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Abstract 
In this paper, the Adomian Decomposition Method (ADM) and the Differential Transform Method 
(DTM) are applied to solve the multi-pantograph delay equations. The sufficient conditions are 
given to assure the convergence of these methods. Several examples are presented to demonstrate 
the efficiency and reliability of the ADM and the DTM; numerical results are discussed, compared 
with exact solution. The results of the ADM and the DTM show its better performance than others. 
These methods give the desired accurate results only in a few terms and in a series form of the so-
lution. The approach is simple and effective. These methods are used to solve many linear and 
nonlinear problems and reduce the size of computational work. 

 
Keywords 
Multi-Pantograph Delay Differential Equations, Adomian Decomposition Method (ADM), 
Differential Transform Method (DTM), Convergence of Adomian Decomposition Method 

 
 

1. Introduction 
Pantograph is a device located on the electriclocomotive. The first time, electric locomotive was made in Amer-
ica in 1851. It was commissioned in 1895. Mathematical model of pantograph was first developed by Taylor and 
Ockendon (1971) [1]. Pantograph equations belong to a special class of functional-differential equations with 
proportional delays and arise in many applications such as, astrophysics, nonlinear dynamical systems, probabi- 
lity theory on algebraic structures, electro dynamics, quantum mechanics and cell growth, number theory, mix-
ing problems, population models, etc. 
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In recent years, the multi-pantograph delay differential equations were studied by many authors. For examples, 
Li and Liu [2] applied the Runge-Kutta methods to the multi-pantograph delay equation. Evans and Raslan [3] 
used the Adomian decomposition method for solving the delay differential equation. Keskin et al. [4] applied 
the differential transform method to obtain the approximate solution. Sezer and Dascioglu [5] developed and ap-
plied the Taylor method to the generalized pantograph equation with retarded case or advanced case. Brunner [1] 
used the collocation methods for pantograph-type Volterra functional equations with multiple delays. Yu [6] ap-
plied the variational iteration method to the multi-pantograph delay equation. Sezer et al. [7] worked approxi- 
mate solution of multi-pantograph equation with variable coefficients. Geng, F. Z. and Qian, S. P. [8] worked the 
Reprociding Kernel Medhod to Solving Singularly Perturbed Multi-Pantograph Delay Equations. Cherruault, Y., 
Adomian, G., Abbaoui, K. and Rach, R. [9] worked on Convergence of Decomposition Method. Ismail et al. [10] 
gave the numerical solutions of the Korteweg-De-Vries (KDV) and modified Korteweg-De-Vries Equations. 
El-Safty et al. [11] studied on the 3-h step spline function approximation to the solution of delay dynamic sys-
tem. Saeed and Rahman [12] established the differential transform method to solve systems of linear or non-linear 
delay differential equation. 

A numerical method based on the Adomian Decomposition Method (ADM) which has been used from the 
1970s to the 1990s by George Adomian [13] [14]. The differential transform method (DTM) has been success-
fully developed by Zhou (1986) in electric circuit analysis. DTM has been used to solve linear and nonlinear 
differential equations [15]. 

ADM and DTM have been shown to solve effectively, easily and accurately a large class of linear and nonli-
near, ordinary, partial, deterministic or stochastic differential equations with approximate solutions which con-
verge rapidly to accurate solutions [3] [4] [13] [14]. The basic motivation of this work is to apply the ADM and 
DTM to the DDE. It is well known now in the literature that this algorithm provides the solution in a rapidly 
convergent series [3] [4]. ADM and DTM are very effective and convenient for solving multi-pantograph equa-
tions [3] [4]. 

This study is presented as follows: In second section, we start by presenting ADM and DTM to solve mul-
ti-pantograph delay differential equations. In third section, we continue to the presentation of the convergence of 
ADM with Theorem 3.1 and Definition 3.2. In fourth section, these methods are shown and compared by four 
examples by taking various values for t and error evaluation is made. Also, we have plotted the graphs for nu-
merical solutions of ADM and DTM and exact solution. 

We examined that multi-pantograph delay differential equations are solved by several methods. Thus, we 
wanted to show up that may be more efficient, simpler and reliable the solution treatment of the ADM for multi- 
pantograph delay differential equations. The results show that the ADM is more powerful method than other 
methods for multi-pantograph delay differential equations.   

2. Analysis of Adomian Decomposition Method and the Differential Transform  
In this paper, we consider the following multi-pantograph equations [16], 

( ) ( ) ( ) ( ) ( ) ( )
1

, 0
k

i i
i

y t a t y t b t y q t f t t T
=

′ = + + ≤ <∑                          (1) 

( ) 0 ,y t y=                                                 (2) 

( ) ( ) ( ), ,ia t b t f t  are analytical functions, 0 1, 1, ,iq i k< < =  . 
Using the ADM, the differential operator L is given by 

( ) ( )d. .
d

n

nL
t

=                                          (3) 

The inverse operator 1L− , this is n-fold integral operator defined by  

( ) ( )1
-times0

. . d
t

n
L t− = ∫                                              (4) 

operating with 1L−  on Equation (1), it then follows 
Ly Ry Ny f+ + =                                        (5) 

http://en.wikipedia.org/wiki/George_Adomian
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where the method defines Ny  the nonlinear term by the Adomian polynomials [3] [13] [14] 

0
,n

n
Ny A

∞

=

= ∑  

nA  are Adomian polynomials that can be generated for all forms of nonlinearity as 

1 0

1 d ,
! d

n n
i

n in
i

A N y
n α

α
α = =

  
=   

  
∑  

where 0,1,2,3,i =   

( )0 0A f y=  

( )1 1 0
0

d
d

A y f y
y

 
=  

 
 

( ) ( )
2 2

1
2 2 0 02

0

d d
d 2! d

yA y f y f y
y y

    
= +    

   
 

( ) ( ) ( )
2 3 3

1
3 3 0 1 2 0 02 3

0 0 0

d d d .
d d 3! d

yA y f y y y f y f y
y y y

      
= + +      

      
 

Operating with 1L−  on Equation (5), it then follows 
1 1 1 1L Ly L Ry L Ny L f− − − −+ + =                                        (6) 

( ) 1 1 10y y L f L Ry L Ny− − −= + − −                                       (7) 

1 1 1
00 0 0n n nn n ny y L f L R y L A∞ ∞ ∞− − −

= = =
= + − −∑ ∑ ∑                               (8)  

to determine the components 

( ) , 0.ny t n ≥  

First, we identify the zero component ( )0y t  by all terms that arise from the boundary conditions at t = 0 and 
from integrating the source term if it exists. Second, the remaining components of ( )y t  can be determined in a 
way such that each component is determined by using the preceding components [3] [13] [14] 

( ) 1
0 0 ,y y L f−= +                                        (9)  

and Equation (8) gives for 1,2,3,n =   in other words, the method introduces the recursive relation 
1 1

1 0 0
1 1

2 1 1
1 1

3 2 2

1 1
1n n n

y L Ry L A

y L Ry L A

y L Ry L A

y L Ry L A

− −

− −

− −

− −
+

= − −

= − −

= − −

= − −



                                    (10) 

The Adomian decomposition method assumes that the unknown function ( )y t  can be expressed by an infi-
nite series of the form [3] [13] [14] 

( ) 0 1 2
0

n
n

y t y y y y
∞

=

= = + + +∑   

so that the components ( )ny t  will be determined recursively [3] [13] [14] 

Differential Transform Method 
Differential transform of function ( )y x  is defined as follows [17], 
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( ) ( )
0

d1
! d

k

k
x

y x
Y k

k x
=

 
=  

  
                                   (11) 

In Equation (11), ( )y x  is original function and ( )Y k  is the transformed function, which is called the T- 
function. Differential inverse transform of  ( )Y k  is defined as  

( ) ( )
0

k

k
Y k x Y k

∞

=

= ∑                                      (12) 

From Equations (12) and (11), we obtain  

( ) ( )
0

0

d
! d

kk

kk
x

y xxy x
k x

∞

=
=

 
=  

  
∑                                  (13) 

Equation (13) implies that concept of differential transform is derived from Taylor series expansion, but the 
method does not evaluate the derivatives symbolically. 

In actual applications, the function ( )y x  is expressed by the a finite series and Equation (12) can be written as  

( ) ( )0
m k
ky x x Y k
=

= ∑                                     (14) 

Equation (13) implies that is 

( ) ( )
1

k

k m
y x x Y k

∞

= +

= ∑  

is negligibly small. In fact, m is decided by the convergence of natural frequency in this study. 
The following theorems that can be deduced from Equations (11) and (12) are given below, see [17] [18]. 
Theorem 1 If ( ) ( ) ( )y t g t h t= + , then ( ) ( ) ( )Y k G k H k= + . 
Theorem 2 If ( ) ( )y t cg t= , then ( ) ( )Y k cG k= . 

Theorem 3 If ( ) ( )d
d

k

k

g t
y t = , then ( ) ( ) ( )!

!
k n

Y k G k n
k
+

= + . 

Theorem 4 If ( ) ( )y t g t a= + , then ( ) ( )N h k
m k

h
Y k a G m

k
−

=

 
=  

 
∑ , for N →∞ . 

Theorem 5 If ( ) 1ty t g a
a

 = ≥ 
 

, then 

( ) ( ) ( ) ( )0

1
1 , for .

h kN h k h k h k
h

h k

ha
Y k t a G h N

ka

−
− − −

=

−  
= − → ∞ 

 
∑  

3. The Convergence of ADM 
The Adomian Decomposition Method is equivalent to the sequence defined as follows [19] [20] 

1 2 3 ,n nS y y y y= + + + +  

by using the iterative scheme 

( )
0

1 0

0,

n n

S
S N y S+

=

= +
                                      (15) 

and related to the functional equation 

( )0 .S N y S= +  

The numerical solution of Equation (15) was used fixed-point theorem by Cherruault [19] [20]. 
Theorem 3.1 Let N be an operator from Hilbert space H in to H and y be the exact solution of functional equ-

ation. 
0 ii y∞

=∑ , which is obtained by ADM iterative scheme, converges to y when 0 1α∃ ≤ < , 1k ky yα+ ≤ ,  
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{ }0k N∀ ∈  . 
Proof See [19] [20]. 
Definition 3.2 For every { }0i N∈   we define  

1 , 0,

0, 0,

i
i

ii

i

y
y

y

y
α

+
≠

= 
 =

 

Corollary 3.3 In Theorem 4.1, 
0 ii y∞

=∑  converges to exact solution y, when  

0 1, 1,2,3,i iα≤ < =   

4. Numerical Examples  
In this section, four experiments of multi-pantograph delay differential equations are given to illustrate the effi-
ciency of the ADM and the DTM. The examples are computed using Maple 15. Results obtained by the methods 
are compared with the exact solution of each example and found to be good agreement with each other. The ab-
solute errors in tables are given at selected points. 

Example 4.1 Consider the following linear multi-pantograph delay equation of the first-order [16] 

( ) ( )

( )

25 4 9 1, 0 1,
6 2 3

0 1,

t ty t y t y y t t

y

   ′ = − + + + − < ≤   
   

=
 

which has the exact solution, 

( ) 2 367 1675 121571 .
6 72 1296

y t t t t= + + +  

Using the ADM, we get according to Equations (3)-(10), we obtain recursive formula for 0,1,2,3,k =  , 

( )1
1

5 4 9
6 2 3k k k k

t ty L y t y y−
+

    = − + +    
    

 

3
0

11
3

y t t= + −  

2
1

73 25
6 12

y t t= −  

2 3
2

1825 175
72 216

y t t= −  

3
3

12775
1296

y t=  

Thus, we obtain 

( ) 2 3
ADM

0

67 1675 121571 0 0
6 72 1296n

n
y t y t t t

∞

=

= = + + + + + +∑   

The solution by DTM method: 
By using Theorems of DTM, we have following recurrence relation: 

( ) ( ) ( ) ( ) ( )5 4 91 2 , 1, 0 1
1 6 2 3k k

Y k
Y k k k k Y

k
δ δ + = − + + + − − ≥ = +  

 

Utilizing the recurrence relation, we find 
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( ) ( ) ( ) ( ) ( )67 1675 121571 , 2 , 3 , 4 0, 5 0,
6 72 1296

Y Y Y Y Y= = = = =   

Finally, the differential inverse transform of ( )Y k  gives 

( ) ( )
0

k

k
y t Y k t

∞

=

= ∑  

we obtain the following series solution  

( ) ( ) 2 3
DTM

0

67 1675 121571 0 0
6 72 1296

k

k
y t Y k t t t t

∞

=

= = + + + + + +∑   

the closed form of above solution is   

( ) 2 367 1675 121571
6 72 1296

y t t t t= + + +  

which is exactly the same as the exact solution. 
The obtained results (ADM and DTM) are exactly the same with the one found by exact solution. It is clear 

from Table 1 and Figure 1 that the three results not only give rapidly convergent series but also accurately 
compute the solutions. 

Using our methods, we choose 6 points on [0, 1] respectively. The numerical results are given in the following 
Table 1. 

Example 4.2 Solve the following nonlinear pantograph delay equation of first-order [3] 

( )

( )

21 2 , 0 1
2

0 0,

ty t y t

y

 ′ = − ≤ ≤ 
 

=
 

which has the exact solution, ( ) sin .y t t=  
The solution by ADM method: 
By applying the ADM, according to Equations (3)-(10), we obtain 

21 2
2
tLy y  = −  

 
 

( )1 1 2 12 1
2
tL Ly L y L− − −  = − +  

  
 

( ) 1 22
2
ty t L y t−   = − +  

  
 

 

 
Figure 1. The obtained solution of the multi-pantograph delay equation [ADM solution (red), DTM 
solution (black), EXACT solution (blue)].                                                              
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Table 1. Comparison of exact solution, the (ADM) and the (DTM) of y(t).                                                     

t 
Solution 

ADM DTMy y  exacty  Error 

0 1 1 0 

0.2 4.238932099 4.238932099 0 

0.4 9.789234568 9.789234568 0 

0.6 18.10116667 18.10116667 0 

0.8 29.62498766 29.62498766 0 

1 44.8109568 44.8109568 0 

 
We have solved this problem using the proposed method. Recursive formula and the sequence of approximate 

solution are obtained as follows: 

( ) 1 2
1 2

2k k
ty t L y−

+
  = −   

  
 

3

10, ( )
6
tk y t= = −  

( )
5 7

2 31, , 2, ( )
120 5040
t tk y t k y t= = = = −  

thus, we obtain: 

( )
3 5 7

ADM
0 3! 5! 7!n

n

t t ty t y t
∞

=

= = − + − +∑   

Using to convergence of ADM’s method, 

1 , 0 1, 0,1,2,3, .i
i i

i

y i
y

α α+= ≤ < =   

0

1

2

0.5000000000 1
0.02380952381 1
0.01302729713 1

α
α
α

= <

= <
= <


 

Here, the values of iα  are less than one and hence ADM is convergent. 
The solution by DTM method: 
By using Theorems of DTM, we have following recurrence relation: 

( ) ( ) ( ) ( ) ( ) ( )
0

1 1 2 , 1, 0 1
k

r
k Y k k Y r Y k r k Yδ

=

+ + = − − ≥ =∑  

Utilizing the recurrence relation, we find 

( ) ( ) ( ) ( ) ( )1 11 1, 2 0, 3 , 4 0, 5 ,
3! 5!

Y Y Y Y Y= = = − = =   

Finally, the differential inverse transform of ( )Y k  gives 

( ) ( )
0

k

k
y t Y k t

∞

=

= ∑  

we obtain the following series solution  
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( )
3 5 7

DTM 3! 5! 7!
t t ty t t= − + − +  

The obtained results (ADM and DTM) are exactly the same with each other. Increasing the approximation 
order up to the absolute differences between the numerical solutions are calculated for and comparisons have 
been made with known results as reported in Table 2 and Figure 2.  

Example 4.3 Consider the following linear multi-pantograph delay equation of the first-order [21]. 

( ) ( ) ( ) ( )
( )

3 0.4 0.4 0.1 , 0 1,

0 2.127,

y t y t y t y t t

y

′ = − + + < ≤

=
 

The solution by ADM method: 
By applying the ADM, according to Equations (3)-(10), we obtain 

( ) ( ) ( )3 0.4 0.4 0.1Ly y t y t y t= − + +  

( ) ( ) ( )( )1 1 3 0.4 0.4 0.1L Ly L y t y t u t− −= − + +  

( ) ( ) ( ) ( )( )12.127 3 0.4 0.1y t L y t y t y t−= − − −  

We have solved this problem using the proposed method. Recursive formula and the sequence of approximate 
solution are obtained as follows: 

( ) ( ) ( )( )1
1 3 0.4 0.4 0.1k k k ky L y t y t y t−

+ = − + +  

 

 
Figure 2. The obtained solution of the multi-pantograph delay equation [ADM solution (red), DTM solution (blue), EXACT 
solution (black)].                                                                                                   

 
Table 2. Comparison of the ADM, the DTM and the EXACT solution.                                                         

t 
Solution 

ADMy  DTMy  EXACTy  

0 0 0 0 

0.2 0.198669331 0.198669 0.198669333 

0.4 0.389418342 0.389418 0.389418342 

0.6 0.564642446 0.564642 0.564642446 

0.8 0.717355723 0.717356 0.717355723 

1 0.841468254 0.841471 0.841468254 
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0 2.127,y =  

10, 3.403200000k y t= = −  
2

21, 4.662384000k y t= =  
3

32, 4.547378527k y t= = −  
4

43, 3.380293828k y t= =  

Thus, we obtain: 

( ) 2 3 4
ADM 2.127 3.403200000 4.662384000 4.547378527 3.380293828y t t t t t= − + − + −  

The solution by DTM method: 
By using Theorems of DTM, we have following recurrence relation: 

( ) ( ) ( )
12 11 3 , 1, 0 2.127

1 5 10

k

k

Y k
Y k k Y

k

+  + = − + + ≥ =  +    
 

Using the recurrence relation, we find 

( ) ( ) ( )
( ) ( )
1 3.403200000, 2 4.662384000, 3 4.547378528,

4 3.380293829, 5 2.021185850,

Y Y Y

Y Y

= − = = −

= = − 

 

Finally, the differential inverse transform of ( )Y k  gives 

( ) ( )
0

k

k
y t Y k t

∞

=

= ∑  

we obtain the following series solution  

( ) 2 3 4 52.127 3.403200000 4.662384000 4.547378528 3.380293829 2.021185850y t t t t t t= − + − + − +  

The obtained results (ADM and DTM) are exactly the same with the one found by exact solution. It is clear 
from Table 3 and Figure 3 that the two results not only give rapidly convergent series but also accurately com-
pute the solutions. 

Example 4.4 Consider the following linear multi-pantograph delay equation of the first-order [21]. 

( ) ( ) ( ) ( )
( )

0.8 0.5 0.1 0.25 , 0 1,

0 1,

y t y t y t y t t

y

′ = − − + < ≤

=
 

The solution by ADM method: 
By applying the ADM, according to Equations (3)-(10), we obtain 

( ) ( ) ( )0.8 0.5 0.1 0.25Ly y t y t y t= − − +  

( ) ( ) ( )( )1 0.8 0.5 0.1 0.25Ly L y t y t u t−= − + +  

( ) ( ) ( ) ( )( )11 0.8 0.5 0.1 0.25y t L y t y t y t−= − + −  

We have solved this problem using the proposed method. Recursive formula and the sequence of approximate 
solution are obtained as follows: 

( ) ( ) ( )( )1
1 0.8 0.5 0.1 0.25k k k ky L y t y t y t−

+ = − + +  

( ) 00 1, 1,y y= =  

10, 1.700000000k y t= = −  
2

21, 1.68750000k y t= =  
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Figure 3. The obtained solution of the multi-pantograph delay equation [ADM solution (red), DTM solution (blue)].                 

 
Table 3. Comparison of the ADM solution ADMy  with the solution by DTM is illustrated.                                      

t 
Solution 

ADMy  DTMy  

0 2.127 2.127 

0.2 1.601884802 1.601884802 

0.4 1.307204736 1.307204736 

0.6 1.219390558 1.219390558 

0.8 1.444676306 1.444676306 

1 2.219099301 2.219099301 

 
3

32, 0.4650651040k y t= = −  
4

43, 0.1277112376k y t= =  

Thus, we obtain: 

( ) 2 3
ADM

0
1 1.700000000 1.68750000 0.4650651040n

n
y t y t t t

∞

=

= = − + − +∑   

Using to convergence of ADM’s method, 

1 , 0 1, 0,1,2,3, .i
i i

i

y i
y

α α+= ≤ < =   

0

1

2

0.9926470588 1
0.2755941357 1
0.2746093751 1

α
α
α

= <

= <
= <


 

according to the obtained results ADM is convergent to the exact solution. 
The solution by DTM method: 
By using Theorems of DTM, we have following recurrence relation, 
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( ) ( ) ( )0.8 0.11 1 , 1, 0 1
1 2 4k k

Y k
Y k k Y

k
 + = − + + ≥ = +  

 

Utilizing the recurrence relation, we find 

( ) ( ) ( ) ( )1 1.7, 2 1.168750000 , 3 0.4650651042, 4 0.127712376,Y Y t Y Y= − = = − =   

Finally, the differential inverse transform of ( )Y k  gives 

( ) ( )
0

k

k
y t Y k t

∞

=

= ∑  

we obtain the following series solution  

( ) 2 3 41 1.7 1.168750000 0.4650651042 0.127712376y t t t t t= − + − + −  

The obtained results (ADM and DTM) are exactly the same with the one found by exact solution. It is clear 
from Table 4 and Figure 4 that the two results not only give rapidly convergent series but also accurately com-
pute the solutions. 

5. Conclusion 
It has been the aim of this paper to show that it appears natural to approximate the solution of multi-pantograph 
delay differential equation by ADM and DTM. We obtain the high approximate solutions or the exact solutions 
within a few iterations. It is concluded from figures and tables that the successive approximations methods are 
an accurate and efficient method to solve multi-pantograph delay differential equations. Some numerical exam-
ples have been provided to illustrate that the present method is effective in accuracy and convergence speed. In a 
word, the ADM and DTM show that the techniques are reliable, powerful and promising methods for linear  
 

 
Figure 4. The obtained solution of the multi-pantograph delay equation [ADM solution (red), DTM solution (blue)].                
 
Table 4. Comparison of the ADM solution ADMy  with the solution by DTM is illustrated.                                      

t 
Solution 

ADMy  DTMy  

0.0 1 1 

0.2 0.703233817 0.703233817 

0.4 0.480505241 0.480505241 

0.6 0.316847313 0.316847313 

0.8 0.202197189 0.202197189 

1.0 0.131396133 0.131396133 
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and nonlinear problems. 
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