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Abstract 
Predicting anomalous behaviour of a running process using system call trace is a common practice 
among security community and it is still an active research area. It is a typical pattern recognition 
problem and can be dealt with machine learning algorithms. Standard system call datasets were 
employed to train these algorithms. However, advancements in operating systems made these da-
tasets outdated and un-relevant. Australian Defence Force Academy Linux Dataset (ADFA-LD) and 
Australian Defence Force Academy Windows Dataset (ADFA-WD) are new generation system calls 
datasets that contain labelled system call traces for modern exploits and attacks on various appli-
cations. In this paper, we evaluate performance of Modified Vector Space Representation tech-
nique on ADFA-LD and ADFA-WD datasets using various classification algorithms. Our experi-
mental results show that our method performs well and it helps accurately distinguishing process 
behaviour through system calls. 
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1. Introduction 
System call is a request for a service that program makes to the kernel. Sequence of the system calls can 
describe the behaviour of the process. System call traces are used in Host based Intrusion Detection System 
(HIDS) to distinguish normal and malicious processes. There are a number of data representation techniques 
found in literature (e.g, n-gram model and lookahead pairs [1] [2], sequencegram [3], pairgram [4], etc.) used to 
extract the features from the system call trace for process behaviour classification. 
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By considering collected system call traces as set of document and system calls as words, we can apply 
classical data representation and classification techniques used in the area of natural language processing (NLP) 
and information retrieval (IR). Document representation techniques such as Boolean model and vector space 
model were reported in literature for extracting features from system call traces. X. Wang et al. [5] used n-gram 
with Boolean model for feature extraction and Support Vector Machine (SVM) with Gaussian Radial Basis 
Function (GRBF) kernel function for classification. K. Rieck et al. [6] used vector space model and considered 
frequency of system call in a trace as a weight of system call. They utilized polynomial kernel function for 
classifying the vectors storing weight of each system call. Y. Liao and V. R. Vermuri [7] have used vector space 
model for system call trace representation and applied k-nearest neighbour (kNN) classifier, where nearness was 
calculated using cosine similarity. However, these approaches are not considering system call sequence infor- 
mation, which would help in better describing the system call behaviour. 

Researchers were utilizing the well-known system call trace datasets like University of New Maxico (UNM) 
intrusion detection dataset [8], and DARPA intrusion detection dataset [9] to train the machine learning algo- 
rithms for process behaviour prediction. However, these datasets were compiled decades ago and are not very 
relevant for modern operating systems [10]. Recently (in 2013), new system call trace datasets released by G. 
Creech et al. known as ADFA datasets [10] [11]. ADFA datasets are considered as new benchmark for evaluat-
ing system call based intrusion detection systems. It has a wide collection of system call traces representing 
modern vulnerability exploits and attacks. 

G. Creech et al. [12] have proposed semantic model for anomaly detection using short sequences of ADFA- 
LD Dataset. They have prepared the dictionary of word and phrase from the dataset and evaluated it with the 
Hidden Markov Model (HMM), Extreme Learning Machine (ELM) and one-class SVM algorithms. They 
achieve accuracy of 90% for ELM and 80% for SVM with 15% false positive rate (FPR) [12] [13]. For ADFA- 
WD evaluation also, G. Creech et al. [11] have used HMM, ELM and SVM. They noted 100% accuracy with 
25.1% FPR for HMM, 91.7% accuracy with 0.23% FP rate with ELM and 99.58% accuracy with 1.78% FP rate 
for SVM. However, learning a dictionary of all possible short sequences is a time consuming task [14] [15]. 
Miao Xie et al. [15] have applied k-nearest neighbour (kNN) and k-means clustering (kMC) algorithms on 
ADFA-LD dataset. They considered frequency based model for data representation and used principal com- 
ponent analysis (PCA) to reduce the dimension of feature vector. With combination of kNN and kMC they 
achieve accuracy of 60% with 20% of FPR. In another attempt Miao Xie et al. [13] have applied one-class SVM 
with short sequence based technique on ADFA-LD. With one-class SVM, they achieved maximum accuracy of 
70% with around 20% of FPR. 

We modified the X. Wang et al. [5] approach given for Boolean model and proposed Modified Vector Space 
Representation in [16] to represent process system call trace in terms of feature vector. It is system call 
frequency based approach and utilizes the Vector Space Model with n-gram. In [16], we have evaluated the pro- 
posed method on system call trace datasets used in [17]. In this paper, we apply modified vector space repre- 
sentation approach on ADFA-LD and ADFA-WD dataset and discuss results obtained with the help of different 
classification techniques chosen for evaluation. 

Rest of the paper is organized as follows: Section 2 describes classic data representation techniques in context 
of system call trace with their limitations. Section 3 discusses modified vector space representation. Section 4 
details the datasets, algorithms selected, chosen evaluation metrics and experiments methodology used for 
evaluation. Section 5 discusses the performance results followed by conclusion and references at the end. 

2. System Call Trace Representation 
In order to classify the process behaviour using system call trace, one needs to extract the features from it. Data 
representation techniques can be used to convert the system call trace into feature vector. Common data repre- 
sentation techniques used for system call representation are as follows: 

2.1. Trivial Representation 
The basic representation of system call trace is to consider it as a string (sequence) of system calls. Let us 
consider an operating system with total m number of unique system calls, then set of system calls can be re- 
presented by { }1 2 3, , , , mU s s s s=  . Let iF  be finite sequence of system calls and *U  represents the set of all 
possible finite sequences of system calls then *

iF U∈  and iF  represents the length of the sequence. N is the 
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total number of applications (normal and malware) used in training and testing for analysis. D is the dataset  
containing system call traces of selected applications and formally defined as { *, 1 , ,i i iD S L i N S U= ≤ ≤ ∈   

{ }}normal,malwareiL ∈ , where iS  is a system call trace of thi  application and iL  is its label (i.e. normal or  
malware). The memory complexity for such representation is ( )1

N
iiO N S

=
×∑ . Here 

1
N

ii S
=∑  represents the  

total length of sequences. If length of system call sequences is large, this could be a big number. 

2.2. Boolean Model 
Simple representation technique can be found in the area of information retrieval is Boolean Model [18]. It is an 
exact match model, which can represent a system call trace as a vector having all possible system call number as 
its index. The value of index is 1 if system call is present in given trace and 0 otherwise. 

Consider total number of system calls in an operating system is m. A system call trace iS  can be represented 
using boolean model as a feature vector 1 2 3, , , , mA b b b b=  , where, m U=  and { }0,1 ,1jb j m∈ ≤ ≤ . The 
memory complexity of Boolean model is ( )O N U× . This model considers every system call equally important 
and only marks its presence or absence. It does not assign any weight to the system call that appears multiple 
times in a system call trace. 

2.3. Vector Space Model 
Vector Space Model is another common and powerful technique used in information retrieval field to represent 
document as set of words [18]. It is also known as “bag of words” technique as it assigns weight to each word in 
the given document in order to determine how much the document is relevant to specific words. Here the weight 
is assigned to a word as number of times the word appear in the document. In the context of system call repre- 
sentation, system call trace is considered as document and each system call as one word. Then we can apply 
vector space model to represent given system call trace as a feature vector. 

To represent the system call traces using vector space model (bag of words) representation, let us con-   
sider a feature set B, as a set of vectors corresponds to applications’ system call traces. System call trace for   
an application i with this model can be represented as, vector 1 2 3, , , ,i mB n n n n=  , where m U=  and 

( )1jn j m≤ ≤  represents the number of times the system call js  appears in the system call trace sequence iS . 
The memory complexity of vector space model representation is similar to Boolean model i.e. ( )O N U× . 
Here, U  is number of system calls. For example, Linux 3.2 has 349 system calls, then 349.U =  Note that, 
number of system calls U  is smaller than total length of sequences 

1
N

ii S
=∑  if system call sequence iS  is 

large. 

3. Modified Vector Space Representation 
Vector space model cannot preserve the relative order of system calls. e.g. Feature vector for system call traces 

1 : , , ,S open read close exit  and 2 : , , ,S open exit close read  are similar. Relative order of system calls is more 
important in case of modelling process behaviour. Loss of system call sequence information can leave a system 
vulnerable to mimicry attacks [19] [20], where a malware writer interleaves malware system call trace patterns 
with benign system call trace. Thus, we consider the multiple consecutive system calls as one term. Number of 
system calls in a term is defined by term-size. For term-size l and total number of unique system calls m, n-gram 
model provide total lm  number of possible unique terms in a feature vector. 

In order to represent the system call traces using this approach, let us consider lU  be the set of all possible 
unique terms of length (term-size) l. Here, { }1 2 3, , , ,l

rU t t t t=  , where l lr U m= =  and ( )1kt k r≤ ≤  repre- 
sents the thk  term of length l derived through n-gram model from U. The feature set C contains the occurrence 
of each term in given system call trace. For instance, 1 2 3, , , ,i rC n n n n=  , where ( )1kn k r≤ ≤  represents 
the number of times the term kt  appears in the system call trace iS . The memory requirement for n-gram with 
vector space model approach for term length of l is ( )lO N U× . 

Representation created using n-gram model is more costly than normal vector space model as lU U< . In 
addition to that, all features (terms) are not present in the system call traces, which means they are having zero 
weight in feature vector. We can reduce the dimension of feature vector by considering only those unique terms 
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which are present in the data. 
If we consider only those unique terms that appear in training data, the memory requirement would be less 

compared to considering all possible unique terms generated from U. This can be represented by set of all unique 
terms of length l occurring in training data. The set can be defined as train

l lU U⊂ , where, train
lU  is a set of only 

those terms, appearing in training dataset. Here the number of terms in feature set train
lU  would be less com- 

pared to all possible terms of length l generated from U i.e. train
llU U≤ . Considering, trainN  as number of 

system call traces in training dataset, memory complexity of this representation would be ( )train train
lO N U× . 

However, this representation does not cover system call sequences, which were not explored during training and 
may appear in testing. 

The feature vector built by considering only those terms that appeared in training data is much compact than 
other system call representations. However, it requires prior knowledge of unique terms in system call traces, 
which is not always possible. We can easily find the unique terms from the training data. However, during 
training, we might not have explored all possible usages of application. It is quite possible that, terms that were 
not present in the training data may appear in testing data. 

Modified Vector Space Representation [16] extends the previous representation (which considers unique 
terms from training data only) by incorporating mechanism to handle any unforeseen terms during testing. We 
deliberately add a system call number (we refer it as unknown (unk)) in list, whose value is higher than any 
system call number present in system call list for OS. We form terms of length l comprising this unknown 
system call number including one term having all unknown system call number. Let E be the set of unknown 
terms comprising unk system call number. unk is a number deliberately added in the list of system call  
numbers to map terms, which are not seen during training but found in testing. Hence, the new feature set can be 
defined as new train

l lU U E=  , where new
lU  is set comprises of all unique terms of length l appearing in train-  

ing data train
lU  and set of terms having unk system call number E. Considering, trainN  as number of system  

call trace sequences in training, memory complexity of this representation would be ( )train new
lO N U× , where 

new train
l lU U E= + . Here, number of terms comprising of unk system call E  will be very small. 

4. Evaluation 
In this section we provide details of datasets, classification algorithms selected, evaluation metrics and experi- 
ments methodology used for evaluation. 

4.1. Datasets 
We have evaluated modified vector space representation with two datasets namely ADFA-LD (Linux Dataset) 
and ADFA-WD (Windows Dataset) constructed by G. Creech et al. [10]-[12]. Table 1 describes the number of 
traces collected from [21] for each category for ADFA-LD and ADFA-WD dataset. For ADFA-LD system call 
traces for specific process were generated using auditd [22] Unix program, an auditing utility for collecting 
security relevant events. These traces were then filtered for undersize and oversize limit, which is 300 Bytes to 6 
kB for training data and 300 Bytes to 10 kB for validation data [11] [12]. ADFA-LD dataset was collected under 
Ubuntu 11.04 fully patched operating system with kernel 2.6.38. The operating system was running different 
services like webserver, database server, SSH server, FTP server etc. ADFA-LD also incorporates system call 
traces of different types of attacks. Table 2 describes details of each attack class in ADFA-LD dataset [11] [12]. 
 
Table 1. Number of system call traces in different category of ADFA-LD and ADFA-WD dataset.                              

Dataset 
ADFA-LD ADFA-WD 

Traces System Calls Traces System Calls 

Training data 833 3,08,077 355 1,35,04,419 

Validation data 4,372 21,22,085 1,827 11,79,18,735 

Attack data 746 3,17,388 5,542 7,42,02,804 

Total 5,951 27,47,550 7,724 20,56,25,958 
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Table 2. Attack vectors used to generate ADFA-LD attack dataset.                                                       

Attack Payload/Effect Vector Trace Count 

Hydra-FTP Password bruteforce FTP by Hydra 162 

Hydra-SSH Password bruteforce SSH by Hydra 176 

Adduser Add new superuser Client side poisoned executable 91 

Java-Meterpreter Java based Meterpreter TikiWiki vulnerability exploit 124 

Meterpreter Linux Meterpreter Payload Client side poisoned executable 75 

Webshell C100 Webshell PHP remote file inclusion vulnerability 118 

 
ADFA-WD (Windows Dataset) represents the high-quality collection of DLL access requests and system 

calls for a variety of hacking attacks [11]. Dataset was collected in Windows XP SP2 host with the help of 
Procmon [23] program. Default firewall was enabled and Norton AV 2013 was installed to filter only sophisti-
cated attacks and ignore the low level attacks. The OS environment enabled file sharing and configured network 
printer. It was running applications like, webserver, database server, FTP server, streaming media server, PDF 
reader, etc. Total 12 known vulnerabilities for installed applications were exploited with the help of Metasploit 
framework and other custom methods. Table 3 describes the details of each attack class in ADFA-WD dataset 
[11]. 

4.2. Algorithms Selected for Experiments 
We selected Weka workbench [24] [25] for evaluation of modified vector space representation on ADFA-LD 
and ADFA-WD datasets. Weka hosts number of machine learning algorithms which can be easily applied on our 
prepared datasets of varying term-size. We selected nine well-known classification algorithms from six different 
categories given in Weka. The list of selected algorithms, selected options for individual algorithm and their 
respective category in Weka are shown in Table 4. 

4.3. Experiments Methodology 
Datasets were collected from [21] and then converted into modified vector space representation for various 
term-size. For these experiments we selected the term-size 1, 2, 3 and 5. For each dataset (i.e. ADFA-LD and 
ADFA-WD) we ran experiments for binary class as well as for multiclass label classification. For binary class 
we considered one of two labels for each trace - normal and attack. For multiclass classification, number of 
classes and class labels are different for both datasets. In ADFA-LD we have total 7 class labels viz. normal, 
adduser, hydra-ftp, hydra-ssh, java-meterpreter, meterpreter and webshell. While in ADFA-WD we have total 
13 class labels viz. normal and V1 to V12. We ran each chosen algorithms with selected options on converted 
data in Weka through 10-fold cross-validation method. Table 5 describes the number of features extracted from 
ADFA-LD and ADFA-WD dataset for varying term-size using modified vector space representation. 

4.4. Evaluation Metrics 
We have used the following common evaluation metrics that are widely used in information retrieval area [18]: 

True Positive (TP): Number of attack traces detected as attack traces. 
False Positive (FP): Number of attack traces detected as normal traces. 
True Negative (TN): Number of normal traces detected as normal traces. 
False Negative (FN): Number of normal traces detected as attack traces. 
Figure 1 shows the confusion matrix, which can be used to derive other measures.  
Precision: It is the ratio of how many attack traces predicted as attack traces out of total number of traces 

predicted as attack traces. 
TPPrecision

TP FP
=

+
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Table 3. Vulnerabilities considered to generate ADFA-WD attack dataset.                                                  

ID Vulnerability Program Exploit Mechanism Trace Count 

V1 
 

CVE: 2006-2961 
 

CesarFTP 0.99g 
 

Reverse Ordinal Payload  
Injection 

454 
 

V2 
 

EDB-ID: 18367 
 

XAMPP Lite v1.7.3 
 

Upload and execute malicious 
payload using Xampp_webdav 

470 
 

V3 CVE: 2004-1561 Icecast v2.0 Metasploit exploit 382 

V4 CVE: 2009-3843 Tomcat v6.0.20 Metasploit exploit 418 

V5 CVE: 2008-4250 OS SMB Metasploit exploit 355 

V6 CVE: 2010-2729 OS Print Spool Metasploit exploit 454 

V7 CVE: 2011-4453 PMWiki v2.2.30 Metasploit exploit 430 

V8 
 

CVE: 2012-0003 
 

Wireless Karma 
 

DNS Spoofing using Pineapple 
Router 

487 
 

V9 
 

CVE: 2010-2883 
 

Adobe Reader 9.3.0 
 

Reverse Shell spawn through  
malicious PDF 

440 
 

V10 ----- Backdoor executable Reverse Inline Shell spawned 536 

V11 CVE: 2010-0806 IE v6.0.2900.2180 Metasploit exploit 495 

V12 ----- Infectious Media Blind Shell spawned 621 

 
Table 4. List of selected algorithms with their options.                                                                   

Category Algorithm Option(s) Selected 

Bayes Naïve Bayes --- 

Function 
SMO (Sequential Minimal Optimization) Polynomial Kernel 

LibSVM (Support Vector Machine) Radial Basis Function (RBF) Kernel, gamma = 0.5, loss = 0.001 

Lazy IBk (k-nearest neighbors) k = 1, 2, 3 

Meta Classification via Clustering-  
Simple K Means (k Means) 

k = 2 (7 and 13 for multiclass classification on ADFA-LD and 
ADFA-WD dataset respectively) 

Rules 

ZeroR --- 

OneR minBucketSize(B) = 5, 6, 10 

JRip (RIPPER) Folds = 3 

Trees J48 (C4.5) confidenceFactor = 0.25, minNumObj = 2 

 
Table 5. Number of features extracted from ADFA-LD and ADFA-WD dataset for term-size 1, 2, 3 and 5.                       

Dataset 
term-size 

1 2 3 5 

ADFA-LD 175 3,792 24,818 1,63,263 

ADFA-WD 1,309 4,801 13,472 42,426 

 

 
Figure 1. Confusion matrix.                                             
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Recall: Recall also known as the True Positive Rate (TPR). It is the ratio of how many attack traces pre- 
dicted as attack traces out of total number of actual attack traces. 

TPRecall
TP FN

=
+

 

Accuracy: Accuracy is the proportion of true results (number of attack traces and normal traces detected 
correctly) in the total number of samples. 

TP TNAccuracy
TP FP TN FN

+
=

+ + +
 

FP Rate: False Positive Rate (FPR) is a measure of how many normal trace are labelled as attack trace by 
classifier. 

FPFPRate
FP TN

=
+

 

F-Measure: It is a measure that combines precision and recall into a single measure. It is calculated as 
harmonic mean of precision and recall. 

2F-Measure
1 1

Precision Recall

=
+

 

Receiver Operating Characteristics (ROC) Curve: It is a graph of true positive rate against false positive 
rate. It represents the performance of binary classifier as its discrimination threshold is varied.  

Area Under the ROC Curve (AUC): It is the area covered by ROC curve. It is equivalent to the probability 
that a classifier will rank a randomly chosen positive instance higher than a randomly chosen negative one [26].  

5. Results and Analysis 
Figure 2 shows the performance results in terms of accuracy and false positive rate of selected algorithms with 
varying term-size on both datasets. The results shown here are the weighted average of results derived for 
individual class labels. Detailed experiment (weighted average) results on ADFA-LD and ADFA-WD are given 
in Appendix (Tables A1-A4). 

From Figure 2, we can observe that using modified vector space representation all algorithms perform 
reasonably well. However, IBk and J48 performed best in all experiments. 

With IBk algorithm we can notice that as we increase the term-size, its performance starts degrading (i.e. 
accuracy decreases and FP Rate increases). These changes are clearly visible in case of ADFA-LD dataset. 
Similar performance results are achieved by J48 in all experiments. However, IBk have higher FP Rate compare 
to J48 for term-size 3 and 5 on ADFA-LD dataset. 

Comparing IBk and J48 with application perspective, J48 requires more time in building the decision tree 
model during training but it is faster during testing phase. On contrary, IBk does not have any difference 
between training and testing phase. It finds distance between test instance and all other training instances during 
testing phase. Due to this IBk seeks high amount of memory space to store all training instances during testing 
phase compare to J48, whereas storing J48 model is merely a tree to be stored. So, with J48 in testing phase 
classifying a test instance is as simple as traversing limited number of branches (based on feature values) of a 
decision tree from root to leaf. 

On ADFA-WD dataset, all algorithms perform well for binary class classification, but perform poorly for 
multiclass classification. Similar facts can be observed from Figure 3 and Figure 4. Figure 3 shows ROC 
curves of IBk (k = 1) and J48 with all term-size on ADFA-LD and ADFA-WD datasets for binary class classi- 
fication. Figure 4 shows ROC curves of IBk (k = 1) and J48 with term-size 3 on ADFA-LD and ADFA-WD 
datasets for multiclass classification. From Figure 4(c), Figure 4(d) and Table A4 we can observe that IBk and 
J48 achieves high accuracy for normal class on ADFA-WD, but fails to distinguish among attack classes. The 
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Figure 2. Performance results (FP rate and accuracy) of selected algorithms on ADFA-LD and ADFAWD dataset with 
binary class and multiclass classification for varying term-size. (a) FP rate—ADFA-LD (binary class); (b) Accuracy— 
ADFA-LD (binary class); (c) FP rate—ADFA-LD (multiclass); (d) Accuracy—ADFA-LD (multiclass); (e) FP rate— 
ADFA-WD (binary class); (f) Accuracy—ADFA-WD (binary class); (g) FP rate—ADFA-WD (multiclass); (h) Accura-
cy—ADFA-WD (multiclass).                                                                                  
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Figure 3. ROC curves of IBk (k = 1) and J48 on ADFA-LD and ADFA-WD with various term-size for binary class classifi-
cation. (a) IBk (k = 1) on ADFA-LD; (b) J48 on ADFA-LD; (c) IBk (k = 1) on ADFA-WD; (d) J48 on ADFA-WD.               
 
possible cause for this could be, similarity among system call traces of vulnerabilities exploits launched through 
metasploit. 

6. Conclusion 
In this work, we have evaluated our proposed modified vector space representation using ADFA-LD and 
ADFA-WD system call trace datasets. We extracted features from both datasets using our proposed method for 
varying term-size. We also considered binary class and multiclass classification for evaluation on both datasets. 
Modified vector space representation (term-size 2, 3 and 5) performs as well as standard vector space model 
(term-size 1) if not better in terms of accuracy, FP rate and F-measure. There is no significant difference in 
results for varying term-size. However, higher term-size preserves more system call sequence information, 
which provides resistance against mimicry attacks. From the evaluation results, we conclude that IBk and J48 
perform better on both datasets compare with other selected algorithms. 
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Figure 4. ROC curves of IBk (k = 1) and J48 with term-size 3 on ADFA-LD and ADFA-WD for multiclass classification. 
(a) IBk (k = 1) on ADFA-LD; (b) J48 on ADFA-LD; (c) IBk (k = 1) on ADFA-WD; (d) J48 on ADFA-WD.                         
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Appendix: Experiment Results 
In this section we provide detailed experiment results on ADFA-LD and ADFA-WD with binary class and 
multiclass class labels. Results shown here are weighted average results of individual class results. 

 
Table A1. Experiment results for various term-size on ADFA-LD dataset with binary class labels.                             

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC 

Naïve Bayes 

1 0.083 0.902 0.699 69.9378 0.75 0.894 
2 0.088 0.914 0.818 81.835 0.845 0.918 
3 0.102 0.926 0.882 88.2205 0.895 0.919 
5 0.251 0.917 0.91 90.9595 0.913 0.856 

SMO 

1 0.765 0.863 0.883 88.3213 0.846 0.559 
2 0.258 0.943 0.945 94.5051 0.943 0.843 
3 0.226 0.946 0.948 94.7908 0.947 0.861 
5 0.305 0.934 0.938 93.7658 0.935 0.816 

LibSVM 

1 0.844 0.885 0.879 87.8676 0.826 0.517 
2 0.845 0.884 0.879 87.8508 0.826 0.517 
3 0.847 0.884 0.878 87.834 0.826 0.516 
5 0.847 0.884 0.878 87.834 0.826 0.516 

IBk (k = 1) 

1 0.124 0.96 0.96 95.9503 0.96 0.948 
2 0.136 0.957 0.956 95.5638 0.956 0.943 
3 0.155 0.926 0.906 90.573 0.912 0.911 
5 0.126 0.912 0.844 84.4228 0.864 0.885 

IBk (k = 2) 

1 0.188 0.96 0.961 96.1183 0.96 0.963 
2 0.223 0.956 0.957 95.7486 0.956 0.956 
3 0.388 0.916 0.922 92.1694 0.917 0.919 
5 0.564 0.894 0.905 90.4554 0.889 0.872 

IBk (k = 3) 

1 0.144 0.959 0.959 95.883 0.959 0.968 
2 0.193 0.95 0.95 95.026 0.95 0.959 
3 0.387 0.904 0.909 90.8755 0.906 0.915 
5 0.574 0.885 0.899 89.8841 0.884 0.878 

kMeans (k = 2) 

1 0.858 0.749 0.722 70.6436 0.735 0.423 
2 0.865 0.75 0.771 74.3236 0.76 0.437 
3 0.863 0.745 0.863 78.8775 0.799 0.458 
5 0.865 0.776 0.865 80.7259 0.803 0.467 

ZeroR 

1 0.875 0.765 0.875 87.4643 0.816 0.498 
2 0.875 0.765 0.875 87.4643 0.816 0.498 
3 0.875 0.765 0.875 87.4643 0.816 0.498 
5 0.875 0.765 0.875 87.4643 0.816 0.498 

OneR (B = 5) 

1 0.759 0.833 0.871 87.145 0.84 0.556 
2 0.733 0.846 0.877 87.7164 0.848 0.572 
3 0.656 0.884 0.896 89.6152 0.873 0.62 
5 0.647 0.881 0.895 89.5312 0.873 0.624 

OneR (B = 6) 

1 0.773 0.846 0.878 87.8004 0.841 0.552 
2 0.73 0.846 0.877 87.7164 0.848 0.574 
3 0.657 0.886 0.897 89.6824 0.873 0.62 
5 0.637 0.884 0.897 89.716 0.876 0.63 

OneR (B = 10) 

1 0.778 0.886 0.887 88.6742 0.846 0.555 
2 0.719 0.848 0.878 87.7836 0.85 0.579 
3 0.656 0.884 0.896 89.632 0.873 0.62 
5 0.635 0.885 0.897 89.7496 0.876 0.631 

JRip 

1 0.168 0.957 0.958 95.8158 0.958 0.903 
2 0.18 0.955 0.956 95.5638 0.955 0.887 
3 0.205 0.953 0.954 95.3957 0.953 0.873 
5 0.274 0.939 0.942 94.2027 0.94 0.84 

J48 

1 0.154 0.959 0.96 95.9839 0.96 0.927 
2 0.176 0.958 0.958 95.8494 0.958 0.875 
3 0.219 0.95 0.952 95.2109 0.951 0.863 
5 0.266 0.941 0.944 94.3707 0.942 0.878 
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Table A2. Experiment results for various term size on ADFA-WD dataset with binary class labels.                            

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC 

Naïve Bayes 

1 0.518 0.766 0.772 77.162 0.734 0.684 
2 0.472 0.787 0.789 78.923 0.76 0.7 
3 0.454 0.789 0.793 79.324 0.768 0.676 
5 0.443 0.792 0.797 79.661 0.773 0.677 

SMO 

1 0.261 0.893 0.887 88.711 0.88 0.813 
2 0.228 0.902 0.898 89.824 0.893 0.835 
3 0.192 0.913 0.911 91.132 0.908 0.86 
5 0.189 0.913 0.912 91.17 0.909 0.862 

LibSVM 

1 0.369 0.852 0.843 84.257 0.826 0.737 
2 0.386 0.851 0.838 83.791 0.819 0.726 
3 0.418 0.843 0.827 82.677 0.803 0.705 
5 0.437 0.838 0.82 81.965 0.793 0.691 

IBk (k = 1) 

1 0.119 0.93 0.931 93.061 0.93 0.95 
2 0.123 0.928 0.928 92.814 0.927 0.943 
3 0.137 0.921 0.922 92.206 0.921 0.935 
5 0.139 0.921 0.922 92.232 0.921 0.932 

IBk (k = 2) 

1 0.115 0.926 0.926 92.595 0.926 0.957 
2 0.119 0.921 0.922 92.167 0.921 0.952 
3 0.127 0.918 0.918 91.818 0.918 0.947 
5 0.132 0.917 0.917 91.74 0.917 0.942 

IBk (k = 3) 

1 0.132 0.928 0.928 92.815 0.927 0.958 
2 0.137 0.924 0.925 92.504 0.924 0.954 
3 0.15 0.92 0.92 92.012 0.919 0.952 
5 0.158 0.919 0.919 91.908 0.917 0.947 

kMeans (k = 2) 

1 0.545 0.685 0.717 71.569 0.689 0.585 
2 0.518 0.652 0.726 72.513 0.682 0.604 
3 0.551 0.652 0.724 72.345 0.671 0.586 
5 0.578 0.689 0.725 72.385 0.683 0.573 

ZeroR 

1 0.718 0.515 0.718 71.75 0.599 0.499 
2 0.718 0.515 0.718 71.75 0.599 0.5 
3 0.718 0.515 0.718 71.75 0.599 0.5 
5 0.718 0.515 0.718 71.75 0.599 0.499 

OneR (B = 5) 

1 0.303 0.861 0.859 85.94 0.85 0.778 
2 0.309 0.85 0.851 85.111 0.842 0.771 
3 0.332 0.845 0.845 84.477 0.834 0.757 
5 0.316 0.833 0.838 83.804 0.83 0.761 

OneR (B = 6) 

1 0.303 0.86 0.859 85.927 0.85 0.778 
2 0.308 0.85 0.851 85.111 0.842 0.771 
3 0.329 0.845 0.845 84.542 0.834 0.758 
5 0.317 0.832 0.837 83.661 0.829 0.76 

OneR (B = 10) 

1 0.311 0.856 0.856 85.552 0.846 0.772 
2 0.317 0.846 0.847 84.723 0.838 0.765 
3 0.342 0.842 0.842 84.192 0.83 0.75 
5 0.336 0.829 0.833 83.325 0.823 0.748 

JRip 

1 0.174 0.91 0.911 91.054 0.908 0.872 
2 0.181 0.909 0.91 90.963 0.907 0.867 
3 0.173 0.911 0.912 91.157 0.909 0.875 
5 0.177 0.913 0.913 91.274 0.91 0.878 

J48 

1 0.126 0.931 0.931 93.125 0.93 0.945 
2 0.138 0.927 0.927 92.711 0.926 0.938 
3 0.138 0.926 0.926 92.607 0.925 0.931 
5 0.145 0.923 0.924 92.374 0.922 0.924 
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Table A3. Experiment results for various term size on ADFA-LD dataset with multiclass class labels.                          

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC 

Naïve Bayes 

1 0.028 0.885 0.588 58.814 0.689 0.898 
2 0.03 0.904 0.694 69.434 0.773 0.933 
3 0.025 0.905 0.704 70.408 0.78 0.929 
5 0.034 0.91 0.73 72.963 0.798 0.911 

SMO 

1 0.845 0.819 0.877 87.683 0.825 0.524 
2 0.508 0.892 0.912 91.245 0.893 0.718 
3 0.376 0.897 0.912 91.245 0.902 0.789 
5 0.454 0.879 0.904 90.371 0.887 0.746 

LibSVM 

1 0.85 0.796 0.876 87.565 0.82 0.513 
2 0.85 0.796 0.876 87.565 0.82 0.513 
3 0.85 0.796 0.876 87.565 0.82 0.513 
5 0.848 0.794 0.876 87.565 0.82 0.514 

IBk (k = 1) 

1 0.13 0.924 0.922 92.186 0.923 0.94 
2 0.144 0.918 0.914 91.363 0.915 0.928 
3 0.14 0.896 0.842 84.171 0.867 0.892 
5 0.107 0.902 0.762 76.155 0.819 0.859 

IBk (k = 2) 

1 0.192 0.919 0.924 92.405 0.919 0.955 
2 0.233 0.908 0.918 91.833 0.91 0.942 
3 0.384 0.869 0.884 88.405 0.872 0.897 
5 0.56 0.844 0.877 87.716 0.852 0.852 

IBk (k = 3) 

1 0.195 0.916 0.921 92.119 0.918 0.958 
2 0.249 0.9 0.911 91.111 0.904 0.948 
3 0.413 0.862 0.881 88.136 0.869 0.907 
5 0.595 0.838 0.875 87.498 0.848 0.875 

kMeans (k = 2) 

1 0.843 0.744 0.718 70.257 0.731 0.429 
2 0.849 0.745 0.75 72.358 0.747 0.435 
3 0.863 0.745 0.863 79.18 0.8 0.459 
5 0.862 0.755 0.868 82.86 0.808 0.481 

kMeans (k = 7) 

1 0.278 0.777 0.392 35.288 0.507 0.537 
2 0.789 0.693 0.69 53.453 0.69 0.363 
3 0.813 0.691 0.784 58.948 0.735 0.375 
5 0.833 0.744 0.839 65.653 0.767 0.399 

ZeroR 

1 0.875 0.765 0.875 87.464 0.816 0.497 
2 0.875 0.765 0.875 87.464 0.816 0.497 
3 0.875 0.765 0.875 87.464 0.816 0.497 
5 0.875 0.765 0.875 87.464 0.816 0.497 

OneR (B = 5) 

1 0.795 0.818 0.878 87.8 0.831 0.541 
2 0.789 0.799 0.877 87.666 0.829 0.544 
3 0.821 0.8 0.882 88.221 0.832 0.531 
5 0.828 0.799 0.881 88.12 0.83 0.527 

OneR (B = 6) 

1 0.796 0.817 0.878 87.784 0.83 0.541 
2 0.789 0.799 0.877 87.666 0.829 0.544 
3 0.821 0.8 0.882 88.221 0.832 0.531 
5 0.828 0.799 0.881 88.12 0.83 0.527 

OneR (B = 10) 

1 0.797 0.811 0.877 87.716 0.83 0.54 
2 0.799 0.799 0.877 87.666 0.829 0.539 
3 0.821 0.8 0.882 88.221 0.832 0.531 
5 0.828 0.799 0.881 88.12 0.83 0.527 

JRip 

1 0.404 0.893 0.913 91.262 0.899 0.776 
2 0.385 0.894 0.912 91.161 0.9 0.768 
3 0.368 0.896 0.912 91.178 0.902 0.789 
5 0.44 0.892 0.912 91.195 0.897 0.75 

J48 

1 0.204 0.917 0.924 92.438 0.92 0.913 
2 0.205 0.913 0.92 92.018 0.916 0.871 
3 0.24 0.901 0.911 91.06 0.905 0.84 
5 0.289 0.897 0.911 91.094 0.903 0.863 
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Table A4. Experiment results for various term-size on ADFA-WD dataset with multiclass class label.                          

Algorithm term-size FP Rate Precision Recall Accuracy F-Measure AUC 

Naïve Bayes 

1 0.052 0.408 0.182 18.229 0.203 0.697 
2 0.051 0.457 0.2 20.016 0.226 0.681 
3 0.049 0.467 0.216 21.556 0.246 0.664 
5 0.05 0.472 0.21 21.012 0.237 0.641 

SMO 

1 0.179 0.378 0.368 36.756 0.285 0.634 
2 0.169 0.392 0.391 39.099 0.319 0.654 
3 0.14 0.391 0.41 41.041 0.355 0.697 
5 0.128 0.41 0.426 42.595 0.378 0.72 

LibSVM 

1 0.179 0.378 0.368 36.756 0.285 0.634 
2 0.169 0.392 0.391 39.099 0.319 0.654 
3 0.14 0.391 0.41 41.041 0.355 0.697 
5 0.172 0.351 0.369 36.911 0.294 0.598 

IBk (k = 1) 

1 0.058 0.478 0.491 49.081 0.48 0.818 
2 0.058 0.475 0.484 48.446 0.476 0.811 
3 0.058 0.468 0.475 47.527 0.469 0.803 
5 0.059 0.464 0.47 46.958 0.463 0.8 

IBk (k = 2) 

1 0.063 0.464 0.477 47.734 0.463 0.831 
2 0.063 0.463 0.473 47.255 0.46 0.824 
3 0.064 0.452 0.463 46.258 0.45 0.815 
5 0.063 0.451 0.457 45.663 0.446 0.814 

IBk (k = 3) 

1 0.064 0.461 0.474 47.385 0.46 0.841 
2 0.064 0.455 0.466 46.634 0.453 0.834 
3 0.066 0.444 0.457 45.689 0.443 0.827 
5 0.065 0.447 0.454 45.404 0.443 0.823 

kMeans (k = 2) 

1 0.173 0.124 0.233 23.278 0.156 0.53 
2 0.173 0.126 0.234 23.356 0.156 0.53 
3 0.242 0.112 0.259 25.945 0.138 0.509 
5 0.24 0.119 0.258 25.777 0.138 0.509 

kMeans (k = 13) 

1 0.077 0.253 0.184 18.32 0.195 0.553 
2 0.097 0.203 0.178 17.672 0.177 0.54 
3 0.084 0.23 0.178 17.672 0.184 0.546 
5 0.099 0.204 0.18 17.724 0.173 0.538 

ZeroR 

1 0.282 0.08 0.282 28.25 0.124 0.499 
2 0.282 0.08 0.282 28.25 0.124 0.499 
3 0.282 0.08 0.282 28.25 0.124 0.499 
5 0.282 0.08 0.282 28.25 0.124 0.499 

OneR (B = 5) 

1 0.19 0.31 0.34 34.05 0.261 0.575 
2 0.197 0.312 0.339 33.933 0.253 0.571 
3 0.199 0.258 0.316 31.616 0.23 0.559 
5 0.206 0.253 0.312 31.214 0.224 0.553 

OneR (B = 6) 

1 0.195 0.321 0.345 34.49 0.262 0.575 
2 0.198 0.31 0.337 33.674 0.251 0.569 
3 0.215 0.279 0.322 32.224 0.226 0.554 
5 0.207 0.24 0.307 30.748 0.217 0.55 

OneR (B = 10) 

1 0.2 0.295 0.331 33.092 0.244 0.565 
2 0.204 0.304 0.327 32.742 0.238 0.562 
3 0.226 0.358 0.327 32.664 0.225 0.55 
5 0.22 0.275 0.318 31.797 0.217 0.549 

JRip 

1 0.234 0.726 0.392 39.203 0.322 0.616 
2 0.232 0.711 0.396 39.604 0.327 0.623 
3 0.231 0.699 0.393 39.345 0.326 0.622 
5 0.234 0.73 0.393 39.293 0.323 0.618 

J48 

1 0.061 0.48 0.494 49.392 0.483 0.837 
2 0.062 0.479 0.495 49.469 0.481 0.833 
3 0.063 0.488 0.505 50.518 0.491 0.827 
5 0.063 0.482 0.498 49.767 0.484 0.828 
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