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Abstract 
In this paper we consider the homothetic motion of Lorentzian circle by studying the scalar cur-
vature for the corresponding cyclic surface locally. We prove that if the scalar curvature   is 
constant, then 0 = . We describe the equations that govern such surfaces. 
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1. Introduction 
Homothetic motion is general form of Euclidean motion. It is crucial that homothetic motions are regular mo-
tions. These motions have been studied in kinematic and differential geometry in recent years. An equiform 
transformation in the n-dimensional Euclidean space n  is an affine transformation whose linear part is com-
posed from an orthogonal transformation and a homothetical transformation add see [1]-[3]. Such an equiform 
transformation maps points n∈x   according to 

( ), , , .nx s x d SO n s d++ ∈ ∈ ∈                             (1) 

The number s is called the scaling factor. A homothetic motion is defined if the parameters of (1), including s, 
are given as functions of a time parameter t. Then a smooth one-parameter equiform motion moves a point x via 
( ) ( ) ( ) ( ) ( )x t s t t x t d t= + . The kinematic corresponding to this transformation group is called similarity ki-

nematic. See [4]. Recently, the similarity kinematic geometry has been used in computer vision and reverse en-
gineering of geometric models such as the problem of reconstruction of a computer model from an existing ob-
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ject which is known (a large number of) data points on the surface of the technical object [5] [6]. Abdel-All and 
Hamdoon studied a cyclic surface in 5 . In this sense, they proved that such surface in 5  is in general con-
tained in a canal hypersurface [7]. Solouma ([8]-[10]) studied locally some geometric problems on surfaces ob-
tained by the equiform motion up to the first order. In Minkowski (semi-Euclidean) space, hyperbolas (Lorent-
zian circles) play role in Euclidean space [11]. 

In this work we consider the homothetic motion of the hyperbolas(Lorentzian circles) 0c . Let 0Σ  and Σ  
be two copies of Euclidean space n . Under a one-parameter homothetic motion of moving space 0Σ  with 
respect to fixed space Σ , we consider 0

0c ⊂ Σ  which is moved according homothetic motion. The point paths 
of the Lorentzian circle generate a cyclic surface X, containing the position of the starting Lorentzian circle. At 
any moment, the infinitesimal transformations of the motion will map the points of the Lorentzian circle 0c  
into the velocity vectors whose end points will form an affine image of 0c  that will be, in general, a Lorentzian 
circle in the moving space Σ . Both curves are planar and therefore, they span a subspace W of n , with 

( )dim 5W ≤ . This is the reason because we restrict our considerations to dimension 5n = . 
Let ( )x φ  be a parametrization of 0c  and ( ),X t φ  the resultant surface by the homothetic motion. We 

consider a certain position of the moving space, given by 0t = , and we would like to obtain information about 
the motion at least during a certain period around 0t =  if we know its characteristics for one instant. Then we 
restrict our study to the properties of the motion for the limit case 0t → . A first choice is then approximate 

( ),X t φ  by the first derivative of the trajectories. The purpose of this paper is to describe the cyclic surfaces 
obtained by the homothetic motion of the Lorentzian circle and whose scalar curvature   is constant. 

The proof of our results involves explicit computations of the scalar curvature   of the surface ( ),X t φ . 
As we shall see, equation constant=  reduces to an expression that can be written as a linear combination of 
the hyperbolic functions cosh nφ  and sinh nφ , n∈ , namely, ( )4

1 cosh sinh 0n nn E n F nφ φ
=

+ =∑  and nE  
and nF  are functions on the variable t. In particular, the coefficients must vanish. The work then is to compute 
explicitly these coefficients nE  and nF  by successive manipulations. The authors were able to obtain the re-
sults using the symbolic program Mathematica to check their work. The computer was used in each calculation 
several times, giving understandable expressions of the coefficients nE  and nF . 

This paper is organized as follows: In Section 2, we obtain the expression of the scalar curvature   for the 
cyclic surfaces obtained by homothetic motion of Lorentzian circle. In successive Sections 3 and 4, we distin-
guish the cases 0=  and 0≠ , respectively. Finally, in Section 5 explicit examples of surfaces with 0=  
and 0≠  are given. 

2. Scalar Curvature of Cyclic Surfaces 
In two copies 0Σ , Σ  of semi-Euclidean 5-space 5 , we consider a unit Lorentzian circle 0c  in the 1 2x x - 
plane of 0Σ  centered at the origin and represented by 

( ) ( )Tcosh ,sinh ,0,0,0 , , .x tφ φ φ φ= ∈  

Under a one-parameter homothetic motion of 0c  in the moving space 0Σ  with respect to fixed space Σ . 
The position of a point ( ) 0x φ ∈Σ  at “time” t may be represented in the fixed system as 

( ) ( ) ( ) ( ) ( ), , , ,X t s t t x d t t Iφ φ φ= + ∈ ⊂ ∈                        (2) 

where ( ) ( ) ( ) ( ) ( ) ( )( )T
1 2 3 4 5, , , ,d t b t b t b t b t b t=  describes the position of the origin of 0Σ  at the time t,  

( ) ( )( )ijt a t= , 1 , 5i j≤ ≤  is a semi orthogonal matrix and ( )s t  provides the scaling factor of the moving  

system. For varying t and fixed ( )x φ , ( ),X t φ  gives a parametric representation of the path (or trajectory) of 
( )x φ . Moreover we assume that all involved functions are of class 1C . Using the Taylor’s expansion up to the 

first order, the representation of the cyclic surface is 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ), 0 0 0 0 0 0 0 0 ,X t s s s t x d tdφ φ = + + + + 
 

    

where ( )⋅  denotes the differentiation with respect to t. 
As homothetic motion has an invariant point, we can assume without loss of generality that the moving frame 

0Σ  and the fixed frame Σ  coincide at the zero position 0t = . Then we have 
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( ) ( ) ( )0 , 0 1 and 0 0.I s d= = =  

Thus 

( ) ( ) ( ), ,X t I s I t x tdφ φ′ ′= + +Ω +    

where ( ) ( )0 kωΩ = = , 1 10k≤ ≤  is a semi skew-symmetric matrix. In this paper all values of , is b  and 
their derivatives are computed at 0t =  and for simplicity, we write s′  and ib′  instead of ( )0s  and ( )0ib  
respectively. In these frames, the representation of ( ),X t φ  is given by 

( )

1 1 2 3 4 1

2 1 5 6 7 2

3 2 5 8 9 3

4 3 6 8 10 4

5 4 7 9 10 5

1 cosh
1 sinh

, 1 0
1 0

1 0

X s t t t t t b
X t s t t t t b
X t t t s t t t t b
X t t t s t t b
X t t t t s t b

ω ω ω ω φ
ω ω ω ω φ

φ ω ω ω ω
ω ω ω ω
ω ω ω ω

′ ′+      
      ′ ′+      
      ′ ′= − + +
      ′ ′− − +      

     ′ ′− − − +       

,



 

or in the equivalent form 

( )

1 1 1

2 21

3 5 32

4 6 43

5 7 54

1
1

, cosh sinh .

X t bs t
X s t bt
X t t t bt
X t bt
X t bt

ω
ω

φ φ ω φω
ωω
ωω

′′+      
       ′ ′+      
       ′= + − +
       ′−      

      ′−      

                     (3) 

For any fixed t in the above expression (3), we generally get an ellipse centered at the point ( )1 2 3 4 5, , , ,t b b b b b′ ′ ′ ′ ′ . 
The latter ellipse reduce to a Lorentzian circle subject to the following conditions 

2 5 3 6 4 7
2 2 2 2 2 2 2 2
1 2 3 4 1 5 6 7

0,

,a

ω ω ω ω ω ω

ω ω ω ω ω ω ω ω

+ + =

+ + + = − − − =
                         (4) 

where a +∈ . We now compute the scalar curvature of the cyclic surface ( ),X t φ . The tangent vectors to the 
parametric curves of ( ),X t φ  are 

( ) ( ) ( ) ( ) ( ) ( ), , , .tX t s I x d X t I s I t xφφ φ φ φ′ ′ ′ ′= +Ω + = + +Ω    

A straightforward computation leads to the coefficients of the first fundamental form defined by T
11 t tg X X= , 

T
12 tg X Xφ= , T

22g X Xφ φ= . The scalar product in the above equation in Lorentzian metric. According to the in-
ner product this equation tends to T

11 t tg X Xε= , T
12 tg X Xφε= , T

22g X Xφ φε=  where 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

ε

− 
 
 
 =
 
 
 
 

 

is the sign matrix. Then we get 

( ) ( ) ( ) ( )
( ) ( ) ( )
( ) ( )

T T
11

T
12

T
22

,

,

.

g s I x d s I x d

g x s I x d

g x x

φ ε φ

φ ε φ

φ ε φ

 ′ ′ ′ ′= −Ω + +Ω +   
′ ′ ′= +Ω +  
′ ′=

 

Under the conditions (4) a computation yields 
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( )

11

12 1 1 2

2 2
22

cosh sinh ,
1 1sinh cosh ,
2 2

1 2 ,

g

g b t b t

g s t t s a

α β φ γ φ

ω β φ γ φ

= + +

   ′ ′= − + + −   
   
′ ′= + + −

                        (5) 

and 

( )
( )

2 2 2 2 2 2 2 2 2 2
1 2 3 4 1 2 3 4 5

1 1 2 2 3 3 4 4 5

2 1 1 5 3 6 4 7 5

,
2 ,

2 .

s b b b b b a
s b b b b b

s b b b b b

α ω ω ω ω

β ω ω ω ω

γ ω ω ω ω

′ ′ ′ ′ ′ ′= − − + + + + + + + + +

′ ′ ′ ′ ′ ′= − + + + +

′ ′ ′ ′ ′ ′= − − + + + +

                   (6) 

The Christoffel symbols of the second kind are defined by 

2

1

1 ,
2

jm ijk km im
ij

m j i m

g gg
g

x x x=

 ∂ ∂∂
Γ = + −  ∂ ∂ ∂ 

∑  

where { },ix t φ∈ , { }, ,i j k  are indices that take the value 1 or 2 and ( )lmg  is the inverse matrix of ( )ijg . 
From here, the scalar curvature of ( ),X t φ  is defined by 

( )
2 2

, , 1 1
.

l l
ijij l m m lil

ij lm il jm
i j l ml j

g
x x= =

 ∂Γ ∂Γ
= − + Γ Γ −Γ Γ 

∂ ∂  
∑ ∑  

Although the explicit computation of the scalar curvature   can be obtained, for example, by using the 
Mathematica programme, its expression is some cumbersome. However, the key in our proofs lies that one can 
write   as 

( )
( )

( )

( )

2

0
4

0

cosh sinhcosh ,sinh
.

cosh ,sinh cosh sinh

n n
n

n n
n

A n B nn n
n n C n D n

φ φφ φ
φ φ φ φ

=

=

+
= =

+

∑

∑





                    (7) 

The assumption of the constancy of the scalar curvature   implies that (7) converts into 

( ) ( )cosh ,sinh cosh ,sinh 0.n n n nφ φ φ φ− =                         (8) 

Equation (8) means that if we write it as a linear combination of the functions { }cosh ,sinhn nφ φ  namely,  
( )4

0 cosh sinh 0n nn E n F nφ φ
=

+ =∑ , the corresponding coefficients must vanish. From here, we will be able to  
describe all cyclic surfaces with constant scalar curvature obtained by the homothetic motion of the Lorentzian 
circle 0c . As we will see, it is not necessary to give the (long) expression of   but only the coefficients of 
higher order for the hyperbolic functions. 

We distinguish the cases 0=  and 0≠ . 

3. Cyclic Surfaces with  = 0 
In this section we assume that 0=  on the surface ( ),X t φ . From (7), we have 

( ) ( )

( ) ( )

2

0
4

0

cosh ,sinh cosh sinh 0

cosh ,sinh cosh sinh 0

n n
n

n n
n

n n A n B n

n n C n D n

φ φ φ φ

φ φ φ φ

=

=

= + = 

= + ≠


∑

∑




                   (9) 

We distinguish different cases that fill all possible cases (Note that we have all solutions by using the sym-
bolic program Mathematica under the condition 0s′ ≠ ). 
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3.1. Case ′ ′1 2 0b b= =  
At 0β =  and 0γ = , the coefficients 0n nA B= =  for 0 2n≤ ≤  and the coefficients 0n nC D= =  for 
0 4n< ≤ . Also, since sinh 0 0=  implies that 0 0D = . But 2 4

0 1 14 2 0C αω ω= − + =  if and only if 2
1α ω= . 

That’s means ( )cosh ,sinh 0n nφ φ =  gives contradiction with Equation (9), so we have 2
1α ω≠ . We then 

conclude the following theorem. 
Theorem 3.1. Let ( ),X t φ  be a cyclic surfaces obtained by the homothetic motion of Lorentzian circle c0 

and given by (3) under condition (4). Assume 1 2 0b b′ ′= = , then 0=  on the surface if and only if the fol-
lowing conditions hold: 

1) 2
1α ω≠  

2) 3 2 4 3 5 4 3 5 4 6 5 70, 0,b b b b b bω ω ω ω ω ω′ ′ ′ ′ ′ ′+ + = + + =  
In particular, if 0ib′ =  for 3 5i≤ ≤ , then circles generating the cyclic surfaces are coaxial. 

3.2. Case ′ ′1 2 0b b = , But either ′1b  or ′2b  Is Not Zero 
We have two possibilities: 

1) If 1 0b′ ≠  and 2 0b′ = , then we have 0β = , 0γ = , the coefficients 0n nA B= =  for 0 2n≤ ≤  and the  

coefficients 4
4 1

1
4

C b′=  that’s means the equation ( )cosh ,sinh 0n nφ φ ≠ . From expression (6), we have two  

conditions 

3 2 4 3 5 4 1

1 1 3 5 4 6 5 7 0
b b b b s
b b b b
ω ω ω
ω ω ω ω
′ ′ ′ ′ ′+ + =
′ ′ ′ ′+ + + =

 

2) If 1 0b′ =  and 2 0b′ ≠  , then we have 0β = , 0γ = , the coefficients 0n nA B= =  for 0 2n≤ ≤  and  

the coefficients 4
4 2

1
4

C b′=  that’s means the equation ( )cosh ,sinh 0n nφ φ ≠ . From expression (6), we have 

3 5 4 6 5 7 2

2 1 3 2 4 3 5 4 0
b b b b s
b b b b
ω ω ω
ω ω ω ω
′ ′ ′ ′ ′+ + =
′ ′ ′ ′+ + + =

 

Theorem 3.2. Let ( ),X t φ  be a cyclic surfaces obtained by the homothetic motion of Lorentzian circle c0 
and given by (3) under condition (4) hold: 

1) Assume 1 0b′ ≠  and 2 0b′ = , then 0=  on the surface if and only if the following conditions 

3 2 4 3 5 4 1

1 1 3 5 4 6 5 7

,
0.

b b b b s
b b b b
ω ω ω
ω ω ω ω
′ ′ ′ ′ ′+ + =
′ ′ ′ ′+ + + =

 

2) Assume 1 0b′ =  and 2 0b′ ≠ , then 0=  on the surface if and only if the following conditions 

3 5 4 6 5 7 2

2 1 3 2 4 3 5 4

,
0.

b b b b s
b b b b
ω ω ω
ω ω ω ω
′ ′ ′ ′ ′+ + =
′ ′ ′ ′+ + + =

 

3.3. Case ′ ′1 2 0b b ≠  
If 1 2 0b b′ ′ ≠ , then we have 0β γ= = , then coefficients 0n nA B= =  for 0 2n≤ ≤ , 0nC ≠  and 0nD ≠  for 
0 4n≤ ≤  that’s means the equation (8) hold (i.e., ( )cosh ,sinh 0n nφ φ ≠ ). From expression (6), we have the 
two conditions 

1 1 3 2 4 3 5 4 1

2 1 3 5 4 6 5 7 2

b b b b b s
b b b b b s
ω ω ω ω
ω ω ω ω
′ ′ ′ ′ ′ ′+ + + =
′ ′ ′ ′ ′ ′+ + + =

 

Theorem 3.3. Let ( ),X t φ  be a cyclic surfaces obtained by the homothetic motion of Lorentzian circle c0 
and given by (3) under condition (4). Assume 1 2 0b b′ ′ ≠ , then 0=  on the surface if and only if the following 
conditions hold: 

1) 1 1 3 2 4 3 5 4 1 ,b b b b b sω ω ω ω′ ′ ′ ′ ′ ′+ + + =  
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2) 2 1 3 5 4 6 5 7 2 .b b b b b sω ω ω ω′ ′ ′ ′ ′ ′+ + + =  

4. Cyclic Surfaces with  ≠ 0 
In this section we assume that the scalar curvature   of the cyclic surface ( ),X t φ  obtained by the homo-
thetic motion of Lorentzian circle 0c  and given by (3) under condition (4) is a non-zero constant. The identity 
(8) writes then as 

( ) ( )( )
4

0
cosh sinh 0.n n

n
E t n F t nφ φ

=

+ =∑                            (10) 

Following the same scheme as in the case 0=  studied in Section 3, we begin to compute the coefficients 
nE  and nF . Let us put 0t = . 
1) CASE 1 2 0b b′ ′= = . The coefficients 0E , 2E  and 2F  are 

( ) ( )2 2 4 2 2
0 1 1

32 2 ,
2

E α αω ω β γ  = − + + − + 
 

   

( )2 2
2

3 ,
2

E β γ  = + + 
 

  

2
32 .
2

F βγ  = + 
 

  

If 0 2 2 0E E F= = = , we distinguish different possibilities: 

1. 2
1α ω= , γ β= − , 3

2
−

= , we conclude that 

2 2 2 2 2
3 4 5 1

3 2 4 3 5 4 3 5 4 6 5 7

2 3a b b b s
b b b b b b

ω
ω ω ω ω ω ω

′ ′ ′ ′= − − − + +
′ ′ ′ ′ ′ ′+ + = + +

 

2. 2
1α ω= , γ β=  and 3

2
−

= , we have the same result as in the above case. 

3. 2
1α ω= , 0γ β= =  and 3

2
−

= , we have the same result as in cases from (1) and (2). 

From (1), (2) and (3) we have 2
1α ω= , γ β= ± , 3

2
−

=  under the following conditions 

2 2 2 2
3 4 5 1

3 2 4 3 5 4 3 5 4 6 5 7

2 3a b b b s
b b b b b b

ω
ω ω ω ω ω ω

′ ′ ′ ′= − − − + +
′ ′ ′ ′ ′ ′+ + = + +

 

4. 2
1α ω= , 0γ β= = , 1= − . The coefficients 1E  and 1F  are 

( )( )2
1 14 1 ,E β α ω= + −  

( )( )2
1 14 1 .F γ α ω= + −  

If 1 1 0E F= = , we have the following conditions 
2 2 2 2

3 4 5 1

3 2 4 3 5 4 3 5 4 6 5 7

2 3a b b b s
b b b b b b

ω
ω ω ω ω ω ω

′ ′ ′ ′= − − − + +
′ ′ ′ ′ ′ ′+ + = + +

 

2) CASE 1 2 0b b′ ′ = , but either 1b′  or 2b′  is not zero. We have two possibilities: 

1. If 1 0b′ ≠  and 2 0b′ = , then the coefficient 4
4 1

1 0
4

E b′= = , implies that 1 0b′ = : contradiction 
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2. If 2 0b′ ≠  and 1 0b′ = , then the coefficient 4
4 2

1 0
4

E b′= = , implies that 2 0b′ =  which gives a contra-

diction also. 
3) CASE 1 2 0b b′ ′ ≠ . The computations of ( )2 2

4 1 2 1 2 0F b b b b′ ′ ′ ′= − + =  implies that 1 2 0b b′ ′= = , contradiction. 
As conclusion of the above reasoning, we conclude the following theorem. 

Theorem 4.1. Let ( ),X t φ  be a cyclic surfaces obtained by the homothetic motion of Lorentzian circle 0c   

and given by (3) under condition (4). Assume that 1 2 0b b′ ′= = , then the scalar curvature 1= −  or 3
2
−

=   

on the surface if and only if the following conditions hold: 
2 2 2 2

3 4 5 1

3 2 4 3 5 4 3 5 4 6 5 7

2 3a b b b s
b b b b b b

ω
ω ω ω ω ω ω

′ ′ ′ ′= − − − + +
′ ′ ′ ′ ′ ′+ + = + +

 

5. Examples of a Cyclic Surfaces with  = 0 and  ≠ 0 
In this section, we construct two examples of a cyclic surfaces ( ),X t φ  with constant scalar curvature 0=  
and 0≠ . The first example corresponds 0=  with the case 1 2 0b b′ ′ ≠ . In the second example, we assume 

0≠  and 1 2 0b b′ ′= = . 
Example 1. Case 1 2 0b b′ ′ ≠ . Let now the semi orthogonal matrix 

( )
2

cosh sinh 0 0 0
sinh cosh 0 0 0

,sin sinh 0 cos sin cosh 0
0 0 sin cos sin cos
0 0 0 sin cos

t t
t t

t t t t t t
t t t t

t t

 
 
 
 =
 

− − 
 
 

                 (11) 

We assume ( ) ets t =  and ( ) ( )T, ,0,0,0d t t t= , then 

1 8 10

1 2 3 4 5

1, 1 and 0 for 2,3,4,5,6,7,9,
1,

1; 0.

k k
s
b b b b b

ω ω ω ω= = = − = =
′ =
′ ′ ′ ′ ′= = = = =

 

Theorem 3.3 says that 0= . In Figure 1, we display a piece of ( ),X t φ  of Example 1 in axonometric view- 
point ( ),Y t φ . For this, the unit vectors ( )4 0,0,0,1,0E =  and ( )5 0,0,0,0,1E =  are mapped onto the vectors 
( )1,1,0  and ( )0,1,1  respectively [2]. Then 

 

  
(a)                                                      (b) 

Figure 1. In (a), we have a piece of a cyclic surface foliated by a Lorentzian circle in axonometric view ( ),Y t φ  with zero 

scalar curvature ( )0= ; in (b) we have the corresponding surface ( ),X t φ  with Equation (2) that approximates. 
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( )

1
1

, cosh sinh0 0 0
0 0 0
0 0 0

t t t
t t t

X t φ φ φ

+     
     +     
     = + +
     
     
     
     

 

and 

( )
1

, cosh 1 sinh
0 0 0

t t t
Y t t t tφ φ φ

+     
     = + + +     
     
     

 

and both ( ),X t φ  and ( ),Y t φ  parametrize domains of the 1 2x x -plane. 
Example 2. Case 1 2 0b b′ ′= = . Consider the semi orthogonal matrix 

( ) 2

cosh cos sinh 0 sin sinh 0
sinh cosh 0 0 0

,0 0 cos sin sin cos
0 0 sin cos 0

sin sinh 0 sin cosh 0 cos

t t t t t
t t

t t t t t
t t

t t t t t

 
 
 
 =
 

− 
 − 

              (12) 

Let ( ) ets t =  and ( ) ( )T0,0, , ,d t t t t= , then 

1 8 9

1 2 3 4 5

1 and 0 for 2,3,4,5,6,7,10,
1,

0; 1.

k k
s
b b b b b

ω ω ω ω= = = = =
′ =
′ ′ ′ ′ ′= = = = =

 

Theorem 4.1 says that 1= −  or 3
2
−

= . In Figure 2, we display a piece of ( ),X t φ  of Example 2 in  

axonometric viewpoint ( ),Y t φ . Then 
 

   
(a)                                                             (b) 

Figure 2. In (a), we have a piece of a cyclic surface foliated by a Lorentzian circle in axonometric view ( ),Y t φ  with non- 

zero scalar curvature ( )1= − ; in (b) we have the corresponding surface ( ),X t φ  with Equation (2) that approximates. 
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( )

0 1
0 1

, cosh sinh0 0
0 0
0 0

t t
t t

X t t
t
t

φ φ φ

+     
     +     
     = + +
     
     
     
     

 

and 

( )
1 1

, 2 cosh 1 sinh
1 0 0

t t
Y t t t tφ φ φ

+     
     = + + +     
     
     

 

and both ( ),X t φ  and ( ),Y t φ  parametrize domains of the 1 2x x -plane. 
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