
tinuous Markov model (CTMC) [4] and semi-Markov 
process (SMP) [21]. Additive models [22] are mainly 
used in the software testing stage. It assumes that the 
reliability of each component can be modeled by non- 
homogeneous Poisson process (NHPP), and thus the 
failure behavior of the system will also be a NHPP [23]. 

Path-based and state-based models typically assume 
that the reliability of components is known, and no long-
er consider the problem of the reliability evaluation for 
each component. Additive models concentrate on system 
failure-sensitive issues of time concerned by evaluating 
the component failure, but no longer explicitly consider 
the system architecture. To establish an effective com-
ponent-based reliability evaluation model, we should 
take into account the evaluation approach of each com-
ponent in a system. Only by doing this, can we get a 
more reasonable evaluation result.  

3. OSM Operation Process 

This paper gives the following relevant definitions as a 
basis of OSM. 

Definition 1 Failure interval time data(TBF). It is a tri-
ple<F,T,S>, where F is one-dimensional vector repre- 
senting the failure order, T is the one-dimensional vector 
representing interval between the two adjacent failure, S 
is the one-dimensional vector representing the severity of 
the failure. For any element f in F, there is only one ele-
ment tf in T, and sf in S to correspond to it, which 
<f,tf,sf> constitutes a TBF data. 

Definition 2 Failure count data FC. It is a four tuple <I, 
T0,C, S>, where I is one-dimensional vector representing 
the test number, T0 is the time interval, C is one-dimen- 
sional vector composed of errors during the interval T0, S 
is one-dimensional vector composed of the severity of 
the error during the interval T0. <i,T0,ci,si> is a failure 
count data, where i is an element in I, ci is an element in 
C, si is an element in S. 
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Definition 3 Components. It is a four tuple <F,P,D,M>, 
where F is a group of service interface to the outside 
provided by the component, P is the description of the 
component external behavioral, D is the reliability of the 
application domain, M is the reliability-related data of the 
component. 

Definition 4 TBF component. It is a class of compo-
nent that its reliability-related data is of the type TBF. 

Definition 5 FC component. It is a class of component 
that its reliability-related data is of the type FC. 

The OSM operation process of a component-based 
system is shown in Figure 1. 

The first step of OSM is that all the components of the 
system are determined. These components are obtained 
from the requirements analysis and design documents, and 
then assorted. The types of reliability-related historical 
data may be different, because the components come from 
different sources, and their specific implementation tech-
niques, methods and testing process may be different. The 
components are divided into two categories: TBF compo-
nents and FC components, mainly based on the type of the 
components’ historical data. Then, the candidate reliability 
model sets of the component are determined. 

According to the categories of components and the ap-
plication scope of the selected model, we determine the 
candidate reliability model sets of the component. For 
TBF components, all models in the candidate model set 
should belong to the class of TBF. For FC components, 
all models in the candidate model set should belong to be 
the class of FC. As each component is considered as a 
 

 

Figure 1. The OSM process of component-based system 
reliability evaluation approach. 

whole and its internal structure is no longer considered, 
black-box evaluation approaches are used. According to 
the software life-cycle, the classes of software reliability 
models include the analysis phase model, the design 
phase model, the implementation phase model, the test-
ing phase model and the validation phase model. For the 
purpose of reliability evaluation of component-based 
software systems, the test phase model for each compo-
nent is used to determine the component’s reliability in 
OSM. 

After that, the evaluation criteria are applied. At pre-
sent there is not any universal component reliability 
model, which means no model can be suitable for the 
reliability evaluation of all kinds of components. In order 
to evaluate the reliability of each component more effec-
tively, evaluation criteria are used. There are many types 
of evaluation criteria. We can adopt a single criterion or a 
combination of several evaluation criteria. The single 
evaluation criterion means that the final component 
evaluation model is determined by a single formula. The 
combination evaluation approach is a combination of 
multiple evaluation criteria, such as the statically 
weighted combination. According the computing result 
of every component by the combination approach, the 
evaluation model of every component is determined. The 
complexity and practicality of the algorithm should be 
taken into account in determining the criteria. If the 
evaluation approach is too complicated, its practicality 
will be reduced. It is not that the more complex the selec-
tion method is, the better it is. The details of the evalua-
tion criteria and selection methods will be given in part 5. 

Next, the evaluation model and the prediction model 
are obtained. We should consider from the two sides of 
evaluation model and prediction model when we select 
the component reliability model, because our ultimate 
goal is to obtain system reliability. System reliability 
evaluations include the assessment and prediction. Sys-
tem reliability assessment usually refers to the reliability 
the system can be achieved when the development of the 
software system is completed, and the system reliability 
prediction is to predict the system failure at a future point 
when the system is running. So the system reliability 
evaluation includes the assessment and the prediction. 
The optimal model for assessment is not necessary the 
optimal model for prediction, so the assessment model 
and prediction model should be selected respectively. 

Finally, based on the prediction and assessment model, 
the system reliability is obtained according to the rela-
tionship among the components. 

4. Approach of Selecting Component  
Reliability Model 

In order to accurately assess and predict the reliability of 

Copyright © 2011 SciRes.                                                                               JSEA 



Reliability Evaluation Optimal Selection Model of Component-Based System 436 

each component, we should use appropriate method and 
criteria to select the most suitable model of the compo-
nent reliability. 

4.1. Principle of Selecting Approach 

Let  1 2,  , ,  nM M M M   be a set that contains n 
candidate reliability model sets. Every model set iM in M 
contains i  models, i . Different 
types of models suit for different data sets. Assuming the 
type of i

N   1 2,  , ,  i NM m m m

M  model suits for the historical data sets Di, 
the evaluation criterion corresponding to iM  is i , i  
is the result calculated by the combination of  weight 
indexes, t

S
k

S

s  is the t-th indicators in , t  is the 
weight corresponding to st. We have the following Equa-
tion (

k w

1). 

1

k

i t
S s


  t tw                (1) 

Let C is the components set in which its system reli-
ability will be evaluated. 1 2{ , , , }mC c c c 

c
，there are 

m components, where component t  can use the type of 

iM  model to compute its reliability. Which type of 
model specifically will be used depends upon the reli-
ability data of component. tj  corresponds to the com-
ponent t  of set C and model mi of Mi. The value of 

tj  is computed using Equation (

S

m

tc
optim{ ,  , ,t t t

c
S 1). If t  is the opti-
mal evaluation model of component , the value st sat-
isfies the conditions: 1 1 1t }s S S  S ,“optim” 
is min or max according to the specific indicators. The 
candidate model and selection criteria will be described 
specifically later. 

4.2. Component Candidate Evaluation Model 

There are many factors affecting software reliability. The 
affect of the same factor is different to different software. 
Many factors have the stochastic characteristic time- 
related, so the software reliability models are mostly 
modeled the form of random process. A number of as-
sumptions are given in advance for the establishment of 
models. Under the assumption we establish systems reli-
ability evaluation model. 
 FC models  

1) Schick-Wolverton model [9] 
The state when the software is tested is same as its ac-

tual operation. All errors have the same probability to be 
detected. The expectations of failure occur at any interval 
are proportional to the number of errors contained in the 
software and the duration after the last occurrence of 
failure. All failures have the same severity and inde-
pendently one another. Faults are corrected as soon as 
they are found and there is no new fault to be introduced. 
[24] 

2) Non-Homogeneous Poisson for FC [10] 
The state when the software is tested is same as its ac-

tual operation. The number of faults detected in each 
time is independent one another. All faults have the same 
probabilities to be detected. The total number of faults 
detected in any time fallows a Poisson distribution with 
mean m(t). The mean value of faults is a bounded 
non-decreasing function related to m(t) and its max value 
is a. There is no new fault to be introduced when the de-
tected faults are corrected. [24] 

3) Schneidewind [11] 
The state when the software is tested is same as its ac-

tual operation. The system failure caused by faults is 
stochastic. The occurrences of all failures have the same 
probability and independent of one another. The correc-
tion rate of fault is proportional to the found faults. The 
detected failures mean value decrease with the continu-
ous test. The total number of failures has an upper bound. 
Every test has the same period interval. The faults detec-
tion rate is proportional to the number of system faults. 
There is no new fault to be introduced when the detected 
faults are corrected. [24] 

4) Yamada S-shaped model [12] 
The state when the software is tested is same as its ac-

tual operation. The system failure caused by faults is 
stochastic. The number of initial faults in the software 
system is a random variable. The time between failures 
(k – 1) and k depends on the time to failure (k – 1). Only 
one failure occurs each time and the fault will be cor-
rected immediately. There is no new faults are introduced 
when the detected fault is removed. The total number of 
failures has an upper bound. [24] 
 TBF models 

1) Geometric model [13] 
The test process is same as its actual operation. There 

is no upper bound on the total number of failures. The 
probability of all faults detection is equal. The detections 
of all faults are independent each another. The failure 
detection rate is geometric distribution and is constant 
between failure occurrences. [24] 

2) Jelinski-Moranda model [14] 
The condition of the software run is same as its actual 

operation. The faults detection rate is proportional to the 
number of the faults. The severity of all failures is equal. 
The failure rate between the two failures is a constant 
value. Faults are removed immediately and no new fault 
is introduced. The total number of faults has an up bound. 
[24] 

3) Littlewood-Verrall model [15] 
The condition of the software run is same as its actual 

operation. The successive time between two failures is 
independent random variable and is an exponential dis-
tribution. The mean of i-th failure distribution is 1/(i), 
(i) has  distribution with parameter  and (i). Where 
(i) has the form (0)+(1) * i or (0)+(1) * i2. There is 
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no upper bound on the total number of failures. [24] 
4) Musa Basic model [16] 
The test process is same as its actual operation. The 

detection of faults is independent one another. All faults 
of the system will be detected. The intervals between the 
successive failure are piecewise exponential distribution. 
The failure rate is proportional to the number of faults. 
The correction rate is proportional the fault detection rate. 
There is no new fault to be introduced when the fault is 
corrected. [24] 

5) Musa-Okumoto model [17] 
The test process is same as its actual operation. The 

detection of faults is independent one another. The mean 
of the number of failures is a logarithmic function of 
time. The intensity of failure decreases exponentially 
with the experience of failures. The total of faults has an 
up bound. [24] 

6) Non-Homogeneous Poisson Process model [18] 
The condition of the software run is same as its actual 

operation. All faults have the same probability to be ob-
served. The cumulative number of failure M(t) follows a 
Poisson distribution with mean value m(t). The mean 
function of the number of failure is a bounded non-de- 
creasing. The debug process will not introduce new fail-
ure. [24] 

The models mentioned-above are subject to assump-
tions, therefore there are some limitations, no model can 
replace another. 

4.3. Determination of the Selection Criteria  

The effect is different when one model is applied on dif-
ferent data sets, one may be good but others may be bad. 
We can select the most suitable evaluation model ac-
cording to a certain criterion using a certain data set. The 
key is the determination of the criterion when we select 
the suitable model. The commonly criteria are deviation 
of Bias, mean square error MSE, mean absolute error 
MAE, MSE and sum squire error SSE , chi-square test 
(Chi-Square), CKolmogorov-Smirnov test) prequential 
likelihood(PL) . 

Chi-square test is a common method that measures 
model goodness of fit. The smaller result means a better 
goodness of fit, The formula is shown as (2). 

  
 

2

1

n i i

i
i

m m t
CHS

m t


 



            (2) 

The Kolmogorov-Smirnov test (K-S test) is a test of 
goodness of fit. It is used to study if the distribution of 
sample observations agrees with the specified theoretical 
distribution. The two-sample K-S test is one of the most 
useful and general nonparametric methods for comparing 
two samples, as it is sensitive to differences in both loca-
tion and shape of the empirical cumulative distribution 

functions of the two samples. The K-S statistic quantifies 
a distance between the empirical distribution function of 
the sample and the cumulative distribution function of 
the reference distribution, or between the empirical dis-
tribution functions of two samples. The formula is (3), 
where F(x) and E(x) are the theoretical and actual distri-
bution of the sample respectively. 

   max maxD F x E  x          (3) 

The formulas mentioned above are mainly used to se-
lect component assessment model. As to the selection of 
reliability predictive model of component, we often use 
prequential likelihood. Prequential likelihood values are 
used to indicate if one model is more applicable to the 
failure data than the other models. Let jt  is the next 
time of component failure, the failure distribution density 
function estimated by previous  failure data is  1jt 

 j jf t


, according to the density function we can esti-

mate the next system failure time tj, the expectation of tj 
is: 

 
0

ˆ dj jE t f t t


                   (4) 

For the 1-step prediction, the prequential likelihood 
value for 1 2, , ,j jt t t j n   

i

 is calculated as (5). 

 
n j

n i
i j l

PL f t


 

 


               (5) 

This paper will use K-S test and Chi-square test as the 
selection criteria of reliability assessment model of 
component. They are commonly used in project. This 
paper will use prequential likelihood value as the selec-
tion criterion of reliability predictive model of compo-
nent. 

4.4. System Reliability Calculation  
According to the Relationship among  
Components 

We will determine the interaction among the components 
of the system after the determination of the evaluation 
and prediction models of the component. We can model 
path-based system component diagram, state-based sys-
tem components diagrams or other system component 
interaction diagram. It will depend on the actual specific 
situation. If the software continuously runs 24 h every 
day, it should be modeled as Continuous Time Markov 
Chains (CTMCs). If it is operated by user’s idea, it 
should be modeled as Discrete Time Markov Chains 
(DTMCs). At the same time we should also consider the 
available data, the different phase of the software 
life-cycle and what kink of assumptions we made [25]. 
Table 1 lists the state-based Markov models and appli-
cable conditions [25]. 
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Table 1. Reliability models. 

 Architectural Model Solution Method Reliability 

DTMC_1 absorbing Composite  1, nR S n R  

DTMC_2 absorbing Hierarchical 
1

iV
i

i

n

R R


  

DTMC_3 absorbing Hierarchical 
1

e i i i

n
V t

i

R 



  

DTMC_4 absorbing Hierarchical 0 ( )d

1

e
V ti i

i
n

i

R
  



  

DTMC_5 irreducible Composite  

DTMC_6 irreducible Hierarchical 
1

n

i i
i

R R

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DTMC_7 irreducible Hierarchical 
1

n

i i
i

 


  , e tR   

CTMC_1 absorbing Composite  
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( )

1

e i i

n
L t

i

R 


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1
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n
V

i
i

R R

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CTMC_4 absorbing Hierarchical 
( )

0 ( )d

1

e
L ti

i
n

i

R
  



  

CTMC_5 irreducible Composite  

CTMC_6 irreducible Hierarchical 
1

n

i i
i

 


  , e tR   

CTMC_7 irreducible Hierarchical 
1

n

i i
i

R R


   

 
As the space limited, please refer to related literature 

about how to establish relationship among the compo-
nents of system. After the system model established, the 
system reliability can be predicted and assessed. As the 
assessment and prediction reliability value of each com-
ponent are optimal according to the criteria, and therefore 
the assessment and prediction reliability of the system 
will also be optimal. We will prove this point as follows. 

5. Discussion of Software Reliability  
Evaluation Approach 

Let system composed by n components, the reliability of 
components computed by OSA are 1 2 , the 
exact value of the components reliability are  

1 2  respectively. The system reliability calcu-
lated by a certain model using the exact value of each 
component reliability 1 2  is . The 
system reliability calculated by the model using the 
evaluation value of each component reliability  

1 2 n  is 

, , , nR R R  

  = iR f R

, , , nR R R

, , ,R R  

, , , nR R R

R iR f R   .  is the difference 
between  and  

R
R R     'R i if R f R  R R   

If the smaller iR 

, nR

 is the smaller  is, then we can 
say the system reliability calculated using the component 
models selected by OSA is more accurate than other 
component models. It is not difficult to see from Table 1 
that the system reliability models listed in Table 1 is 
consistent with the hypothesis mentioned above. We will 
use CTMC_7 as a sample to demonstrate this point. The 
formula of model CTMC_7 is showed as (

R

R

, ,  

7). 

1

n

i i
i

R


                  (6) 

Let  is the system reliability calculated by exact 
value 1 2  using formula (

0R
R R, , 6),  is the sys-

tem reliability calculated by 1 2  using for-
mula (

0R
, nRR R

6). The difference between R and R′ is: 

 
1 1

i i i iR R R R
 

 
n n

i

i i

R R           (7)   

From (7) we can see the smaller the error iR   of 
each component is, the smaller the error  of the sys-
tem.  

R
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As the models of components are selected using OSA, 
there is  

 
_

1 2 2min ,  ,  , ,  

selectd model

model model model modeln

R

R R R R

 

   
 

so that we can get more accurate system reliability by the 
approach proposed in this paper. 

6. Case Analysis and Verification 

We use following system shown in Figure 2 as an exam-
ple. The system is composed by the three components. 
We use state-based reliability model to model it. In order 
to facilitate to model it, we add a termination state E, a 
completion state C, and a failure state F, the starting 
component is C1. The historical data of components C1, 
C2, C3 are provided by CASRE20, the specific values 
shown in Table 2. The historical data of component C1, 
C2 are time between failures data, the historical data of 
component C3 is the failure count data. Because different 
types of component model is suit for different reliability 

 
Figure 2. Components relationship of the system. 

 
data, we should use TBF model for component C1 and 
C2 , FC model for component C3. 

Table 2 shows these components historical reliability 
data. 

According to the approach presented in 5.1 and the 
criteria in 5.2, the results are shown as Table 3. 

From the results in Table 3 we can see the best good-
ness of fit reliability assessment models of components 
C1, C2, C3 are Quadratic LV (KS Distance = 10.67302), 
Quadratic LV(KS Distance = 14.68409) and Schick- 

 

Table 2. The historical reliability data of component C1, C2, C3. 

C1  C2 C3 

No. Duration Since Last Failure severity  No. Duration Since Last Failure severity  No. Failure count Interval severity

1 3 1  1 39 1  1 14 56.0 1 

2 30 1  2 10 1  2 19 56.0 1 

3 113 1  3 4 1  3 23 56.0 1 

4 81 1  4 36 1  4 12 56.0 1 

5 115 1  5 4 1  5 22 56.0 1 

6 9 1  6 5 1  6 12 56.0 1 

7 2 1  7 4 1  7 13 56.0 1 
8 91 1  8 91 1  8 19 56.0 1 
9 112 1  9 49 1  9 10 56.0 1 

10 15 1  10 1 1  10 5 56.0 1 

11 138 1  11 25 1  11 5 56.0 1 

12 50 1  12 1 1  12 5 56.0 1 
13 77 1  13 4 1  13 7 56.0 1 
14 24 1  14 30 1  14 7 56.0 1 
15 108 1  15 42 1  15 1 56.0 1 
16 88 1  16 9 1  16 3 56.0 1 
17 670 1  17 49 1  17 1 56.0 1 
18 120 1  18 44 1  18 2 56.0 1 
19 26 1  19 32 1  19 0 56.0 1 
20 114 1  20 3 1  20 2 56.0 1 
21 325 1  21 78 1  21 9 56.0 1 
22 55 1  22 1 1  22 1 56.0 1 
23 242 1  23 30 1  23 0 56.0 1 
24 68 1  24 205 1  24 0 56.0 1 
25 422 1  25 5 1  25 0 56.0 1 
26 180 1  26 129 1  26 1 56.0 1 
27 10 1  27 103 1  27 1 56.0 1 
28 1146 1  28 224 1     
29 600 1  29 186 1     
30 15 1  30 53 1     
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Table 3. The results of components candidate models. 

C1 C2 C3 Components  
Candidate Models –1 * ln(PL) KS Distance –1 * ln(PL) KS Distance

Components 
Candidate Models –1 * ln(PL) Chi-Square 

Geometric Model 29.2264 10.688 24.6318 14.72469 Generalized Posson 30.5155 26.53031 
Jelinski-Moranda 30.3014 901.7729 24.6462 16.53530 Yamada S-Shaped 33.4908 33.54718 

Linear LV 29.6216 11.02811 25.8762 17.42809 Schneidewind 30.8320 34.17516 
Musa Basic 29.7884 900.4869 24.7259 16.23364 Schick-Wolverton 30.5155 26.53030 

Musa-Okumoto 29.2700 898.9216 24.7884 16.02850    
NHPP 29.7884 900.4869 24.7259 16.23364    

Quadratic LV 29.0415 10.67302 24.8086 14.68409    

 
Table 4. The selected models of each component and the system reliability. 

 assessment  prediction(T = 50) i  

 selected models Ri  selected models Ri  

C1 Quadratic LV 0.9977  Jelinski-Moranda 0.93640 0.2350 

C2 Quadratic LV 0.9903  Linear LV 0.53740 0.5199 

C3 Schick-Wolverton 0.9999  Yamada S-Shaped 0.99993 0.2451 

Rs 0.9944  0.7445  

 
Wolverton (Chi-Square = 26.53030) respectively. The 
best goodness of fit reliability prediction models of 
components C1, C2, C3 are Jelinski-Moranda(–1 * ln(PL) 
= 30.3014), Linear LV(–1 * ln(PL) = 25.8762) Yamada 
S-Shaped(–1 * ln(PL) = 33.4908) respectively. Assuming 
system reliability evaluation use DTMC_6 and i is 
known. The assessment and prediction values are shown 
in Table 4. The assessment value refers to the reliability 
when the system development is completed, the predic-
tion value refers to the system reliability at a certain time 
T in the future. Here we set T to be 50. T can be changed 
to predict the system reliability at other time point. 

7. Conclusions 

An optimal selection approach to improve the evaluation 
accuracy of component-based system reliability is pro-
posed in this paper. The techniques of how to select the 
most appropriate assessment and prediction model for 
each component according to historical data based on 
certain criteria, and how to assess and predict the system 
reliability according to the selected model and the rela-
tionships among the various components, are presented. 
This approach considers not only the architecture of the 
system but also the historical data related to each com-
ponent reliability growth. As a result, its results are more 
effective and practical than those of the other existing 
approaches. 
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