
Journal of Information Security, 2015, 6, 250-264
Published Online July 2015 in SciRes. http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2015.63025

How to cite this paper: Borisaniya, B. and Patel, D. (2015) Evaluation of Modified Vector Space Representation Using
ADFA-LD and ADFA-WD Datasets. Journal of Information Security, 6, 250-264. http://dx.doi.org/10.4236/jis.2015.63025

Evaluation of Modified Vector Space
Representation Using ADFA-LD and
ADFA-WD Datasets
Bhavesh Borisaniya, Dhiren Patel
Computer Engineering Department, NIT Surat, India
Email: borisaniyabhavesh@gmail.com, dhiren29p@gmail.com

Received 10 June 2015; accepted 25 July 2015; published 28 July 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract
Predicting anomalous behaviour of a running process using system call trace is a common practice
among security community and it is still an active research area. It is a typical pattern recognition
problem and can be dealt with machine learning algorithms. Standard system call datasets were
employed to train these algorithms. However, advancements in operating systems made these da-
tasets outdated and un-relevant. Australian Defence Force Academy Linux Dataset (ADFA-LD) and
Australian Defence Force Academy Windows Dataset (ADFA-WD) are new generation system calls
datasets that contain labelled system call traces for modern exploits and attacks on various appli-
cations. In this paper, we evaluate performance of Modified Vector Space Representation tech-
nique on ADFA-LD and ADFA-WD datasets using various classification algorithms. Our experi-
mental results show that our method performs well and it helps accurately distinguishing process
behaviour through system calls.

Keywords
System Call Trace, Vector Space Model, Modified Vector Space Representation, ADFA-LD, ADFA-WD

1. Introduction
System call is a request for a service that program makes to the kernel. Sequence of the system calls can
describe the behaviour of the process. System call traces are used in Host based Intrusion Detection System
(HIDS) to distinguish normal and malicious processes. There are a number of data representation techniques
found in literature (e.g, n-gram model and lookahead pairs [1] [2], sequencegram [3], pairgram [4], etc.) used to
extract the features from the system call trace for process behaviour classification.

http://www.scirp.org/journal/jis
http://dx.doi.org/10.4236/jis.2015.63025
http://dx.doi.org/10.4236/jis.2015.63025
http://www.scirp.org
mailto:borisaniyabhavesh@gmail.com
mailto:dhiren29p@gmail.com
http://creativecommons.org/licenses/by/4.0/

B. Borisaniya, D. Patel

251

By considering collected system call traces as set of document and system calls as words, we can apply
classical data representation and classification techniques used in the area of natural language processing (NLP)
and information retrieval (IR). Document representation techniques such as Boolean model and vector space
model were reported in literature for extracting features from system call traces. X. Wang et al. [5] used n-gram
with Boolean model for feature extraction and Support Vector Machine (SVM) with Gaussian Radial Basis
Function (GRBF) kernel function for classification. K. Rieck et al. [6] used vector space model and considered
frequency of system call in a trace as a weight of system call. They utilized polynomial kernel function for
classifying the vectors storing weight of each system call. Y. Liao and V. R. Vermuri [7] have used vector space
model for system call trace representation and applied k-nearest neighbour (kNN) classifier, where nearness was
calculated using cosine similarity. However, these approaches are not considering system call sequence infor-
mation, which would help in better describing the system call behaviour.

Researchers were utilizing the well-known system call trace datasets like University of New Maxico (UNM)
intrusion detection dataset [8], and DARPA intrusion detection dataset [9] to train the machine learning algo-
rithms for process behaviour prediction. However, these datasets were compiled decades ago and are not very
relevant for modern operating systems [10]. Recently (in 2013), new system call trace datasets released by G.
Creech et al. known as ADFA datasets [10] [11]. ADFA datasets are considered as new benchmark for evaluat-
ing system call based intrusion detection systems. It has a wide collection of system call traces representing
modern vulnerability exploits and attacks.

G. Creech et al. [12] have proposed semantic model for anomaly detection using short sequences of ADFA-
LD Dataset. They have prepared the dictionary of word and phrase from the dataset and evaluated it with the
Hidden Markov Model (HMM), Extreme Learning Machine (ELM) and one-class SVM algorithms. They
achieve accuracy of 90% for ELM and 80% for SVM with 15% false positive rate (FPR) [12] [13]. For ADFA-
WD evaluation also, G. Creech et al. [11] have used HMM, ELM and SVM. They noted 100% accuracy with
25.1% FPR for HMM, 91.7% accuracy with 0.23% FP rate with ELM and 99.58% accuracy with 1.78% FP rate
for SVM. However, learning a dictionary of all possible short sequences is a time consuming task [14] [15].
Miao Xie et al. [15] have applied k-nearest neighbour (kNN) and k-means clustering (kMC) algorithms on
ADFA-LD dataset. They considered frequency based model for data representation and used principal com-
ponent analysis (PCA) to reduce the dimension of feature vector. With combination of kNN and kMC they
achieve accuracy of 60% with 20% of FPR. In another attempt Miao Xie et al. [13] have applied one-class SVM
with short sequence based technique on ADFA-LD. With one-class SVM, they achieved maximum accuracy of
70% with around 20% of FPR.

We modified the X. Wang et al. [5] approach given for Boolean model and proposed Modified Vector Space
Representation in [16] to represent process system call trace in terms of feature vector. It is system call
frequency based approach and utilizes the Vector Space Model with n-gram. In [16], we have evaluated the pro-
posed method on system call trace datasets used in [17]. In this paper, we apply modified vector space repre-
sentation approach on ADFA-LD and ADFA-WD dataset and discuss results obtained with the help of different
classification techniques chosen for evaluation.

Rest of the paper is organized as follows: Section 2 describes classic data representation techniques in context
of system call trace with their limitations. Section 3 discusses modified vector space representation. Section 4
details the datasets, algorithms selected, chosen evaluation metrics and experiments methodology used for
evaluation. Section 5 discusses the performance results followed by conclusion and references at the end.

2. System Call Trace Representation
In order to classify the process behaviour using system call trace, one needs to extract the features from it. Data
representation techniques can be used to convert the system call trace into feature vector. Common data repre-
sentation techniques used for system call representation are as follows:

2.1. Trivial Representation
The basic representation of system call trace is to consider it as a string (sequence) of system calls. Let us
consider an operating system with total m number of unique system calls, then set of system calls can be re-
presented by { }1 2 3, , , , mU s s s s=  . Let iF be finite sequence of system calls and *U represents the set of all
possible finite sequences of system calls then *

iF U∈ and iF represents the length of the sequence. N is the

B. Borisaniya, D. Patel

252

total number of applications (normal and malware) used in training and testing for analysis. D is the dataset
containing system call traces of selected applications and formally defined as { *, 1 , ,i i iD S L i N S U= ≤ ≤ ∈

{ }}normal,malwareiL ∈ , where iS is a system call trace of thi application and iL is its label (i.e. normal or
malware). The memory complexity for such representation is ()1

N
iiO N S

=
×∑ . Here

1
N

ii S
=∑ represents the

total length of sequences. If length of system call sequences is large, this could be a big number.

2.2. Boolean Model
Simple representation technique can be found in the area of information retrieval is Boolean Model [18]. It is an
exact match model, which can represent a system call trace as a vector having all possible system call number as
its index. The value of index is 1 if system call is present in given trace and 0 otherwise.

Consider total number of system calls in an operating system is m. A system call trace iS can be represented
using boolean model as a feature vector 1 2 3, , , , mA b b b b=  , where, m U= and { }0,1 ,1jb j m∈ ≤ ≤ . The
memory complexity of Boolean model is ()O N U× . This model considers every system call equally important
and only marks its presence or absence. It does not assign any weight to the system call that appears multiple
times in a system call trace.

2.3. Vector Space Model
Vector Space Model is another common and powerful technique used in information retrieval field to represent
document as set of words [18]. It is also known as “bag of words” technique as it assigns weight to each word in
the given document in order to determine how much the document is relevant to specific words. Here the weight
is assigned to a word as number of times the word appear in the document. In the context of system call repre-
sentation, system call trace is considered as document and each system call as one word. Then we can apply
vector space model to represent given system call trace as a feature vector.

To represent the system call traces using vector space model (bag of words) representation, let us con-
sider a feature set B, as a set of vectors corresponds to applications’ system call traces. System call trace for
an application i with this model can be represented as, vector 1 2 3, , , ,i mB n n n n=  , where m U= and

()1jn j m≤ ≤ represents the number of times the system call js appears in the system call trace sequence iS .
The memory complexity of vector space model representation is similar to Boolean model i.e. ()O N U× .
Here, U is number of system calls. For example, Linux 3.2 has 349 system calls, then 349.U = Note that,
number of system calls U is smaller than total length of sequences

1
N

ii S
=∑ if system call sequence iS is

large.

3. Modified Vector Space Representation
Vector space model cannot preserve the relative order of system calls. e.g. Feature vector for system call traces

1 : , , ,S open read close exit and 2 : , , ,S open exit close read are similar. Relative order of system calls is more
important in case of modelling process behaviour. Loss of system call sequence information can leave a system
vulnerable to mimicry attacks [19] [20], where a malware writer interleaves malware system call trace patterns
with benign system call trace. Thus, we consider the multiple consecutive system calls as one term. Number of
system calls in a term is defined by term-size. For term-size l and total number of unique system calls m, n-gram
model provide total lm number of possible unique terms in a feature vector.

In order to represent the system call traces using this approach, let us consider lU be the set of all possible
unique terms of length (term-size) l. Here, { }1 2 3, , , ,l

rU t t t t=  , where l lr U m= = and ()1kt k r≤ ≤ repre-
sents the thk term of length l derived through n-gram model from U. The feature set C contains the occurrence
of each term in given system call trace. For instance, 1 2 3, , , ,i rC n n n n=  , where ()1kn k r≤ ≤ represents
the number of times the term kt appears in the system call trace iS . The memory requirement for n-gram with
vector space model approach for term length of l is ()lO N U× .

Representation created using n-gram model is more costly than normal vector space model as lU U< . In
addition to that, all features (terms) are not present in the system call traces, which means they are having zero
weight in feature vector. We can reduce the dimension of feature vector by considering only those unique terms

B. Borisaniya, D. Patel

253

which are present in the data.
If we consider only those unique terms that appear in training data, the memory requirement would be less

compared to considering all possible unique terms generated from U. This can be represented by set of all unique
terms of length l occurring in training data. The set can be defined as train

l lU U⊂ , where, train
lU is a set of only

those terms, appearing in training dataset. Here the number of terms in feature set train
lU would be less com-

pared to all possible terms of length l generated from U i.e. train
llU U≤ . Considering, trainN as number of

system call traces in training dataset, memory complexity of this representation would be ()train train
lO N U× .

However, this representation does not cover system call sequences, which were not explored during training and
may appear in testing.

The feature vector built by considering only those terms that appeared in training data is much compact than
other system call representations. However, it requires prior knowledge of unique terms in system call traces,
which is not always possible. We can easily find the unique terms from the training data. However, during
training, we might not have explored all possible usages of application. It is quite possible that, terms that were
not present in the training data may appear in testing data.

Modified Vector Space Representation [16] extends the previous representation (which considers unique
terms from training data only) by incorporating mechanism to handle any unforeseen terms during testing. We
deliberately add a system call number (we refer it as unknown (unk)) in list, whose value is higher than any
system call number present in system call list for OS. We form terms of length l comprising this unknown
system call number including one term having all unknown system call number. Let E be the set of unknown
terms comprising unk system call number. unk is a number deliberately added in the list of system call
numbers to map terms, which are not seen during training but found in testing. Hence, the new feature set can be
defined as new train

l lU U E=  , where new
lU is set comprises of all unique terms of length l appearing in train-

ing data train
lU and set of terms having unk system call number E. Considering, trainN as number of system

call trace sequences in training, memory complexity of this representation would be ()train new
lO N U× , where

new train
l lU U E= + . Here, number of terms comprising of unk system call E will be very small.

4. Evaluation
In this section we provide details of datasets, classification algorithms selected, evaluation metrics and experi-
ments methodology used for evaluation.

4.1. Datasets
We have evaluated modified vector space representation with two datasets namely ADFA-LD (Linux Dataset)
and ADFA-WD (Windows Dataset) constructed by G. Creech et al. [10]-[12]. Table 1 describes the number of
traces collected from [21] for each category for ADFA-LD and ADFA-WD dataset. For ADFA-LD system call
traces for specific process were generated using auditd [22] Unix program, an auditing utility for collecting
security relevant events. These traces were then filtered for undersize and oversize limit, which is 300 Bytes to 6
kB for training data and 300 Bytes to 10 kB for validation data [11] [12]. ADFA-LD dataset was collected under
Ubuntu 11.04 fully patched operating system with kernel 2.6.38. The operating system was running different
services like webserver, database server, SSH server, FTP server etc. ADFA-LD also incorporates system call
traces of different types of attacks. Table 2 describes details of each attack class in ADFA-LD dataset [11] [12].

Table 1. Number of system call traces in different category of ADFA-LD and ADFA-WD dataset.

Dataset
ADFA-LD ADFA-WD

Traces System Calls Traces System Calls

Training data 833 3,08,077 355 1,35,04,419

Validation data 4,372 21,22,085 1,827 11,79,18,735

Attack data 746 3,17,388 5,542 7,42,02,804

Total 5,951 27,47,550 7,724 20,56,25,958

B. Borisaniya, D. Patel

254

Table 2. Attack vectors used to generate ADFA-LD attack dataset.

Attack Payload/Effect Vector Trace Count

Hydra-FTP Password bruteforce FTP by Hydra 162

Hydra-SSH Password bruteforce SSH by Hydra 176

Adduser Add new superuser Client side poisoned executable 91

Java-Meterpreter Java based Meterpreter TikiWiki vulnerability exploit 124

Meterpreter Linux Meterpreter Payload Client side poisoned executable 75

Webshell C100 Webshell PHP remote file inclusion vulnerability 118

ADFA-WD (Windows Dataset) represents the high-quality collection of DLL access requests and system

calls for a variety of hacking attacks [11]. Dataset was collected in Windows XP SP2 host with the help of
Procmon [23] program. Default firewall was enabled and Norton AV 2013 was installed to filter only sophisti-
cated attacks and ignore the low level attacks. The OS environment enabled file sharing and configured network
printer. It was running applications like, webserver, database server, FTP server, streaming media server, PDF
reader, etc. Total 12 known vulnerabilities for installed applications were exploited with the help of Metasploit
framework and other custom methods. Table 3 describes the details of each attack class in ADFA-WD dataset
[11].

4.2. Algorithms Selected for Experiments
We selected Weka workbench [24] [25] for evaluation of modified vector space representation on ADFA-LD
and ADFA-WD datasets. Weka hosts number of machine learning algorithms which can be easily applied on our
prepared datasets of varying term-size. We selected nine well-known classification algorithms from six different
categories given in Weka. The list of selected algorithms, selected options for individual algorithm and their
respective category in Weka are shown in Table 4.

4.3. Experiments Methodology
Datasets were collected from [21] and then converted into modified vector space representation for various
term-size. For these experiments we selected the term-size 1, 2, 3 and 5. For each dataset (i.e. ADFA-LD and
ADFA-WD) we ran experiments for binary class as well as for multiclass label classification. For binary class
we considered one of two labels for each trace - normal and attack. For multiclass classification, number of
classes and class labels are different for both datasets. In ADFA-LD we have total 7 class labels viz. normal,
adduser, hydra-ftp, hydra-ssh, java-meterpreter, meterpreter and webshell. While in ADFA-WD we have total
13 class labels viz. normal and V1 to V12. We ran each chosen algorithms with selected options on converted
data in Weka through 10-fold cross-validation method. Table 5 describes the number of features extracted from
ADFA-LD and ADFA-WD dataset for varying term-size using modified vector space representation.

4.4. Evaluation Metrics
We have used the following common evaluation metrics that are widely used in information retrieval area [18]:

True Positive (TP): Number of attack traces detected as attack traces.
False Positive (FP): Number of attack traces detected as normal traces.
True Negative (TN): Number of normal traces detected as normal traces.
False Negative (FN): Number of normal traces detected as attack traces.
Figure 1 shows the confusion matrix, which can be used to derive other measures.
Precision: It is the ratio of how many attack traces predicted as attack traces out of total number of traces

predicted as attack traces.
TPPrecision

TP FP
=

+

B. Borisaniya, D. Patel

255

Table 3. Vulnerabilities considered to generate ADFA-WD attack dataset.

ID Vulnerability Program Exploit Mechanism Trace Count

V1

CVE: 2006-2961

CesarFTP 0.99g

Reverse Ordinal Payload
Injection

454

V2

EDB-ID: 18367

XAMPP Lite v1.7.3

Upload and execute malicious
payload using Xampp_webdav

470

V3 CVE: 2004-1561 Icecast v2.0 Metasploit exploit 382

V4 CVE: 2009-3843 Tomcat v6.0.20 Metasploit exploit 418

V5 CVE: 2008-4250 OS SMB Metasploit exploit 355

V6 CVE: 2010-2729 OS Print Spool Metasploit exploit 454

V7 CVE: 2011-4453 PMWiki v2.2.30 Metasploit exploit 430

V8

CVE: 2012-0003

Wireless Karma

DNS Spoofing using Pineapple
Router

487

V9

CVE: 2010-2883

Adobe Reader 9.3.0

Reverse Shell spawn through
malicious PDF

440

V10 ----- Backdoor executable Reverse Inline Shell spawned 536

V11 CVE: 2010-0806 IE v6.0.2900.2180 Metasploit exploit 495

V12 ----- Infectious Media Blind Shell spawned 621

Table 4. List of selected algorithms with their options.

Category Algorithm Option(s) Selected

Bayes Naïve Bayes ---

Function
SMO (Sequential Minimal Optimization) Polynomial Kernel

LibSVM (Support Vector Machine) Radial Basis Function (RBF) Kernel, gamma = 0.5, loss = 0.001

Lazy IBk (k-nearest neighbors) k = 1, 2, 3

Meta Classification via Clustering-
Simple K Means (k Means)

k = 2 (7 and 13 for multiclass classification on ADFA-LD and
ADFA-WD dataset respectively)

Rules

ZeroR ---

OneR minBucketSize(B) = 5, 6, 10

JRip (RIPPER) Folds = 3

Trees J48 (C4.5) confidenceFactor = 0.25, minNumObj = 2

Table 5. Number of features extracted from ADFA-LD and ADFA-WD dataset for term-size 1, 2, 3 and 5.

Dataset
term-size

1 2 3 5

ADFA-LD 175 3,792 24,818 1,63,263

ADFA-WD 1,309 4,801 13,472 42,426

Figure 1. Confusion matrix.

B. Borisaniya, D. Patel

256

Recall: Recall also known as the True Positive Rate (TPR). It is the ratio of how many attack traces pre-
dicted as attack traces out of total number of actual attack traces.

TPRecall
TP FN

=
+

Accuracy: Accuracy is the proportion of true results (number of attack traces and normal traces detected
correctly) in the total number of samples.

TP TNAccuracy
TP FP TN FN

+
=

+ + +

FP Rate: False Positive Rate (FPR) is a measure of how many normal trace are labelled as attack trace by
classifier.

FPFPRate
FP TN

=
+

F-Measure: It is a measure that combines precision and recall into a single measure. It is calculated as
harmonic mean of precision and recall.

2F-Measure
1 1

Precision Recall

=
+

Receiver Operating Characteristics (ROC) Curve: It is a graph of true positive rate against false positive
rate. It represents the performance of binary classifier as its discrimination threshold is varied.

Area Under the ROC Curve (AUC): It is the area covered by ROC curve. It is equivalent to the probability
that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one [26].

5. Results and Analysis
Figure 2 shows the performance results in terms of accuracy and false positive rate of selected algorithms with
varying term-size on both datasets. The results shown here are the weighted average of results derived for
individual class labels. Detailed experiment (weighted average) results on ADFA-LD and ADFA-WD are given
in Appendix (Tables A1-A4).

From Figure 2, we can observe that using modified vector space representation all algorithms perform
reasonably well. However, IBk and J48 performed best in all experiments.

With IBk algorithm we can notice that as we increase the term-size, its performance starts degrading (i.e.
accuracy decreases and FP Rate increases). These changes are clearly visible in case of ADFA-LD dataset.
Similar performance results are achieved by J48 in all experiments. However, IBk have higher FP Rate compare
to J48 for term-size 3 and 5 on ADFA-LD dataset.

Comparing IBk and J48 with application perspective, J48 requires more time in building the decision tree
model during training but it is faster during testing phase. On contrary, IBk does not have any difference
between training and testing phase. It finds distance between test instance and all other training instances during
testing phase. Due to this IBk seeks high amount of memory space to store all training instances during testing
phase compare to J48, whereas storing J48 model is merely a tree to be stored. So, with J48 in testing phase
classifying a test instance is as simple as traversing limited number of branches (based on feature values) of a
decision tree from root to leaf.

On ADFA-WD dataset, all algorithms perform well for binary class classification, but perform poorly for
multiclass classification. Similar facts can be observed from Figure 3 and Figure 4. Figure 3 shows ROC
curves of IBk (k = 1) and J48 with all term-size on ADFA-LD and ADFA-WD datasets for binary class classi-
fication. Figure 4 shows ROC curves of IBk (k = 1) and J48 with term-size 3 on ADFA-LD and ADFA-WD
datasets for multiclass classification. From Figure 4(c), Figure 4(d) and Table A4 we can observe that IBk and
J48 achieves high accuracy for normal class on ADFA-WD, but fails to distinguish among attack classes. The

B. Borisaniya, D. Patel

257

Figure 2. Performance results (FP rate and accuracy) of selected algorithms on ADFA-LD and ADFAWD dataset with
binary class and multiclass classification for varying term-size. (a) FP rate—ADFA-LD (binary class); (b) Accuracy—
ADFA-LD (binary class); (c) FP rate—ADFA-LD (multiclass); (d) Accuracy—ADFA-LD (multiclass); (e) FP rate—
ADFA-WD (binary class); (f) Accuracy—ADFA-WD (binary class); (g) FP rate—ADFA-WD (multiclass); (h) Accura-
cy—ADFA-WD (multiclass).

B. Borisaniya, D. Patel

258

Figure 3. ROC curves of IBk (k = 1) and J48 on ADFA-LD and ADFA-WD with various term-size for binary class classifi-
cation. (a) IBk (k = 1) on ADFA-LD; (b) J48 on ADFA-LD; (c) IBk (k = 1) on ADFA-WD; (d) J48 on ADFA-WD.

possible cause for this could be, similarity among system call traces of vulnerabilities exploits launched through
metasploit.

6. Conclusion
In this work, we have evaluated our proposed modified vector space representation using ADFA-LD and
ADFA-WD system call trace datasets. We extracted features from both datasets using our proposed method for
varying term-size. We also considered binary class and multiclass classification for evaluation on both datasets.
Modified vector space representation (term-size 2, 3 and 5) performs as well as standard vector space model
(term-size 1) if not better in terms of accuracy, FP rate and F-measure. There is no significant difference in
results for varying term-size. However, higher term-size preserves more system call sequence information,
which provides resistance against mimicry attacks. From the evaluation results, we conclude that IBk and J48
perform better on both datasets compare with other selected algorithms.

B. Borisaniya, D. Patel

259

Figure 4. ROC curves of IBk (k = 1) and J48 with term-size 3 on ADFA-LD and ADFA-WD for multiclass classification.
(a) IBk (k = 1) on ADFA-LD; (b) J48 on ADFA-LD; (c) IBk (k = 1) on ADFA-WD; (d) J48 on ADFA-WD.

References
[1] Forrest, S., Hofmeyr, S.A., Somayaji, A. and Longstaff, T.A. (1996) Sense of Self for Unix Processes. Proceedings of

the 1996 IEEE Symposium on Security and Privacy, Oakland, 6-8 May 1996, 120-128.
http://dx.doi.org/10.1109/SECPRI.1996.502675

[2] Hofmeyr, S.A., Forrest, S. and Somayaji, A. (1998) Intrusion Detection Using Sequences of System Calls. Journal of
Computer Security, 6, 151-180. http://dl.acm.org/citation.cfm?id=1298081.1298084

[3] Hubballi, N., Biswas, S. and Nandi, S. (2011) Sequencegram: n-Gram Modeling of System Calls for Program Based
Anomaly Detection. 2011 Third International Conference on Communication Systems and Networks (COMSNETS
2011), Bangalore, 4-8 January 2011, 1-10. http://dx.doi.org/10.1109/COMSNETS.2011.5716416

[4] Hubballi, N. (2012) Pairgram: Modeling Frequency Information of Lookahead Pairs for System Call Based Anomaly
Detection. Fourth International Conference on Communication Systems and Networks (COMSNETS 2012), Bangalore,
3-7 January 2012, 1-10. http://dx.doi.org/10.1109/COMSNETS.2012.6151337

[5] Wang, X., Yu, W., Champion, A., Fu, X. and Xuan, D. (2007) Detecting Worms via Mining Dynamic Program Execu-
tion. Proceedings of Third International Conference on Security and Privacy in Communications Networks and the Work-

http://dx.doi.org/10.1109/SECPRI.1996.502675
http://dl.acm.org/citation.cfm?id=1298081.1298084
http://dx.doi.org/10.1109/COMSNETS.2011.5716416
http://dx.doi.org/10.1109/COMSNETS.2012.6151337

B. Borisaniya, D. Patel

260

shops (SecureComm 2007), Nice, 17-21 September 2007, 412-421. http://dx.doi.org/10.1109/SECCOM.2007.4550362
[6] Rieck, K., Holz, T., Willems, C., Düssel, P. and Laskov, P. (2008) Learning and Classification of Malware Behavior.

Detection of Intrusions and Malware, and Vulnerability Assessment, LNCS, 5137, 108-125.
http://dx.doi.org/10.1007/978-3-540-70542-0_6

[7] Liao, Y. and Vemuri, V.R. (2002) Using Text Categorization Techniques for Intrusion Detection. USENIX Security
Symposium, USENIX Association, Berkeley, 51-59.
https://www.usenix.org/legacy/events/sec02/full_papers/liao/liao.pdf

[8] Forrest, S. University of New Mexico (UNM) Intrusion Detection Dataset.
http://www.cs.unm.edu/~immsec/systemcalls.htm

[9] DARPA Intrusion Detection Dataset. http://www.ll.mit.edu/ideval/data/
[10] Creech, G. and Hu, J. (2013) Generation of a New IDS Test Dataset: Time to Retire the KDD Collection. Wireless

Communications and Networking Conference (WCNC 2013), Shanghai, 7-10 April 2013, 4487-4492.
http://dx.doi.org/10.1109/WCNC.2013.6555301

[11] Creech, G. (2014) Developing a High-Accuracy Cross Platform Host-Based Intrusion Detection System Capable of
Reliably Detecting Zero-Day Attacks. Ph.D. Dissertation, University of New South Wales, Sydney.
http://handle.unsw.edu.au/1959.4/53218

[12] Creech, G. and Hu, J. (2014) A Semantic Approach to Host-Based Intrusion Detection Systems Using Contiguous and
Discontiguous System Call Patterns. IEEE Transactions on Computers, 63, 807-819.
http://dx.doi.org/10.1109/TC.2013.13

[13] Xie, M., Hu, J. and Slay, J. (2014) Evaluating Host-Based Anomaly Detection Systems: Application of the One-Class
SVM Algorithm to ADFA-LD. Proceedings of the 11th IEEE International Conference on Fuzzy Systems and Know-
ledge Discovery (FSKD 2014), Xiamen, 19-21 August 2014, 978-982. http://dx.doi.org/10.1109/fskd.2014.6980972

[14] Xie, M. and Hu J. (2013) Evaluating Host-Based Anomaly Detection Systems: A Preliminary Analysis of ADFA-LD.
Proceedings of the 6th IEEE International Congress on Image and Signal Processing (CISP 2013), Hangzhou, 16-18
December 2013, 1711-1716. http://dx.doi.org/10.1109/CISP.2013.6743952

[15] Xie, M., Hu, J., Yu, X. and Chang, E. (2014) Evaluating Host-Based Anomaly Detection Systems: Application of the
Frequency-Based Algorithms to ADFA-LD. Proceedings of 8th International Conference on Network and System Se-
curity (NSS 2014), Lecture Notes in Computer Science, 8792, 542-549.
http://dx.doi.org/10.1007/978-3-319-11698-3_44

[16] Borisaniya, B., Patel, K. and Patel, D. (2014) Evaluation of Applicability of Modified Vector Space Representation for
in-VM Malicious Activity Detection in Cloud. Proceedings of the 11th Annual IEEE India Conference (INDICON
2014), Pune, 11-13 December 2014, 1-6. http://dx.doi.org/10.1109/INDICON.2014.7030588

[17] Canali, D., Lanzi, A., Balzarotti, D., Kruegel, C., Christodorescu, M. and Kirda, E. (2012) A Quantitative Study of
Accuracy in System Call-Based Malware Detection. Proceedings of the 2012 International Symposium on Software
Testing and Analysis (ISSTA 2012), Minneapolis, 15-20 July 2012, 122-132.
http://dx.doi.org/10.1145/2338965.2336768

[18] Manning, C., Raghavan, P. and Schütze, H. (2008) Introduction to Information Retrieval. Cambridge University Press,
Cambridge. http://www-nlp.stanford.edu/IR-book
http://dx.doi.org/10.1017/CBO9780511809071

[19] Wagner, D. and Dean, D. (2001) Intrusion Detection via Static Analysis. Proceedings of the 2001 IEEE Symposium on
Security and Privacy, Oakland, 14-16 May 2001, 156-168. http://dx.doi.org/10.1109/secpri.2001.924296

[20] Wagner, D. and Soto, P. (2002) Mimicry Attacks on Host-Based Intrusion Detection Systems. Proceedings of the 9th
ACM Conference on Computer and Communications Security (CCS 2002), Washington DC, 18-22 November 2002,
255-264. http://dx.doi.org/10.1145/586110.586145

[21] The ADFA Intrusion Detection Datasets. http://www.cybersecurity.unsw.adfa.edu.au/ADFA IDS Datasets/
[22] Auditd. http://linux.die.net/man/8/auditd
[23] Process Monitor (Procmon). https://technet.microsoft.com/en-us/library/bb896645.aspx
[24] Holmes, G., Donkin, A. and Witten, I.H. (1994) WEKA: A Machine Learning Workbench. Proceedings of the 1994

Second Australian and New Zealand Conference on Intelligent Information Systems, Brisbane, 29 November-2 De-
cember 1994, 357-361. http://www.cs.waikato.ac.nz/ihw/papers/94GH-AD-IHW-WEKA.pdf
http://dx.doi.org/10.1109/ANZIIS.1994.396988

[25] Weka. http://www.cs.waikato.ac.nz/ml/weka/
[26] Fawcett, T. (2006) An Introduction to ROC Analysis. Pattern Recognition Letters, 27, 861-874.

http://dx.doi.org/10.1016/j.patrec.2005.10.010

http://dx.doi.org/10.1109/SECCOM.2007.4550362
http://dx.doi.org/10.1007/978-3-540-70542-0_6
https://www.usenix.org/legacy/events/sec02/full_papers/liao/liao.pdf
http://www.cs.unm.edu/%7Eimmsec/systemcalls.htm
http://www.ll.mit.edu/ideval/data/
http://dx.doi.org/10.1109/WCNC.2013.6555301
http://handle.unsw.edu.au/1959.4/53218
http://dx.doi.org/10.1109/TC.2013.13
http://dx.doi.org/10.1109/fskd.2014.6980972
http://dx.doi.org/10.1109/CISP.2013.6743952
http://dx.doi.org/10.1007/978-3-319-11698-3_44
http://dx.doi.org/10.1109/INDICON.2014.7030588
http://dx.doi.org/10.1145/2338965.2336768
http://www-nlp.stanford.edu/IR-book
http://dx.doi.org/10.1017/CBO9780511809071
http://dx.doi.org/10.1109/secpri.2001.924296
http://dx.doi.org/10.1145/586110.586145
http://www.cybersecurity.unsw.adfa.edu.au/ADFA%20IDS%20Datasets/
http://linux.die.net/man/8/auditd
https://technet.microsoft.com/en-us/library/bb896645.aspx
http://www.cs.waikato.ac.nz/ihw/papers/94GH-AD-IHW-WEKA.pdf
http://dx.doi.org/10.1109/ANZIIS.1994.396988
http://www.cs.waikato.ac.nz/ml/weka/
http://dx.doi.org/10.1016/j.patrec.2005.10.010

B. Borisaniya, D. Patel

261

Appendix: Experiment Results
In this section we provide detailed experiment results on ADFA-LD and ADFA-WD with binary class and
multiclass class labels. Results shown here are weighted average results of individual class results.

Table A1. Experiment results for various term-size on ADFA-LD dataset with binary class labels.

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC

Naïve Bayes

1 0.083 0.902 0.699 69.9378 0.75 0.894
2 0.088 0.914 0.818 81.835 0.845 0.918
3 0.102 0.926 0.882 88.2205 0.895 0.919
5 0.251 0.917 0.91 90.9595 0.913 0.856

SMO

1 0.765 0.863 0.883 88.3213 0.846 0.559
2 0.258 0.943 0.945 94.5051 0.943 0.843
3 0.226 0.946 0.948 94.7908 0.947 0.861
5 0.305 0.934 0.938 93.7658 0.935 0.816

LibSVM

1 0.844 0.885 0.879 87.8676 0.826 0.517
2 0.845 0.884 0.879 87.8508 0.826 0.517
3 0.847 0.884 0.878 87.834 0.826 0.516
5 0.847 0.884 0.878 87.834 0.826 0.516

IBk (k = 1)

1 0.124 0.96 0.96 95.9503 0.96 0.948
2 0.136 0.957 0.956 95.5638 0.956 0.943
3 0.155 0.926 0.906 90.573 0.912 0.911
5 0.126 0.912 0.844 84.4228 0.864 0.885

IBk (k = 2)

1 0.188 0.96 0.961 96.1183 0.96 0.963
2 0.223 0.956 0.957 95.7486 0.956 0.956
3 0.388 0.916 0.922 92.1694 0.917 0.919
5 0.564 0.894 0.905 90.4554 0.889 0.872

IBk (k = 3)

1 0.144 0.959 0.959 95.883 0.959 0.968
2 0.193 0.95 0.95 95.026 0.95 0.959
3 0.387 0.904 0.909 90.8755 0.906 0.915
5 0.574 0.885 0.899 89.8841 0.884 0.878

kMeans (k = 2)

1 0.858 0.749 0.722 70.6436 0.735 0.423
2 0.865 0.75 0.771 74.3236 0.76 0.437
3 0.863 0.745 0.863 78.8775 0.799 0.458
5 0.865 0.776 0.865 80.7259 0.803 0.467

ZeroR

1 0.875 0.765 0.875 87.4643 0.816 0.498
2 0.875 0.765 0.875 87.4643 0.816 0.498
3 0.875 0.765 0.875 87.4643 0.816 0.498
5 0.875 0.765 0.875 87.4643 0.816 0.498

OneR (B = 5)

1 0.759 0.833 0.871 87.145 0.84 0.556
2 0.733 0.846 0.877 87.7164 0.848 0.572
3 0.656 0.884 0.896 89.6152 0.873 0.62
5 0.647 0.881 0.895 89.5312 0.873 0.624

OneR (B = 6)

1 0.773 0.846 0.878 87.8004 0.841 0.552
2 0.73 0.846 0.877 87.7164 0.848 0.574
3 0.657 0.886 0.897 89.6824 0.873 0.62
5 0.637 0.884 0.897 89.716 0.876 0.63

OneR (B = 10)

1 0.778 0.886 0.887 88.6742 0.846 0.555
2 0.719 0.848 0.878 87.7836 0.85 0.579
3 0.656 0.884 0.896 89.632 0.873 0.62
5 0.635 0.885 0.897 89.7496 0.876 0.631

JRip

1 0.168 0.957 0.958 95.8158 0.958 0.903
2 0.18 0.955 0.956 95.5638 0.955 0.887
3 0.205 0.953 0.954 95.3957 0.953 0.873
5 0.274 0.939 0.942 94.2027 0.94 0.84

J48

1 0.154 0.959 0.96 95.9839 0.96 0.927
2 0.176 0.958 0.958 95.8494 0.958 0.875
3 0.219 0.95 0.952 95.2109 0.951 0.863
5 0.266 0.941 0.944 94.3707 0.942 0.878

B. Borisaniya, D. Patel

262

Table A2. Experiment results for various term size on ADFA-WD dataset with binary class labels.

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC

Naïve Bayes

1 0.518 0.766 0.772 77.162 0.734 0.684
2 0.472 0.787 0.789 78.923 0.76 0.7
3 0.454 0.789 0.793 79.324 0.768 0.676
5 0.443 0.792 0.797 79.661 0.773 0.677

SMO

1 0.261 0.893 0.887 88.711 0.88 0.813
2 0.228 0.902 0.898 89.824 0.893 0.835
3 0.192 0.913 0.911 91.132 0.908 0.86
5 0.189 0.913 0.912 91.17 0.909 0.862

LibSVM

1 0.369 0.852 0.843 84.257 0.826 0.737
2 0.386 0.851 0.838 83.791 0.819 0.726
3 0.418 0.843 0.827 82.677 0.803 0.705
5 0.437 0.838 0.82 81.965 0.793 0.691

IBk (k = 1)

1 0.119 0.93 0.931 93.061 0.93 0.95
2 0.123 0.928 0.928 92.814 0.927 0.943
3 0.137 0.921 0.922 92.206 0.921 0.935
5 0.139 0.921 0.922 92.232 0.921 0.932

IBk (k = 2)

1 0.115 0.926 0.926 92.595 0.926 0.957
2 0.119 0.921 0.922 92.167 0.921 0.952
3 0.127 0.918 0.918 91.818 0.918 0.947
5 0.132 0.917 0.917 91.74 0.917 0.942

IBk (k = 3)

1 0.132 0.928 0.928 92.815 0.927 0.958
2 0.137 0.924 0.925 92.504 0.924 0.954
3 0.15 0.92 0.92 92.012 0.919 0.952
5 0.158 0.919 0.919 91.908 0.917 0.947

kMeans (k = 2)

1 0.545 0.685 0.717 71.569 0.689 0.585
2 0.518 0.652 0.726 72.513 0.682 0.604
3 0.551 0.652 0.724 72.345 0.671 0.586
5 0.578 0.689 0.725 72.385 0.683 0.573

ZeroR

1 0.718 0.515 0.718 71.75 0.599 0.499
2 0.718 0.515 0.718 71.75 0.599 0.5
3 0.718 0.515 0.718 71.75 0.599 0.5
5 0.718 0.515 0.718 71.75 0.599 0.499

OneR (B = 5)

1 0.303 0.861 0.859 85.94 0.85 0.778
2 0.309 0.85 0.851 85.111 0.842 0.771
3 0.332 0.845 0.845 84.477 0.834 0.757
5 0.316 0.833 0.838 83.804 0.83 0.761

OneR (B = 6)

1 0.303 0.86 0.859 85.927 0.85 0.778
2 0.308 0.85 0.851 85.111 0.842 0.771
3 0.329 0.845 0.845 84.542 0.834 0.758
5 0.317 0.832 0.837 83.661 0.829 0.76

OneR (B = 10)

1 0.311 0.856 0.856 85.552 0.846 0.772
2 0.317 0.846 0.847 84.723 0.838 0.765
3 0.342 0.842 0.842 84.192 0.83 0.75
5 0.336 0.829 0.833 83.325 0.823 0.748

JRip

1 0.174 0.91 0.911 91.054 0.908 0.872
2 0.181 0.909 0.91 90.963 0.907 0.867
3 0.173 0.911 0.912 91.157 0.909 0.875
5 0.177 0.913 0.913 91.274 0.91 0.878

J48

1 0.126 0.931 0.931 93.125 0.93 0.945
2 0.138 0.927 0.927 92.711 0.926 0.938
3 0.138 0.926 0.926 92.607 0.925 0.931
5 0.145 0.923 0.924 92.374 0.922 0.924

B. Borisaniya, D. Patel

263

Table A3. Experiment results for various term size on ADFA-LD dataset with multiclass class labels.

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC

Naïve Bayes

1 0.028 0.885 0.588 58.814 0.689 0.898
2 0.03 0.904 0.694 69.434 0.773 0.933
3 0.025 0.905 0.704 70.408 0.78 0.929
5 0.034 0.91 0.73 72.963 0.798 0.911

SMO

1 0.845 0.819 0.877 87.683 0.825 0.524
2 0.508 0.892 0.912 91.245 0.893 0.718
3 0.376 0.897 0.912 91.245 0.902 0.789
5 0.454 0.879 0.904 90.371 0.887 0.746

LibSVM

1 0.85 0.796 0.876 87.565 0.82 0.513
2 0.85 0.796 0.876 87.565 0.82 0.513
3 0.85 0.796 0.876 87.565 0.82 0.513
5 0.848 0.794 0.876 87.565 0.82 0.514

IBk (k = 1)

1 0.13 0.924 0.922 92.186 0.923 0.94
2 0.144 0.918 0.914 91.363 0.915 0.928
3 0.14 0.896 0.842 84.171 0.867 0.892
5 0.107 0.902 0.762 76.155 0.819 0.859

IBk (k = 2)

1 0.192 0.919 0.924 92.405 0.919 0.955
2 0.233 0.908 0.918 91.833 0.91 0.942
3 0.384 0.869 0.884 88.405 0.872 0.897
5 0.56 0.844 0.877 87.716 0.852 0.852

IBk (k = 3)

1 0.195 0.916 0.921 92.119 0.918 0.958
2 0.249 0.9 0.911 91.111 0.904 0.948
3 0.413 0.862 0.881 88.136 0.869 0.907
5 0.595 0.838 0.875 87.498 0.848 0.875

kMeans (k = 2)

1 0.843 0.744 0.718 70.257 0.731 0.429
2 0.849 0.745 0.75 72.358 0.747 0.435
3 0.863 0.745 0.863 79.18 0.8 0.459
5 0.862 0.755 0.868 82.86 0.808 0.481

kMeans (k = 7)

1 0.278 0.777 0.392 35.288 0.507 0.537
2 0.789 0.693 0.69 53.453 0.69 0.363
3 0.813 0.691 0.784 58.948 0.735 0.375
5 0.833 0.744 0.839 65.653 0.767 0.399

ZeroR

1 0.875 0.765 0.875 87.464 0.816 0.497
2 0.875 0.765 0.875 87.464 0.816 0.497
3 0.875 0.765 0.875 87.464 0.816 0.497
5 0.875 0.765 0.875 87.464 0.816 0.497

OneR (B = 5)

1 0.795 0.818 0.878 87.8 0.831 0.541
2 0.789 0.799 0.877 87.666 0.829 0.544
3 0.821 0.8 0.882 88.221 0.832 0.531
5 0.828 0.799 0.881 88.12 0.83 0.527

OneR (B = 6)

1 0.796 0.817 0.878 87.784 0.83 0.541
2 0.789 0.799 0.877 87.666 0.829 0.544
3 0.821 0.8 0.882 88.221 0.832 0.531
5 0.828 0.799 0.881 88.12 0.83 0.527

OneR (B = 10)

1 0.797 0.811 0.877 87.716 0.83 0.54
2 0.799 0.799 0.877 87.666 0.829 0.539
3 0.821 0.8 0.882 88.221 0.832 0.531
5 0.828 0.799 0.881 88.12 0.83 0.527

JRip

1 0.404 0.893 0.913 91.262 0.899 0.776
2 0.385 0.894 0.912 91.161 0.9 0.768
3 0.368 0.896 0.912 91.178 0.902 0.789
5 0.44 0.892 0.912 91.195 0.897 0.75

J48

1 0.204 0.917 0.924 92.438 0.92 0.913
2 0.205 0.913 0.92 92.018 0.916 0.871
3 0.24 0.901 0.911 91.06 0.905 0.84
5 0.289 0.897 0.911 91.094 0.903 0.863

B. Borisaniya, D. Patel

264

Table A4. Experiment results for various term-size on ADFA-WD dataset with multiclass class label.

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC

Naïve Bayes

1 0.052 0.408 0.182 18.229 0.203 0.697
2 0.051 0.457 0.2 20.016 0.226 0.681
3 0.049 0.467 0.216 21.556 0.246 0.664
5 0.05 0.472 0.21 21.012 0.237 0.641

SMO

1 0.179 0.378 0.368 36.756 0.285 0.634
2 0.169 0.392 0.391 39.099 0.319 0.654
3 0.14 0.391 0.41 41.041 0.355 0.697
5 0.128 0.41 0.426 42.595 0.378 0.72

LibSVM

1 0.179 0.378 0.368 36.756 0.285 0.634
2 0.169 0.392 0.391 39.099 0.319 0.654
3 0.14 0.391 0.41 41.041 0.355 0.697
5 0.172 0.351 0.369 36.911 0.294 0.598

IBk (k = 1)

1 0.058 0.478 0.491 49.081 0.48 0.818
2 0.058 0.475 0.484 48.446 0.476 0.811
3 0.058 0.468 0.475 47.527 0.469 0.803
5 0.059 0.464 0.47 46.958 0.463 0.8

IBk (k = 2)

1 0.063 0.464 0.477 47.734 0.463 0.831
2 0.063 0.463 0.473 47.255 0.46 0.824
3 0.064 0.452 0.463 46.258 0.45 0.815
5 0.063 0.451 0.457 45.663 0.446 0.814

IBk (k = 3)

1 0.064 0.461 0.474 47.385 0.46 0.841
2 0.064 0.455 0.466 46.634 0.453 0.834
3 0.066 0.444 0.457 45.689 0.443 0.827
5 0.065 0.447 0.454 45.404 0.443 0.823

kMeans (k = 2)

1 0.173 0.124 0.233 23.278 0.156 0.53
2 0.173 0.126 0.234 23.356 0.156 0.53
3 0.242 0.112 0.259 25.945 0.138 0.509
5 0.24 0.119 0.258 25.777 0.138 0.509

kMeans (k = 13)

1 0.077 0.253 0.184 18.32 0.195 0.553
2 0.097 0.203 0.178 17.672 0.177 0.54
3 0.084 0.23 0.178 17.672 0.184 0.546
5 0.099 0.204 0.18 17.724 0.173 0.538

ZeroR

1 0.282 0.08 0.282 28.25 0.124 0.499
2 0.282 0.08 0.282 28.25 0.124 0.499
3 0.282 0.08 0.282 28.25 0.124 0.499
5 0.282 0.08 0.282 28.25 0.124 0.499

OneR (B = 5)

1 0.19 0.31 0.34 34.05 0.261 0.575
2 0.197 0.312 0.339 33.933 0.253 0.571
3 0.199 0.258 0.316 31.616 0.23 0.559
5 0.206 0.253 0.312 31.214 0.224 0.553

OneR (B = 6)

1 0.195 0.321 0.345 34.49 0.262 0.575
2 0.198 0.31 0.337 33.674 0.251 0.569
3 0.215 0.279 0.322 32.224 0.226 0.554
5 0.207 0.24 0.307 30.748 0.217 0.55

OneR (B = 10)

1 0.2 0.295 0.331 33.092 0.244 0.565
2 0.204 0.304 0.327 32.742 0.238 0.562
3 0.226 0.358 0.327 32.664 0.225 0.55
5 0.22 0.275 0.318 31.797 0.217 0.549

JRip

1 0.234 0.726 0.392 39.203 0.322 0.616
2 0.232 0.711 0.396 39.604 0.327 0.623
3 0.231 0.699 0.393 39.345 0.326 0.622
5 0.234 0.73 0.393 39.293 0.323 0.618

J48

1 0.061 0.48 0.494 49.392 0.483 0.837
2 0.062 0.479 0.495 49.469 0.481 0.833
3 0.063 0.488 0.505 50.518 0.491 0.827
5 0.063 0.482 0.498 49.767 0.484 0.828

	Evaluation of Modified Vector Space Representation Using ADFA-LD and ADFA-WD Datasets
	Abstract
	Keywords
	1. Introduction
	2. System Call Trace Representation
	2.1. Trivial Representation
	2.2. Boolean Model
	2.3. Vector Space Model

	3. Modified Vector Space Representation
	4. Evaluation
	4.1. Datasets
	4.2. Algorithms Selected for Experiments
	4.3. Experiments Methodology
	4.4. Evaluation Metrics

	5. Results and Analysis
	6. Conclusion
	References
	Appendix: Experiment Results

