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Abstract 
 
In present paper, the properties of the Bayes Shrinkage estimator is studied for the measure of dispersion of 
an inverse Gaussian model under the Minimax estimation criteria. 
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1. Introduction 

The Inverse Gaussian distribution plays an important role 
in Reliability theory and Life testing problems. It has 
useful applications in a wide variety of fields such as 
Biology, Economics, and Medicine. It is used as an im-
portant mathematical model for the analysis of positively 
skewed data. The review article by Folks & Chhikara 
[1,2] and Seshadri [3] have proposed many interesting 
properties and applications of this distribution. 

Let 1 2  be a random sample of size  
drawn from the inverse Gaussian distribution 
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Here, μ  stands for the mean and  for the inverse 
measure of dispersion. The maximum likelihood esti-
mates of 

θ

μ  and θ  are given as: 
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The unbiased estimates of μ  and θ  are respect- 

tively x  and 1
3 uθ n

v
   . Also,  ~x   IG ,  , μ n θ  

 1n  θ v ~ χ 
2  with  and  being stochastically inde-

pendent ( [1,4,5,]).  
Schuster [6] showed that  
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with  degrees of freedom. If we assume that n 0 μ μ  

is known, the uniformly minimum variance unbiased 

(UMVU) estimator for measure of dispersion, 1θ  is  
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and  follows a chi-square distribution with  
degrees of freedom. 

Un θ n

The choice of the loss function may be crucial. It has 
always been recognized that the most commonly used 
loss function, squared error loss function (SELF) is in 
appropriate in many situations. If the SELF is taken as a 
measure of inaccuracy then the resulting risk is often too 
sensitive to the assumptions about the behavior of the tail 
of the probability distribution. In addition, in some esti-
mation problems overestimation is more serious than the 
underestimation, or vice-versa [7]. To deal with such 
cases, a useful and flexible class of asymmetric loss 
function (LINEX loss function (LLF)) was introduced by 
Varian [8]. The reparameterized version of LLF ([9]) for 
any parameter  is given as θ

   ˆ1;  0 and  . a L e  a   a   θ θ θ           (3) 

The sign and magnitude of ‘a’ represents the direction 
and degree of asymmetry respectively. The positive 
(negative) value of ‘a’ is used when overestimation is vx
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more (less) serious than underestimation.  L   is ap-
proximately square error and almost symmetric if a  
near to zero. 

Thompson [10] suggested a procedure, which makes 
use of a prior information of the parameter in form of a 
guessed value by shrinking the usual unbiased estimator 
towards the guess value of the parameter with the help of 
a shrinkage factor . The experimenter ac-
cording to his belief in the guess value specifies the val-
ues of shrinkage factor. The shrinkage estimator for the 
measure of dispersion  of  when a guess 
value of  say  is available, is given by 

0k k 

1 θ IG

0 ,

1



.

  , μ θ
,θ θ

  1
0

ˆ 1  ;  0 1 
 S k θ k θ k            (4) 

Some shrinkage estimators for measure of dispersion 
 have been obtained by Pandey & Malik [11] and 

have studied their properties under SELF–criterion. 
Prakash and Singh [12] have studied the properties of 
different shrinkage testimators for  under the LINEX 
loss function. Palmer [13] and Banerjee & Bhattacharya 
[14] have discussed the Bayesian inference about the 
parameters of the inverse Gaussian distribution. 

1 θ

1 θ

The present article proposed Bayes Shrinkage estima-
tor based on the Minimax criteria for the measure of dis-
persion. A Bayes estimator for the measure of dispersion 

 under the vague prior has been obtained in the Sec-
tion 2. Under the Minimax criteria the Bayes Minimax 
estimator has been obtained in the Section 3. A Shrink-
age estimator construct by utilizing the Bayes Minimax 
estimator in the Section 4. Further, a numerical study has 
been presented in Section 5 and draws a conclusion about 
the Bayes Shrinkage Minimax estimator in Section 6. 

1 θ

2. Bayes Estimator for Measure of 
Dispersion 

We are not going into debate or to justify the questions 
of the proper choice of the prior distribution. We con-
sider a vague prior for the parameter   which is an 
increasing function of the parameter   and is given as 

 ( ) ;  0.dg θ θ d   

Therefore, the posterior density of parameter   is 
defined as  
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After simplifying, the posterior density of parameter 
  is obtained as 
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The Bayes estimator for the measure of dispersion 
1θ  

ity 
under the LLF is obtained by simplifying the equal-

   ˆ
.a θθ a

p pE θe e E θ  

Here, the suffix indicates that the expectation is 
taken under po ensity. After simplification the 
Bayes estimator for 

p  
sterior d

θ 1 under the LLF is 

2ˆ ; 1 exp .
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3. The Minimax Bayes Estimator 

The basic principle of this approach is to minimize the 
n a theorem, 

n be stated as 
loss. The derivation depends primarily o
given by Hodge & Lehmann [15] and ca
follows. 

Let   :θω F θ   be a family of distribution func-
tions and C  be a class of estimators of the parameter 
 . Suppose that  *c C is a Bayes estimator against a 
prior distribution  θ  on the parameter space g  . 
Then the Bayes estimator *c  is said to be the Minimax 
e timator if the ri ction of the estimator *c  is in-
dependent on 
s sk fun

 . 
Here, the risk of the Bayes estimator   given in (6) 

for the parameter 1θ  with respect to LLF is de ned as  fi

     1 1Δˆ ( ) aR θ f U e ˆ    Δ 1 d ; Δ 
U

a U θ θ θ    (7) 

Since, n U  is distributed as a Chi-square with n  
degrees of freedom. Then by making a transform n  atio
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Using equation (8) in the expression  we have  ˆ R θ
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The Equation (9) represents the risk of the Bayes esti-
mator of the measure of dispersion, which is independent 
with the parameter  . Hence, the Bayes estimator   is 
th

y
rent 

e Minimax estimator under the LLF loss criterion. 
The following statistical problem (Minimax Estima-

tion) is equivalent to some two person zero sum game 
between the Statistician (Player–II) and Nature (Pla er– 
I). Here the pure strategies of Nature are the diffe
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values of   in the interval  0,  and the mixed 
strategies of Nature are the prior densities of   in the 
interval  0, . The pure strategies of Statistician are all 
possible decision functions in the interval  0, . 

The expected value of the loss function is the risk 
function and it is the gain of the Player–I. Fur her, the 
Bayes ris efined as 

ˆ ˆ

t
k is d

    , θR η θ E R θ  

Here, the expectation has been taken under the prior 
density of parameter  . If the loss function is continu-
ous in both the estim  and the arameterator θ̂  p   , and 
convex in  for  e ofθ̂ each valu    then ther ist 
m

e ex
easures *η  and ˆ *θ  for all   and θ̂  so that, the 

following relation holds: 

     ˆ ˆ ˆ, , ,* * * *R η θ R η θ R η θ   

The number  ˆ,* *R η θ  is known as th  value of the 
game, and *η  and ˆ *θ  a

e
re the corresponding optimum 

strategies of t and II. In statistica s  is 
the least fa nsity of 

h
vora

e Player I 
ble prior de

l term *η
  and the estim tor 

for

a
ˆ*  is the Mini ator. In fact, the value of the 

game is the loss of the Player–II. Hence, the optimum 
strategy of Player–II and the value of game are given  
present case as 
 

Optimum 
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Loss 
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e a

n

 


     
 

 1 1 

4. The Shrinkage Bayes Minimax Estimator 

Now, we construct a Shrinkage Bayes Minimax estima-
tor as  

  11 . θ U θ               (10)0  

The risk of the Shrinkage Bayes Minimax estimator 
θ  under the LLF is obtain by using Equation (8) as 
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where 

U

 exp  1 exp
an

R θ  aδ a          

 1 1 Δ    θ θ θ     and 
The comparison of the consid nkage Bayes 

Minimax estimator 

1
0 . δ θ θ   

ered Shri
θ  is performs with the help of a 

minimum class of estimator based on the UMVU esti-
Here, the considered of estima r based on 

U
mator.  class to

MVU estimator is 

; .T lU l R              (12) 

The risk of the estimator  T  under the LINEX loss is 
given by  

    1.l
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ng the

         

with the risk under the LLF is given as 

   

Thus, the improved estimators amo  class T  is 

T l U           (14) 

  2
1 exp 1 . 
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of 

  

Remark: It observed that the value   
rame
um

is lies be-
tween zero and one for the selected pa tric set of 
values which are considered later for the n e
ings. Therefore, 

rical find-
  is considered as the shrinkage factor. 

max estimator 

5. A Numerical Study 

The relative efficiencies for the Shrinkage Bayes Mini-
θ  relative to the improved estimator 

T   is defined as  

   
 , . 

R T
RE θ T

R θ
   

The relative



 efficiencies are the functions of 
 and  For the selected set of val

,n  
ues

,a  
 of δ

n
.d

15,205,10, 5;  0 25, 0 50; a . .    
,01,1 50,02,05;.

0 25(. .0 25)1 75.  δ 
and 0 25d . ,0 50.  the relative efficiency

e 
 

re-ha
sen

ve been calculated. The numerical findings ar p
ted her nly for 05ne o   and 15n   in the Tables 

It is ob ge Bayes Minimax esti-
mator 

1 and 2 respectively. 
served that the Shrinka

θ  is performs better then the improved estimator 
T   for the all selected parametr
0 25 1 75. δ .

ic set of values for 
  . Furth mple size  increases the 

re
er, as sa n

lative efficiency decreases for all considered paramet-
ric set  values and attains maximum efficiency at the 

1δ
of

point  . Further, it is also observed that the relative 
eases as d  increases when δ  lie be-

tween 0 50 1 50. δ .
efficiency incr

  . It is seen also that, as ‘a’ in-
crease relative efficiency first increases for 0 75δ .  
and the crease for the other values of δ . 

6. Con

In present paper we obtained the Shrin ag

n de

clusions 

k e estimator 
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ax estimation criteria for the measure 
of dispersion of the inverse Gaussian distribution. We ob- 
based on the Minim served that on the basis of the relative efficiency, the pro- 

posed Shrinkage Bayes Minimax estimator θ  performs 
 

θ  Table 1. Relative efficiency for the estimator with respect to es 
. 

0.25 

 *T  under LLF for n = 5 and different valu of a, d and 
δ

0.5 1 1.5 2 a     δ d   

0.25 1  1  1.  1..1782 .1592 1127 1.0633 0161 

0.50 1.6600 1.7066 1.7695 1.8010 1.8110 

0.75 2.2234 2.4028 2.7503 3.0766 3.3768 

1.00 2.5931 2.8804 3.5000 4.1796 4.9192 

1.25 2.4673 2.6799 3.0899 3.4717 3.8190 

1.50 1.9834 2.0465 2.1276 2.1635 2.1698 

–0.05 

–0.25 

0.25 

0.05 

1.75 1.4748 1.4525 1.3928 1.3276 1.2655 

0.25 1.1923 1.1737 1.1282 1.0797 1.0332 

0.50 1.6869 1.7333 1.7953 1.8258 1.8348 

0.75 2.2582 2.4388 2.7880 3.1147 3.4144 

1.00 2.5904 2.8733 3.4829 4.1511 4.8778 

1.25 2.3821 2.5787 2.9575 3.3106 3.6324 

1.50 1.8466 1.9002 1.9698 2.0017 2.0086 

1.75 1.3356 1.3150 1.2628 1.2069 1.1534 

0.25 1.2177 1.2002 1.1567 1.1102 1.0655 

0.50 1.7353 1.7815 1.8422 1.8710 1.8782 

0.75 2.3158 2.4996 2.8530 3.1816 3.4808 

1.00 2.5583 2.8327 3.4233 4.0697 4.7719 

1.25 2.1896 2.3589 2.6853 2.9902 3.2694 

1.50 1.5808 1.6218 1.6772 1.7054 1.7149 

1.75 1.0847 1.0695 1.0323 0.9924 0.9538 

0.25 1.2292 1.2121 1.1698 1.1244 1.0806 

0.50 1.7570 1.8032 1.8634 1.8914 1.8980 

0.75 2.3391 2.5247 2.8807 3.2106 3.5099 

1.00 2.5301 2.8004 3.3819 4.0179 4.7085 

1.25 2.0860 2.2438 2.5482 2.8330 3.0944 

1.50 1.4546 1.4915 1.5427 1.5704 1.5816 

1.75 0.9732 0.9609 0.9305 0.8975 0.8651 
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Table 2. Relative efficienc the estimator y for θ  with respect under LL d δ. 

0.25 .5 

to *T  F for n = 15 and different values of a, d an

a     δ d   0 1 1.5 2 

0.25 1  1  1.0109 0.9659 0.9182 .0624 .0484

0.50 1.2457 1.2660 1.2949 1.3099 1.3134 

0.75 1.4014 1.4590 1.5717 1.6804 1.7841 

1.00 1.4912 1.5691 1.7308 1.9004 2.0780 

1.25 1.4755 1.5432 1.6762 1.8048 1.9277 

1.50 1.3723 1.4048 1.4538 1.4835 1.4967 

–0.05 

–0.25 

0.25 

0.05 

1.75 1.2137 1.2068 1.1766 1.1323 1.0812 

0.25 1.0718 1.0584 1.0219 0.9777 0.9308 

0.50 1.2612 1.2825 1.3130 1.3291 1.3335 

0.75 1.4171 1.4759 1.5911 1.7021 1.8080 

1.00 1.4875 1.5658 1.7285 1.8991 2.0777 

1.25 1.4557 1.5196 1.6447 1.7654 1.8807 

1.50 1.3262 1.3532 1.3930 1.4159 1.4246 

1.75 1.1480 1.1375 1.1038 1.0595 1.0107 

0.25 1.0895 1.0773 1.0428 1.0004 0.9548 

0.50 1.2898 1.3132 1.3470 1.3656 1.3718 

0.75 1.4427 1.5043 1.6247 1.7407 1.8513 

1.00 1.4875 1.5645 1.7244 1.8920 2.0674 

1.25 1.4012 1.4580 1.5689 1.6757 1.7775 

1.50 1.2222 1.2406 1.2665 1.2796 1.2822 

1.75 1.0133 0.9990 0.9631 0.9215 0.8782 

0.25 1.0979 1.0862 1.0527 1.0112 0.9664 

0.50 1.3031 1.3274 1.3630 1.3829 1.3900 

0.75 1.4528 1.5158 1.6390 1.7577 1.8708 

1.00 1.4803 1.5569 1.7158 1.8825 2.0568 

1.25 1.3675 1.4210 1.5257 1.6263 1.7221 

1.50 1.1660 1.1812 1.2021 1.2119 1.2127 

1.75 0.9462 0.9313 0.8959 0.8566 0.8164 

 
etter than an improved esti ator in a wid e of 

d R. S. Chhikara, “The Inverse Gaussian 

Distribution  Its Statisti ation— ,” 
Journal of the Royal Statistical Society, Vol. 40, No. 3, 

b
w

m e rang δ  
hich is defined here as the ratio between the true value 

and guess (prior point) value of the unknown parameter 
under the LLF. Thus, we suggest using the Minimax es-
timator under LLF for estimating the measure of disper-
sion under the Shrinkage setup. 
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