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Abstract 
The objective of this article is to present the dynamics of an Upper Convected Maxwell (UCM) fluid 
flow with heat and mass transfer over a melting surface. The influence of melting heat transfer, 
thermal and solutal stratification are properly accounted for by modifying the classical boundary 
conditions of temperature and concentration respectively. It is assumed that the ratio of inertia 
forces to viscous forces is high enough for boundary layer approximation to be valid. The corres-
ponding influence of exponential space dependent internal heat source on viscosity and thermal 
conductivity of UCM is properly considered. The dynamic viscosity and thermal conductivity of 
UCM are temperature dependent. Classical temperature dependent viscosity and thermal conduc-
tivity models were modified to suit the case of both melting heat transfer and thermal stratifica-
tion. The governing non-linear partial differential equations describing the problem are reduced 
to a system of nonlinear ordinary differential equations using similarity transformations and 
completed the solution numerically using the Runge-Kutta method along with shooting technique. 
For accurate and correct analysis of the effect of variable viscosity on fluid flow in which (Tw or Tm) 
<T∞, the mathematical models of variable viscosity and thermal conductivity must be modified. 
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1. Introduction 
Mass transfer can be described as the movement of mass (material) through a fluid-fluid interface or a flu-
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id-solid interface. The term “mass transfer” is commonly used in engineering and in industry for physical 
processes that involve diffusive and convective transport of chemical species within physical systems. The three 
kinds of fluxes in relation to mass transfer have been explained in Asano [1]; Mass flux can be expressed as the 
addition of diffusional flux and convective mass flux. The analysis, description, theoretical and experimental 
studies of boundary layer flow together with heat and mass transfer across incompressible fluid as it flows over 
ahorizontal surface has gained attention of many researchers. In addition, series of investigations have been car-
ried out towards the understanding of the dynamics of viscoelastic material since the contribution of James 
Clerk Maxwell in 1867 to the body of knowledge. The dynamics of material having the properties of elasticity 
and viscosity when undergoing deformation is a fundamental topic in fluid dynamics. This kind of material re-
ferred to as “Maxwell fluid” has attracted the attention of many researchers due to its wide industrial and tech-
nical applications. James Clerk Maxwell proposed Maxwell fluid in 1867 and the knowledge was popularized 
by James G. Oldroyd few years after (for details see Christopher [2]). The Upper Convected Maxwell model can 
be described as the generalization of the Maxwell material for the case of large deformation using the upper- 
convected time derivative (also known as Oldyrold derivative) which is the rate of change of some tensor prop-
erties of a small parcel of fluid that is written in the coordinate system stretching with the fluid. It is worth no-
ticing that mathematical model of Upper Convected Maxwell has been described (or defined) as a function of 
stress tensor, relaxation time, upper convected time derivative of stress tensor, fluid velocity, material viscosity 
at steady simple shear and tensor of the deformation rate. 

It is a common known fact in rheology that given enough time, even a solid-like material will flow (see 
Barnes et al. [3]). In view of this, it is required to characterize the fluidity of materials under specific flow con-
ditions (i.e. adimensionless number that incorporates both the elasticity and viscosity of material is required). 
Steffe [4] reported that Deborah number which is defined as a ratio of stress relaxation time (i.e. time it takes for 
a material to adjust) to applied stresses (deformations) was proposed by Eugene C. Bingham and Markus Reiner. 
Recently, Poole [5] reported the history behind the given name “Deborah” according to Reiner [6] as a ratio of 
time of relaxation to time of observation. In view of this, Sadeghy et al. [7] investigated Sakiad is flow of a 
UCM fluid. The role played by a fluid’s elasticity on the characteristics of its Sakiadis flow was analyzed. In the 
same context, it was reported that at high Deborah number, UCM flow corresponds to solid-like behavior and 
low Deborah numbers to fluid-like behavior. Recently, Shateyi et al. [8] investigated entropy generation on a 
magnetohydrodynamic flow and heat transfer of a Maxwell fluid over a stretching sheet in a Darcian porous 
medium. In the article, a new numerical scheme (Chebyshev Spectral Collocation Method) is adopted to solve 
nonlinear systems of boundary value problems. Considering some rheological complex fluids such as polymer 
solutions, blood, ice creams and synovia fluid, Abbas et al. [9] argued that the second-grade fluid model adopted 
in the work of Fosdick and Rajagopal [10] does not give reasonable results for flows of highly elastic fluids 
(polymer melts) that occur at high Deborah number. Forsuch situations the Upper Convected Maxwell (UCM) 
model is quite appropriate. Using the UCM model, MHD boundary layer flow of a UCM fluid in a rectangular 
porous channel was successfully investigated. The study on dynamics of Upper Convected Maxwell fluid is ex-
tended in Hayat et al. [11] and reported that boundary layer thickness decreases by increasing the magnitude of 
MHD parameter, suction/injection velocity parameter and relaxation time parameter. In recent years, many re-
searchers have investigated and reported the effect of some parameters on Upper Convected Maxwell fluid flow 
[12]-[22]. 

Internal energy generation can be explained as a scientific method of generating heat energy within a body by 
chemical, electrical or nuclear process. Natural convection induced by internal heat generation is a common 
phenomenon in nature. Crepeau and Clarksean [23] have reported a similarity solution of a fluid problem along 
a vertical plate with constant temperature in the presence of an exponential decaying heat generation term under 
the assumption that the fluid has an internal volumetric heat generation. In many situations, there may be appre-
ciable temperature difference between the surface and the ambient fluid. This necessitates the consideration of 
temperature dependent heat source(s) that may exert a strong influence on the heat transfer characteristics (see 
Salem and El-Aziz [24]). Salem and El-Aziz [25] further stated that exact modeling of internal heat generation 
or absorption is quite difficult and argued that some simple mathematical models can express its average beha-
vior for most physical situations. Recently, Animasaun et al. [26] reported that when the plastic dynamic viscos-
ity and thermal conductivity of non-Newtonian Casson fluid are considered as temperature dependent, exponen-
tially decaying internal heat generation parameter is an important dimensionless number that can be used to in-
crease velocity and temperature of the fluid as it flows. Effect of this internally generated heat energy on the  
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surface may lead to melting of solid surface. From the knowledge of kinetic theory of matter, some solids may 
melt if expose to a high temperature. In an earlier study, the effect of melting on heat transfer was studied by 
Yin-Chao and Tien [27] for the Leveque problem. The tangential velocity profile is assumed to be linear. It was 
further reported by Tien and Yen [28] that the approximation in [27] is valid if one deals with a high Prandtl 
number fluid so that the significant temperature change takes place only within a thin layer of fluid immediately 
adjacent to the solid boundary and consequently the velocity profile inside this thin layer can be approximated 
by a linear segment. The similarity between the melting problems and mass transfer or transpiration cooling 
problems is further explained in [28]. In addition, effect of melting on heat transfer between melting body and 
surrounding fluid qualitatively from the point of view of boundary layer theory was investigated. This contribu-
tion to the existing knowledge attracted Epstein [29] to present a note on a systematic method of calculating 
steady state melting rates in all circumstances involving the melting of solid bodies immersed in streams of 
warmer fluid of the same material. In the same context, relationship between boundary condition of evaporation 
and that of melting is discussed. In recent years, many researchers have investigated and reported the effect of 
melting parameters; for details see [30]-[32]. 

In all of the above mentioned studies, fluid viscosity and thermal conductivity have been assumed to be con-
stant function of temperature within the boundary layer. However, it is known that physical properties of the 
fluid may change significantly when expose to internal generated temperature. For lubricating fluids, heat gen-
erated by the internal friction and the corresponding rise in temperature affect the viscosity of the fluid and so 
the fluid viscosity can no longer be assumed constant. In a case of melting as reported by many researchers 
[30]-[33], it is worth mentioning that temperature of fluid layers at free stream may also have significant effect 
on the intermolecular forces of upper convected Maxwell fluid. The increase of temperature may also leads to a 
local increase in the transport phenomena by reducing the viscosity across the momentum boundary layer and so 
the heat transfer rate at the wall may also be affected greatly. According to Batchelor [34], Animasaun [35] and 
Meyers et al. [36], it is a well-known fact that properties which are most sensitive to temperature rise are viscos-
ity and thermal conductivity. Recently, Mukhopadhyay [37] considered this same fact in order to explain stag-
nation point flow behavior on non-melting surface while Animasaun [38] adopted the model and reported the 
dynamics of unsteady magnetohydrodynamic convective fluid flow with radiation and thermophoresis of par-
ticles past a vertical porous plate moving through a binary mixture in an optically thin environment. Motivated 
by all the works mentioned above, it is of interest to contribute to the body of knowledge by studying the dy-
namics of upper-convected Maxwell fluid flow considering a case in which the influence of temperature on vis-
cosity and thermal conductivity is properly accounted for. In this study, we aim at investigating the motion of 
UCM fluid flow over a melting surface; considering a case in which the flow is subjected to thermal and solutal 
stratification. This is achieved by modifying and incorporating all the necessary term (s) into the boundary layer 
equation in line with boundary layer theory, heat and mass transfer theory. Lastly, to extend the research of 
Hayat et al. [39], Mustafa et al. [17], Pop et al. [30], and Prasad et al. [21]. 

2. Mathematical Formulation 
We consider steady and incompressible Upper Convected Maxwell (UCM) fluid flow with variable thermo- 
physical properties over a melting surface situated in hot environment. The flow under consideration is assumed 
to occupy the domain 0 y≤ < ∞  as shown in Figure 1. Boundary layer equations which best describe Upper 
Convected Maxwell fluid flow can be derived starting from Cauchy equations of motion. Following (Dunn and 
Rajagopal [40] and Sadeghy et al. [7]), steady two-dimensional fluid flow can be written as 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                                (1) 

1 1 ,xyxxu u pu v
x y x x y

ττ
ρ ρ

∂ ∂∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                          (2) 

1 1 .yx yyv v pu v
x y y x y

τ τ
ρ ρ

∂ ∂ ∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                          (3) 
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Figure 1. Physiwcal configuration. 

 
where ρ  is the density of the steady Upper Convected Maxwell fluid. Poole [5] explained that in steady sim-
ples hear flow (SSSF), the dominant elastic force will be due to the first normal-stress difference ( xxτ , yyτ ) and 
the viscous force is simply the shear stress ( xyτ ). 

In Equation (2) and Equation (3), elastic terms are xx

x
τ∂
∂

 and yy

y
τ∂
∂

. The viscous terms are xy

y
τ∂
∂

 and yx

x
τ∂
∂

.  

Using order of magnitude as introduced by Ludwig Prandtl and stated in Schichting [41], it is valid to say that 

( ) ( ) ( ) ( )1 , , 1 , ,u O v O x O y Oδ δ= = = =                          (4) 

and easy to show that in Equations (2) and (3), order of magnitude of the two elastic terms and order of magni-
tude of the two viscous terms are the same if 

( ) ( ) ( )21 , , .xy yyxx O O O
τ ττ

δ δ
ρ ρ ρ

= = =                           (5) 

This condition can be explained following Sadeghy et al. [7]. Elastic effects should be considered in aboun-
dary layer only for those viscoelastic fluids for which xxτ  is of an order larger than xyτ  and yyτ . Not all vis-
coelastic fluid models can meet such a strong restrictive condition. Assuming that a fluid can be found for which 
the order estimates as given by Equation (5) really hold; the stress components of a UCM fluid can indeed be 
represented by the above order estimates justifying the use of such a model in the present work. The equations 
of motions can be simplified to 

1 1 ,xyxxu u pu v
x y x x y

ττ
ρ ρ

∂ ∂∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                       (6) 

10 0 0 0.p
yρ
∂

+ = − + +
∂

                                      (7) 

In the presence of pressure gradient, the equations of motions together with continuity equation can be written 
as 

0,u v
x y
∂ ∂

+ =
∂ ∂

                                  (8) 

1 1 ,xyxxu u pu v
x y x x y

ττ
ρ ρ

∂ ∂∂ ∂ ∂
+ = − + + ∂ ∂ ∂ ∂ ∂ 

                       (9) 
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In Equation (8) and Equation (9), there exist five unknowns (i.e. five dependent variables) which are u, v, xxτ  
and xyτ . In order to resolve this (i.e. to make the number of unknowns equal to the number of equations), a 
constitutive equation relating stress components to the deformation field is needed. For a Maxwell fluid, the 
stress tensor ( )ijτ  can be related to the deformation-rate tensor ( )ijd  as stated in Larson [42] and Sadeghy et 
al. [7] as 

2 c
ij ij ijd

t
τ λ τ µ∆

+ =
∆

                                   (10) 

The time derivative 
t
∆
∆

 appearing in Equation (10) is the so-called Upper Convected time derivative which  

has been devised to satisfy the requirements of continuum mechanics (i.e., material objectivity and frame in dif-
ference; see Larson [42]) and cµ  is known as zero-shear rate viscosity. This time derivative, when applied to 
the stress tensor, reads as follows 

ij ij
jk ik ik kj

D
L L

t Dt
τ τ

τ τ
∆

= − −
∆

                               (11) 

In Equation (11), ijL  is the velocity gradient tensor. The Bernoulli equation for the free stream flow just 
above the boundary layer where there is no viscous shear is defined as 

2

constant
2
eup

ρ
+ =  

This can be differentiated and used to eliminate the pressure gradient Lienhard-IV and Lienhard-V [43] 

1 e
e

up u
x xρ

∂∂
= −

∂ ∂
 

Since the flow is along flat horizontal melting plate, p  and eu  are constant. For an incompressible fluid 
obeying upper convected Maxwell model with temperature dependent dynamics viscosity and thermal conduc-
tivity, the x −momentum equation and the energy equation can be simplified using the usual boundary layer 
theory approximations and then obtain 

2 2 2 2
2 2

2 2

12 ,u u u u u u B uu v u v uv u v
x y x y y y yx y

σλ µ λ
ρ ρ

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + = − +     ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂     

       (12) 

In this study on Maxwell fluid flow, it is assumed that the normal stress is of the same order of magnitude as 
that of the shear stress in addition to the usual boundary layer approximation for deriving the component of the  

momentum boundary layer Equation (12). This is properly accounted for by introducing 
2B uv

y
σ λ
ρ

 ∂
 ∂ 

 into the  

momentum Equation (12); for details, see Motsa et al. [18]. In this present study, it is important to state that ex-
ponential heat source is adopted to account for internal distribution of temperature in energy equation. This con- 
cept can be traced to the idea of Crepeau and Clarksean [23], Salem and El-Aziz [24] [25], Animasaun et al. [26] 
and Animasaun [44]. The energy and concentration equations can be written as 

( )1 e ,
anyo o

p p

Q T TT T Tu v
x y c y y c

ϑκ
ρ ρ

−∞ − ∂ ∂ ∂ ∂
+ = + ∂ ∂ ∂ ∂ 

                   (13) 

2

2 .m
C C Cu v D
x y y

∂ ∂ ∂
+ =

∂ ∂ ∂
                                          (14) 

Equations (8), (12), (13) and (14) are subject to the following boundary conditions 

( ) ( )* *0, ,0 , , at 0s m o m m
Tu c T T v x T T C C y
y

κ ρ λ
 ∂  = = + − = = =   ∂ 

             (15) 
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( ) , , , aseu u ax T T C C y∞ ∞→ = → → →∞                        (16) 

κ is the thermal conductivity, *λ  is the latent heat of the fluid and sc  is the heat capacity of the solid sur-
face. In order to solve the problem completely in unbounded domains, it is possible to augment the boundary 
conditions by assuming certain asymptotic structures for the solutions at infinity. The formulation of the second 
term in Equation (15) states that the heat conducted to the melting surface is equal to the heat of melting plus the 
sensible heat required to raise the solid temperature *

oT  to its melting temperature mT  (for details, see Epstein 
and Cho [45]). The increase of temperature may also leads to a local increase in the transport phenomena by re-
ducing the viscosity across the momentum boundary layer and so the heat transfer rate at the wall may also be 
affected greatly. Due to this, it is very important to account for the influence of temperature on the thermo- 
physical properties of UCM fluid as it flows over a melting surface within the boundary layer. However, it is 
known that physical properties of the fluid may change significantly when expose to significant internal gener-
ated heat energy across the space. For lubricating fluids, heat generated by the internal friction and the corres-
ponding rise in temperature affect the viscosity of the fluid and so the fluid viscosity can no longer be assumed 
constant. In order to account for the variation in thermo-physical properties of the fluid as it flows past a hori-
zontal melting surface, it is valid to consider the mathematical model of temperature dependent viscosity model 
used in Animasaun [35] and Sivagnana et al. [46] which was developed using the experimental data of Batche-
lor [34] together with the mathematical model of temperature dependent thermal conductivity model of [26] [35] 
as 

( ) ( ) ( ) ( )* *
1 1 2 2,wT a b T T T a b T Tµ µ κ κ ∞ = + − = + −                       (17) 

The classical models in Equation (17) are valid when wT T∞> . These mathematical models together with 
classical similarity variables for temperature and concentration are modified to 

( ) ( ) ( ) ( ) ( ) ( )* *
1 1 2 2, , , .m m

m
o o

T T C C
T a b T T T a b T T

T T C C
µ µ θ η φ η κ κ∞

∞ ∞

− −
 = + − = = = + −    − −

    (18) 

It is worth mentioning that the first and fourth terms of Equation (18) are valid since mT T∞ > . Due to the re-
lationship between dynamic viscosity, exponentially internal heat source and free stream temperature of UCM 
fluid as stated in the first term of Equation (18). Using Equation (19) and second term of Equation (18), it is easy 
to obtain 

( )[ ] 11 oT T T T m xθ∞ ∞− = − − −  

In this study, the idea of Vimala and Loganthan [47] and Animasaun [44] is followed to define thermal strati-
fication ( )mT , solutal stratification ( )mC  at the melting wall ( )0y =  and at the free stream ( ),T C∞ ∞  are 
defined as 

1 2, .m o oT T m x T T m x∞= + = +                               (19) 

3 4, .m o oC C m x C C m x∞= + = +                              (20) 

From these models, it is valid to write the relation of the form 

( ) ( )1 1 1 1 1 2, .m o ob T T b m x b T T b m x∞− = − =                          (21) 

oT  and oC  are known as reference temperature and concentration respectively. It is worth noticing from 
Equation (21) that there exist two differences in temperature due to stratification which occur for all x at fixed 
pointy = 0 and the other that occurs for all x as y →∞ . In view of this, it is valid to define temperature depen-
dent viscous parameter ξ as first term in Equation (22). This assumption is based on the fact that (1) the stress 
tensor is a linear function of the strain rates as the fluid flows along a surface (2) the UCM fluid is isotropic. The 
ratio of the two terms in Equation (21) can thus produce the dimensionless thermal stratification parameter ( )tS . 
Likewise, the ratio of the two terms in Equation (20) can thus produce the dimensionless solutal stratification 
parameter ( )solS  

( ) ( ) 31
1 1

2 4

, , ,o m o t t sol
mmb T T b T T S S S

m m
ξ ξ∞= − − = = =                     (22) 
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Upon using Equation (18) - Equation (22), we obtain 

[ ]
2 2 2 2

2 2 * *
12 2 2 ,t

u u u u u u B uu v u v uv a S u v
x y x y y y yx y

θ σλ ϑ ξ θξ ξ ϑ ξ λ
ρ

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + = + − − − − +   ∂ ∂ ∂ ∂ ∂ ∂ ∂∂ ∂   

  (23) 

[ ]( ) ( ) ( )2* *2
22 2

2 e .
anyo o o

o
p p p

a T T Q T TbT Tu v T T
x y c c y cy

ϑ
κ θε κθ θ

ρ ρ ρ

−∞ ∞
∞

+ − − ∂ ∂ ∂ ∂
+ = + − + ∂ ∂ ∂∂  

              (24) 

In order to write the governing equations and the boundary conditions in dimensionless form, the following 
non-dimensional quantities are introduced, 

( )
1
2

, , ,av u y xf a
x y
ψ ψ η ψ η ϑ

ϑ
∂ ∂  = − = = = ∂ ∂  

                      (25) 

It is important to note that the first two terms of Equation (25) automatically satisfy continuity Equation (8). 
Then, Equation (23) and Equation (24) becomes 

3 2
2

1 3 2

d d d d d d2 0,
d d d dd dt

f f f f fa S f f f M f Mθξ θξ ξ β ξ β β
η η η ηη η

    + − − − + − + + − + =        
      (26) 

[ ]
2

2 2

d d d d d d e 0,
d d d d dd

n
r t r r r

f fa P S P P f P ηθ θ θ θεθ ε θ γ
η η η η ηη

−+ + − − + + =                        (27) 

2

2

d d d d 0.
d d dd c sol c c

f fS S S S fφ φφ
η η ηη

− − + =                                              (28) 

The corresponding boundary conditions take the form 

d d0, 0, 0, 0 at 0
d d r

f m P fθ θ φ η
η η
= + = = = =                           (29) 

( ) ( )d 1, 1 , 1 as .
d t sol

f S Sθ φ η
η
→ → − → − →∞                         (30) 

Here dimensionless viscoelastic parameter (Deborah number) aβ λ= , temperature dependent thermal con-
ductivity parameter ( )2 ob T Tε ∞= − , Magnetic field parameter 2M B aσ ρ= , Coefficient of thermal diffusivity

pcα κ ρ= , Prandtl number r pP c µ κ= , Schmidt number ,c mS Dϑ=  Heat source parameter o pQ c aγ ρ=   
and melting parameter ( ) ( )* *

o p s m om T T c c T Tλ∞
 = − + −  . The physical quantities of interest are the skin fric-  

tion coefficient ,Cf  Local Nusselt number xNu  and Local Sherwood number xSh  which are defined as 

( ) ( ) ( )2 , , .w w w
x x

o m ow

aq am
Cf Nu Sh

T T D C Cu
τ

κρ ∞ ∞

= = =
− −

                      (31) 

where the wall skin friction wτ , heat transfer from the melting surface wq  and mass transfer from the melting 
surface wm  are defined following Abbas et al. [14] as 

2

0 0 0

2 , ,w x x m
y y y

u u u T Cuv v Nu Sh D
y x y y y

τ µ λ λ κ
= = =

  ∂ ∂ ∂ ∂ ∂
= − − = − = −  

∂ ∂ ∂ ∂ ∂  
              (32) 

Using Equation (25) 

2 2
1 2

2 2 1 2 1 2
0 0 0

d d d d d dRe 2 , ,
d d d dd d Re Re

x x
x

x x

Nu Shf f f fCf ff f
η η η

θ φβ β
η η η ηη η = = =

 
= − + = − = −     

          (33) 

the local Reynolds number is defined as 1 2 2Re .x ax ϑ=  
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3. Method of Solution 
Numerical solutions of the ordinary differential Equation (26) - Equation (28) with the Neumann boundary con-
ditions Equation (29) and Equation (30) are obtained using classical Runge-Kutta method with shooting tech-
niques. The BVP can not be solved on an infinite interval, and it would be impractical to solve it for even a very 
large finite interval. In this study, we impose the infinite boundary condition at a finite point 4η∞ = . The set of 
coupled nonlinear ordinary differential equations along with boundary conditions have been reduced to a system 
of seven simultaneous equations of first order for seven unknowns following the method of superposition Na 
[48]. In order to integrate the corresponding I.V.P. the values of ( )0f , ( )0f ′′ , ( )0θ ′  and ( )0φ′  are re-
quired, but no such values exist after the non-dimensionalization of the boundary conditions Equation (15) and 
Equation (16). It is important to report that, we may easily obtain ( )0f  by setting 0m = . The suitable guess 
values for ( )1 0G f ′′= , ( )2 0G θ ′= , ( )3 0G f=  and ( )4 0G φ′=  are chosen and then integration is carried 
out. In this method of solution, Newton-Raphson method is embedded as root finding of the non-linear equa-
tions of the corresponding systems of seven first order ordinary differential equations. The seven initial condi-
tions at ( )0η =  can now be defined as column vector with seven elements as 

( )Pr 3 2 ;0; 1;0; 2;0; 4 .Guess G mG G G G= +    

The calculated values for ( )f η , ( )θ η  and ( )φ η  at 4η =  are compared with the given boundary con-
ditions in Equation(30) and the estimated values ( )0f , ( )0f ′′ , ( )0θ ′  and ( )0φ′  are adjusted to give a 
better approximation of the solution. Series of values for ( )0f , ( )0f ′′ , ( )0θ ′  and ( )0φ′  are considered 
and applied with fourth-order classical Runge-Kutta method using step size 0.01hη∆ = = . The above proce-
dure is repeated until asymptotically converged results are obtained within a tolerance level of 510− . It is worth 
mentioning that there exist no related published articles that can be used to validate the accuracy of the numeri-
cal results. Equation (26) - Equation (30) can easily be solved using ODE solvers such as MATLAB’s bvp4c 
solver (see [49]). 

Verification of the Results 
In order to verify the accuracy of the present analysis, the results of Classical Runge-Kutta together with shoot-
ing (RK4SM) have been compared with that of bvp4c for the limiting cases when 0.2tSξ ε γ= = = = , 

0.3β = , 0.5,M =  0.62,cS =  0.2,solS =  and 1n a= =  at various values of rP  and m . The comparison in 
the above cases is found to be in good agreement, as shown in Table 1. The good agreement is an encourage-
ment for further study of the effects of other parameters on UCM fluid as it flows over a melting surface. 

4. Discussion of Results 
The numerical computations have been carried out for various values of temperature dependent viscous parame-
ter, thermal stratification parameter, solutal stratification parameter, Deborah number, magnetic field parameter, 
temperature dependent thermal conductivity parameter, Schmidt number, Prandtl number, space dependent heat 
source parameter, intensity of heat distribution on space parameter and melting parameter using numerical 
scheme discussed in the previous section. To avoid any corresponding effect(s) on the fluid flow (i.e. decrease in 
the volume and changing of state) of UCM due to high temperature when investigating the effect of dimension-
less temperature dependent viscous and thermal conductivity parameters, variable “a1 = a2” in Equations (26) and 
(27) have been considered as unity. In order to illustrate the results graphically, the numerical values are plotted in 
Figures 2-14. Table 1 provides the numerical value of skin friction coefficients, reduced Nusselt numbers 

1 2Rex xNu −  and Sherwood numbers 1 2Rex xSh −  for different values of Prandtl number and melting parameter. 
From Table 1, it is further seen that ( )0θ ′−  which is proportional to local heat transfer is small when 0m =  
and large when 0m =  at a given value of Prandtl number. For instance, when ( )0.71, 0rP m= = , the Nusselt 
number is estimated as 0.227973593463212−  while when ( )0.71, 0.5rP m= = , the Nusselt number is esti-
mated as 0.206753991576532− . This result shows a significant increase in local heat transfer rate at the wall 
( )0η = . In real life, melting is a phase transformation process that is accompanied by absorption of thermal energy. 
Hence, this accounts for the absorption of thermal energy at the wall which corresponds to an increase in the rate of 
heat transfer with melting. This result is in good agreement with the report of Fukusako and Yamada [33]. 

Figure 2 and Figure 3 illustrate the influence of solutal stratification parameter on the concentration and  
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Table 1. Comparison of ( )0f ′′ , ( )0θ′−  and ( )0φ− ′  using Runge-Kutta together with shooting technique and bvp4c 

with rP  and m  when 4η∞ = . 

 ( )0 4f bvp c′′  ( )0 4f RK SM′′  ( )0 4bvp cθ ′−  

0.3, 0rP m= =  0.084750549215246 0.084750612582614 −0.216400317226149 

0.5, 0rP m= =  0.085203684744618 0.085203475747002 −0.220822799620452 

0.71, 0rP m= =  0.085590730358658 0.085590497630018 −0.227973593463212 

1, 0rP m= =  0.086014042064422 0.086013790040591 −0.240922640551570 

0.3, 0.5rP m= =  0.039237792254884 0.039237496643905 −0.192839256745501 

0.5, 0.5rP m= =  0.054568561112953 0.054568458187466 −0.198631705554188 

0.71, 0.5rP m= =  0.062316129381638 0.062316082253395 −0.206753991576532 

1, 0.5rP m= =  0.067978247345109 0.067978247104503 −0.220488109972874 

 ( )0 4RK SMθ ′−  ( )0 4bvp cφ′−  ( )0 4RK SMφ′−  

0.3, 0rP m= =  −0.216400307739576 −0.126425532660648 −0.126425739785364 

0.5, 0rP m= =  −0.220822718730358 −0.126353607140818 −0.126353292670234 

0.71, 0rP m= =  −0.227973425611366 −0.126290564565258 −0.126290251750048 

1, 0rP m= =  −0.240922368071198 −0.126219831635247 −0.126219525847626 

0.3, 0.5rP m= =  −0.192839423367583 −0.091023399837705 −0.091023186146136 

0.5, 0.5rP m= =  −0.198631742945421 −0.103581405815614 −0.103581365442893 

0.71, 0.5rP m= =  −0.206753996042305 −0.109309119916587 −0.109309104668065 

1, 0.5rP m= =  −0.220488109991622 −0.113210624607363 −0.113210624587697 

 

 
Figure 2. Concentration profiles ( )φ η  for different values of 

solutal stratification parameter solS . 
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Figure 3. Concentration gradient profiles ( )ηφ′  for different 

values of solutal stratification parameter solS . 
 

 
Figure 4. Temperature profiles ( )θ η  for different values of 

thermal stratification parameter tS . 
 

 
Figure 5. Temperature gradient profiles ( )ηθ′  for different 

values of thermal stratification parameter tS . 
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Figure 6. Velocity profiles ( )f η′  for different values of 

thermal stratification parameter tS . 
 

 
Figure 7. Transverse velocity profiles ( )f η  for different 

values of thermal stratification parameter tS . 
 

 
Figure 8. Sheer stress profiles ( )f η′′  for different values of 

thermal stratification parameter tS . 

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

V
el

oc
ity

 p
ro

fil
e 

f /  (
  η

 )

 

 

2.2 2.4 2.6 2.8 3
0.2

0.25

0.3

0.35

0.4

S
t
 = 0

S
t
 = 0.1

S
t
 = 0.2

S
t
 = 0.3

S
t
 = 0.4

St

St

ξ = 0.2, ε = 0.2, β = 0.3, 
St varies, M = 0.5, Pr = 0.71,

γ = 0.5, n = 1, m = 0.5, 
Ssol = 0.2, Sc = 0.62

0 0.5 1 1.5 2 2.5 3 3.5 4

-0.2

0

0.2

0.4

0.6

0.8

η

Tr
an

sv
er

se
 v

el
oc

ity
 p

ro
fil

e 
f (

  η
 )

 

 

St = 0

St = 0.1

St = 0.2

St = 0.3

St = 0.4 St

ξ = 0.2, ε = 0.2, β = 0.3, 
St varies, M = 0.5, Pr = 0.71,

γ = 0.5, n = 1, m = 0.5, 
Ssol = 0.2, Sc = 0.62

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

η

S
he

ar
 S

tre
ss

 P
ro

fil
e 

f //  
( η

 )

 

 

0 0.05 0.1 0.15 0.2

0.04

0.06

0.08

St = 0

St = 0.1

St = 0.2

St = 0.3

St = 0.4

St

St

ξ = 0.2, ε = 0.2, β = 0.3, 
St varies, M = 0.5, Pr = 0.71,

γ = 0.5, n = 1, m = 0.5, 
Ssol = 0.2, Sc = 0.62



I. L. Animasaun et al. 
 

 
1373 

 
Figure 9. Concentration profiles ( )φ η  for different values of 

thermal stratification parameter tS . 
 

 
Figure 10. Concentration gradient profiles ( )ηφ′  for different 

values of thermal stratification parameter tS . 
 

 
Figure 11. Transverse velocity profiles ( )f η  for different 

values of temperature dependent viscous parameter ξ . 
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Figure 12. Velocity profiles ( )f η′  for different values of tem-

perature dependent viscous parameter ξ . 
 

 
Figure 13. Temperature profiles ( )θ η  for different values of 

temperature dependent thermal conductivity parameter ε . 
 

 
Figure 14. Sherwood number 1 2

xxSh Re−  for different values of 
solutal stratification parameter solS  and Schmidt number cS . 
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concentration gradient profiles. The effect of solS  is to decrease the concentration profiles of UCM fluid as it 
flows along horizontal melting surface. Physically, as magnitude of solS  increases, this corresponds to a de-
crease of concentration at free stream (η = 4). Since diffusion of species is from region of higher concentration 
at free stream towards the region of lower concentration at the melting wall; hence, this account for decrease in
( )φ η . It is well known fact in the study of heat and mass transfer that the behavior of concentration gradient 
( )φ η′  which is proportional to local mass transfer rate is strong dependent on the nature concentration ( )φ η . 

In view of this, an attempt is made to investigate the variations of concentration gradient profiles ( )φ η′  along 
similarity variable η with different values of solutal stratification parameter; for details see Figure 3. It is seen 
that concentration gradient is a decreasing function of solS . It is observed that ( )φ η′  decreases significantly 
at the melting surface. As expected, ( )φ η′  decreases significantly with increase in the magnitude of solS  
near the wall while amount of concentration is very low near the melting surface. It is observed that increase in 
the magnitude of solutal stratification parameter has no significant effect on transverse velocity profile ( )f η′ , 
velocity profile ( )f η′ , shear stress profile ( )f η′′ , temperature profile ( )θ η  and temperature gradient pro-
file ( )φ η′ . Physically, solutal stratification parameter quantifies the ratio between concentration of UCM as it 
flows over horizontal melting surface to that of concentration at the free stream; this account for the reason why 
increase in the magnitude of solS  on all the profiles mentioned above. 

The variations of temperature profiles ( )θ η  along similarity variable η with different values of thermal stra-
tification parameter are plotted in Figure 4. At a constant value of thermal stratification parameter, it is seen that 
( )θ η  enlarges continuously as η grows. At all points in the fluid domain ( )0 4η≤ ≤ , it is seen that ( )θ η  

decreases with an increase in the magnitude of stratification parameter with a negligible decrease few distance 
from the melting surface and significant decrease thereafter till free stream. Physically, increase in the magni-
tude of thermal stratification parameter corresponds to a systematic way of decreasing the heat energy from the 
free stream (i.e. to control the heat energy from hot environment in the layer above into the fluid domain). It is 
worth mentioning that as the heat energy is reducing, hence the temperature of the UCM fluid within the fluid 
layer is decreasing. The negligible decrease near the melting surface shown in Figure 4 can be traced to the rate 
of melting which occurs at the wall (i.e. 0.5m = ). The result is in good agreement with the fact that a decrease 
in temperature is significant near free stream and negligibly as η tends from 4 to 0. It is also noticed that this de-
crease obey the melting boundary condition of temperature at the wall ( )( )0 0mT ηθ == = . It is observed in Figure 5 
that temperature gradient is a decreasing function of thermal stratification at all point of η. From this graph, it is 
evidently to report that 1 2Rex xNu −  which is proportional to local heat transfer rate increases significantly with 
an increase in stratification. In Figure 5, it is noticed that 1 2Rex xNu −  increases negligible at the free stream 
with an increase in St. 

In this study, setting m = 0 can seriously affect the melting processes at the wall. In addition to this fact, exis-
tence of melting at the wall together with an increase in thermal stratification parameter depicts anegligible in-
crease in longitudinal velocity and significant increase in transverse velocity (see Figure 6 and Figure 7). As 
temperature decreases due to an increase in thermal stratification parameter, velocity profile is expected to de-
crease as reported in [44]. It is worth noticing that such effect exists due to the presence of suction and the kind 
of fluid under consideration (Casson fluid). In this research, mathematical model which denotemelting heat 
transfer has replaced the suction at the wall. It is worth noticing that the result we obtained here is in good 
agreement with that of Figure 6 reported in [32]. 

We believe that this influence requires further investigation by replacing melting heat transfer model with 
suction model (i.e. to study the effect of suction on UCM fluid with variable thermo-physical properties subject 
to thermal and solutal stratification). It is also important to report that the influence of free stream temperature 
together with internal exponential heat source account for the increase in velocity and transverse velocity of 
UCM as it flows. In fact, these influences totally subdues the effect of increasing stratification which ought to 
decrease velocity profiles as reported in [44]. Figure 8 shows that the shear stress profile increases near the 
melting surface with an increase in thermal stratification parameter. Opposite effect is observed near free stream 
(η = 4). Figure 9 and Figure 10 illustrate the effect of thermal stratification parameter on the concentration of 
UCM fluid flow over melting surface towards thermal stratified environment. It is seen that the concentration 
increases negligibly with ( )tS ; see Figure 9 for details. It is also observed that concentration gradient is a de-
creasing function of ( )tS  near the free stream. The variations of ( )f η  along η with different values of ξ are 
plotted in Figure 11. It is seen that the increase of ξ leads to the enhancement of the velocity profiles. We further 
notice that, increase in the magnitude of ξ has no effect on ( )f η  near the melting wall. As shown in Figure 11, ξ 
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has an evident effect on ( )f η  that the larger the value of ξ is, the greater the velocity is. The physics behind 
this is that, as magnitude of ξ increases at a constant value of 1b , this corresponds to an increase in temperature 
difference of ( )oT T∞ − . 

Hence, this increase in temperature weakens the intermolecular forces which hold the molecule of UCM so 
tight. In view of this, the dynamic viscosity is gradually reduced and corresponds to increase in velocity as 
shown in Figure 11 and Figure 12. It is further observed in Figure 12 that increases in the magnitude of tem-
perature dependent viscous parameter has negligible effect on velocity profiles near the free stream. Physically, 
the temperature of UCM near the hot environment (upper layers at the free stream) is almost the same. In such a 
situation, the flow velocity approaches to the maximum value. In this study, it is important to note that increase 
in the temperature dependent thermal conductivity parameter (ε) at a constant value of δ corresponds to an in-
crease in temperature difference ( )oT T∞ − . This explains the increase in temperature profiles shown in Figure 
13 due to increase in the magnitude of ε. Figure 14 illustrates the effects of solutal stratification and Schmidt 
number on Sherwood number 1 2Rex xSh  which is proportional to local mass transfer rate. At a constant value of 
Schmidt number, the Sherwood number of the UCM fluid flow increases significantly with an increase in Solut-
al stratification parameter. In addition, it is observed that 1 2Rex xSh −  increases with an increase in the magni-
tude of Schmidt number at a constant value of solS . Due to the nature of temperature and concentration of the 
present study at melting surface which is lesser than that of free stream, it is of important to also investigate the 
effects of solutal stratification and Schmidt number on concentration gradient ( )0φ′−  at a point near hot envi-
ronment (η = 4). It is worth noticing that previous analysis has resolved the initial value problem of the B.V.P. 
by producing all the missing values at 0η = . Table 2 displays the effect of increasing the magnitude of solS
over concentration gradient ( )4φ η′− = . It is observed that at a constant value of cS , local mass transfer at the 
free stream (η = 4) increases significantly with solS . From Table 2, it is observed that at a constant value of 

solS , the local mass transfer rate decreases with cS . 

5. Conclusion 
Similarity solutions of steady UCM fluid flow over a melting surface; considering a case in which the flow is 
subjected to thermal and solutal stratification have been studied theoretically. The corresponding influence of 
thermal stratification, solutal stratification, variation in viscosity and thermal conductivity due to temperature is 
properly considered. The governing (dimensional) partial differential equations are converted into (dimension-
less) nonlinear ordinary differential equations by using similarity transformation before being solved numerical-
ly using fourth order Runge-Kutta integration scheme along with shooting techniques. Results for the skin fric-
tion coefficient, local Nusselt number, local Sherwood number, transverse velocity profiles, velocity profiles, 
temperature profiles as well as concentration profiles are presented for different values of the pertinent parame-
ters. Effects of Prandtl number, the melting parameter, temperature dependent viscous parameter, temperature 
dependent thermal conductivity parameter, solutal and thermal stratification on the flow and heat transfer cha-
racteristics are thoroughly examined. For accurate and correct analysis of fluid flow in which ( wT  or mT ) 

,T∞<  the mathematical models of temperature dependent viscosity and thermal conductivity must be modified 
as explained in this article. In addition, if fluid flow along vertical surface with constant viscosity and thermal  
 
Table 2. Influence of startification parameter solS  over Concentration gradient ( )4φ η′− =  when 4η∞ =  0.2ξ ε= = , 

0.5γ = , 0.1β = , 0.2tS = , 0.5M = , 0.71rP = , 4 1n = = , 0.5m = . 

solS  ( )4 0.2cSφ η′− = =  ( )4 0.4cSφ η′− = =  

0 −0.3548243390 −0.4397880431 

0.1 −0.33413024290 −0.4224901910 

0.2 −0.31343614671 −0.4051923390 

0.3 −0.29274205052 −0.3878944869 

0.4 −0.27204795433 −0.3705966348 

0.5 −0.25135385814 −0.3532987827 
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conductivity is to be investigated; the term ( )wT T∞−  or ( )mT T∞−  in the Boussinesq approximation must also 
be modified. The concentration ( )φ η  and concentration gradient ( )φ η′  of upper convected Maxwell fluid 
flow over a melting surface are decreasing functions of the solutal stratification parameter. The Sherwood num-
ber 1 2Rex xSh −  decreases significantly at the melting surface with solS . At a constant value of Schmidt number, 
Sherwood number is an increasing function of solutal stratification parameter. Longitudinal velocity and trans-
verse velocity are increasing functions of thermal stratification parameter. The classical effect of the magnitude 
of stratification on velocity is subdued by the intense free stream temperature together with internal exponential 
heat source. The temperature of UCM fluid flow over a melting surface is an increasing function of variable 
thermal conductivity parameter. 
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