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Abstract

In this paper, we will establish the sufficient conditions for the oscillation of solutions of neutral
time fractional partial differential equation of the form

n

Djj‘{p(t)Djjt (u(x,t)+2ci (Hu(x t—r, )ﬂ+q(x,t)u(x,t)+gqj (x.1) f, (u(x,t—o-j ))

i1
S
=a(t)Au(x,t)+>a (t)Au(x,t— g )+ F(x,t)
k=1
for (x, t) eQxR, =GR, = [0,00), where Q isabounded domainin R" witha piecewise smooth
boundary 0Q,a e (0,1) is a constant, nyt is the Riemann-Liouville fractional derivative of order
a of uwithrespecttotand A isthe Laplacian operator in the Euclidean N-space R" subject to

ou(x,t)

the condition J‘i«m,t0 >0. +g(x,t)u(x,t)=0, (x,t)edQxR,.

o P(t)
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1. Introduction

Fractional differential equations are generalizations of classical differential equations to an arbitrary non integer
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order and have gained considerable importance due to the fact that these equations are applied in real world
problems arising in various branches of science and technology [1]-[5]. Neutral delay differential equations have
applications in electric networks containing Lossless transmission lines and population dynamics [6]. Several
papers concerning neutral parabolic differential equations have appeared recently (for example see [7] [8]). The
oscillatory theory of solutions of fractional differential equations has received a great deal of attention [9]-[15].
In the last few years, many authors studied the oscillation of a time-fractional partial differential equations [16]
[17]. There are only few works has been done on oscillation of forced neutral fractional partial differential equa-
tions.

In this paper, we study the oscillatory behavior of solutions of nonlinear neutral fractional differential equa-
tions with forced term of the form

n

(E) Df{p(t)nyI (u(x,t)+Zci (Hu(xt-7 )H+q(x,t)u(x,t)+%qj (xt)f, (u(x,t—o-j ))

:a(t)Au(x,t)+§ak (D) Au(xt-p)+F(xt), (xt)eQxR, =G,

where Q is a bounded domain in R" with a piecewise smooth boundary 6Q,a € (0,1) isaconstant, D
is the Riemann-Liouville fractional derivative of order o of u with respect to t and A is the Laplacian
operator in the Euclidean N-space R" (ie) Au(x,t):Zil(azu(x,t)/éxf). Equation (E) is supplemented
with the boundary condition
ou(x,t
(B,) %+g(x,t)u(x,t)=0,(x,t)e&QxR+,
v

where y is the unit exterior normal vector to 0Q and g(x,t) is non negative continuous function on
0QxR,, and

(B2) u(x,t)=0,(x,t)ed0QxR,.

In what follows, we always assume without mentioning that

T odt

(A) peC((0,);R,) suchthat [——<oo;

fo
(A)) ¢ eC*((0,0);R,),0<> "¢ <1,and 7=max{r,7,-,7,}, 7, arenon negative constants,

iel,={12--,n};

(As) q,q; eC(G_; R+) and q(t)=min g q(xt),q;(t)=min _5q;(xt),jel, ={12 -, m};

(A)) a,a €C((0,%);R,), p, and o, are nonnegative constants, jel, ={L2,--,m}; kel ={12,s};

(As) f,eC(R;R) areconvexin (0,x0),and uf (u)>0 for u=0,jel,;

(Ag) FeC(G;R,) suchthat jQF(x,t)dx <0.

A function ueC* (G)ﬂC"‘ (c‘;) is called a solution of (E), (B1) ((E), (By)) if it satisfies in the domain G
and the boundary condition (B;), (B;). The solution of u(x,t) of equations (E), (B;) or (E), (B,) is said to be
oscillatory in the domain G if for any positive number 4 there exists a point (X,,t,) € Qx[z,) such that
u(xo,to) =0 holds. Particularly no work has been known with (E) and (B,) up to now. To develop the qualita-
tive properties of fractional partial differential equations, it is very interesting to study the oscillatory behavior of

(E) and (B,). The purpose of this paper is to establish some new oscillation criteria for (E) by using a genera-
lized Riccati technique and integral averaging technique. Our results are essentially new.

2. Preliminaries

In this section, we give the definitions of fractional derivatives and integrals and some notations which are use-
ful throughout this paper. There are several kinds of definitions of fractional derivatives and integrals. In this
paper, we use the Riemann-Liouville left sided definition on the half-axis R, . The following notations will be
used for the convenience.

v(t):ijgu(x,t)dx, where Q] = [ dx, (1)

[
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A=A, Q16 =00). &= &= 1oy

Definition 2.1. The Riemann-Liouville fractional partial derivative of order 0<a <1 with respect to t of a
function u(x,t) isgiven by

(Djtu)(x,t):=§F(ll_a).[;(t—v)“u(x,v)dv )

provided the right hand side is point wise defined on R, where I" is the gamma function.
Definition 2.2. The Riemann-Liouville fractional integral of order « >0 of a function y:R, — R on the
half-axis R, is given by
1
17y)(t)=——
(1y)(0) =+ @
provided the right hand side is pointwise defined on R, .
Definition 2.3. The Riemann-Liouville fractional derivative of order « >0 of a function y:R, - R on
the half-axis R, is given by

j;(t —v)a_1 y(v)dv fort>0 (3)

[a]
(ny)(t):z%(l[““y)(t) for t>0 4)

provided the right hand side is pointwise defined on R, where [of] is the ceiling function of « .
Lemma 2.1. Let y be the solution of (E) and

K(t)=[ (t-v) “y(v)dv for (0,1)and t>0.
Then K'(t)=T(1-a)(D{y)(t).

3. Oscillation of (E), (B1)

We introduce a class of function P. Let
D, ={(t,s):t>s>t,} and D={(t;s):t=s>t,}.

The function H eC(D,R) issaid to belong to the class P, if
Cy) H(tt)=0 for t>t,, H(t,s)>0 for (t,s)eDy;
oH (t,9)
0s

Lemma 3.1. If u(x,t) is a solution of (E), (B,) for which u(x,t)>0 in G; =Qx[T,»),T >0, then the
function v(t) is defined by (1) satisfy the fractional differential inequality

C,) H hasa continuous and non-positive partial derivative

on D, with respecttos.

n

D* { p(t)D* (v(t)+Zci (t)v(t-r, )H+q(t)v(t)+j2m;qj (t) f;(v(t-o;))<0 ()

i=1

with v(t)>0v(t-z)>0,iel, and v(t-o;)>0,jel, for t=T.
Proof. Let t>T. Integrating (E) with respectto X over Q, we have
IQDﬁl{p(t)Djt(u(x,t)+iZ;ci(t)u(x,t—ri)ﬂdx+_[Qq(x,t)u(x,t)dx+;Iqu(x,t)fj(u(x,t—o-j))dx

(6)
= a(t)jQAu (x,t)dx + kz:;ak (t)_[QAu(x,t = p)dx+ JQF (x,t)dx.
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Using Green’s formula and boundary condition (B,) it follows that

ou(x,t
J.QAu(x,t)dx:.[m#dS :—.[mg(x,t)u(x,t)ds <0, t>T )
and
jﬂAu(x,t—pk)dx=ijdsz—mg(x,t—pk)u(x,t—pk)ds <0, t>T, kel,. )

oy
Also from (Ag), (As), we obtain
.[Qq(x,t)u(x,t)dxzq(t)J'Qu(x,t)dx, t>T 9)
and using and Jensen’s inequality we get
[La;(xt) fu(xt-o;)dx
20, (0], f; (u(et-0,))dxz 0, (0 [ 0, ([ju (xt -0y o) o), =T,

In view of (1), (7)-(10) and A, (6) yield
Df{p(t)Df{v(tHZci(t)v(t—ri)ﬂ+q(t)v(t)+2qj(t)fj(v(t—o-j))go, t>T.

This completes the proof.

Lemma 3.2. Let u(x,t) be a positive solution of the (E), (B;) defined on G, :Qx[T,oo),T >0 then the
function z(t)=v(t)+> " ¢ (t)v(t—7) where v(t) is defined by (1) satisfies one of the following con-
ditions:

1) z(t)>0, D¢z(t)>0, D¢ (p(t)De2(t)) <0,

2) 2(t)>0, DIz(t)<0, DY (p(t)DIz(t))<0, forall t=T.

Proof. From Lemma 3.1, the function v(t) satisfies the inequality (5) and v(t)>0, v(t—7)>0,iel, and
v(t-o;)>0,jel, for t=T. From (5) and the hypothesis we have z(t)>0 and Df(p(t)DIz(t))<0
for t>T. Hence (p(t) sz(t)) is monotonic and eventually of one sign. This completes the proof.

Lemma 3.3. Let u(x,t) be a positive solution of (E), (B) defined on G; and suppose Case (1) of Lemma
3.2 holds, then

(10)

v(t)z(l—gci (t)jz(t),fortzT >1,. (11)

Proof. From Case (I), z(t) is positive and increasing for t>T, and by the definition of z(t), we obtain
z(t)=v(t) and

V() =2()- T e Ov(t-7)22(t)- 216 (D) 2(t-7) 2 (1- X7 (1) 2(t) for t>T.
This completes the proof.

Lemma 3.4. Let u (x,t) be a positive solution of (E), (B;) defined on G, and suppose Case (2) of Lemma
3.2 holds, then

1+ (1)

i=1

v(t—r)z¢z 1—Zn:ci(t) z(t), fort>T. (12)
o] HY

Proof. In this case the function z(t) is positive and nonincreasing for t>T and therefore without loss of
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generality we may assume from the definition of z(t) and v(t) is also nonincreasing for t>T. Hence
z(t)=v(t)+ > ¢ (t)v(t-7)<v(t—7)+ D ¢ (t)v(t—7) whichimplies (12).
This completes the proof.

Theorem 3.1. Assume that #2 a; for u=0, where «; are positive constants jel .Let hH:D—>R
be continuous functions such that H € P and
—aa—:l(g,s)= h(&,s)y/H (&) forall (&,5)eD,. (13)
Assume also that there exists a positive nondecreasing function peC”’([tO,oo);R+) such that
_ 1 % TRy /3(8)5(5—0)@2(5,5)}
limsu H(&,s)A(s)p(s)- ds = oo, 14
where
A(t):q(t)[l—iz_llc, (t)j+§ajqj(t)[1—§c, (t-o, )j
A(e)=a() (135 (0) |« Sy (0) 1- B 5 -) ),
i=: j=1 i=1
S (£ 5)= A(¢) _
Q(&,s)= h(§,s)—m,/H (&,5), o =max{oy, -, 0,}
and
liminf ji ; j é(l’)dl’ ds >1 (15)
s p(s)| . e

where B(&)=Y] naiq’ ()
al+ Zi:lci (§ +7-0,

Then every solution u(x,t) of (E), (By) is oscillatory in G.

Proof. Suppose that u(x,t) is a non oscillatory solution of (E), (B;), which has no zero in Qx[to,oo) for
some t, >0. Without loss of generality we may assume that u(x,t)>0, u(x,t—7,)>0, u(x,t—p,)>0 and
u(xt-o;)>0, in Qx[T,), T>ty, kel jel,, iel, where T ischosen so large that Lemmas 3.1 to
3.4 hold for t>T. From Lemma 3.1 the function v(t) defined by (1) satisfy the inequality

),ﬁ(é):p(t) and ¢ =min{o;,-,0,}>7.

n

Df{p(t) D (v(t)+;ci (t)v(t-7 )H+q(t)v(t)+2qj (1) f;(v(t-o,)) <0. (16)
Let z(t)=v(t)+X ¢

j=1
Case (I): For this case z
(16) yields

D? [ p(t)sz(t)]+q(t)[1—iZn;ci (t)jz(t—a)J{jf‘Iajqj (t)(l—izn;}?i (t-o, )ﬂz(t—a) <0, t>T. (17)

t)v(t—z;). Then z(t) satisfies either Case (1) or Case (2) of Lemma 3.2.
t)>0, Dz(t)>0 and D; [ p(t) sz(t)] <0,t>T. Using Lemma 3.3 and (As),

Define the function W by the generalized Riccati substititution

(18)
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then

W (t) Dfz(t-o)

DIW (t) <D (p(t))—=—A(t) p(t)-W (t)— : 19

(1) (0) 510 A1) )0 (0 S 09
From Df(p(t)sz(t))SO for t>T we have p(t-o)D{z(t-o)>p(t)D{z(t), and consequently

by (19) for t>T , we obtain that

; _DE(A() _wr(y
o 1 (0) = W 0~ AD () B @
Let W(t)=W(&). Then DIW (t)=W'(&) and DZp(t)=p'(£), so the last inequality becomes
PPN i () I N L (5.
w(e)= 26 Ae) (05 @

A&
substituting £ with s multiplying both sides of (21) by H(§ ) and integrating from & to & for
&>¢, wehave

le (&,5)A(s)p(s)ds %[ (&, s)é((ss))VV(s)ds—!lH (§,s)V\7’(s)ds—le (f,s)%ds
_H s (s)- sﬁ,(s)~s+ H(es) V'(s) |ds
e e )| -2 e e)-n (50 2 i o) DS i)
H(E & ()] { (o) ﬁ(S)ﬁ(S—G)Q(éS)] s+ LR g ¢ 5y

&

Thus forall &>¢ > ¢, we conclude that
£

I{H (&,5)A(s)p(s)- MQZ (§,s)}ds <H(£E)W (&) (22)

4 4

Then, by (22) and (Cy), for &> ¢ > &, we obtain
¢

] {H (é,S)A(S)ﬁ(s)—wciz (é,s)}ds SH(EEW (&) <H(£6)W (&) (23)

4
Then, by (14) and (C,), we have
¢

J| a8 2(5)- 2 19 s < ) [IA O TIEY IS

%o

oo H (65 §o)

which contradicts (14).
Case (I1): Assume that z(t) satisfies (11). Using hypothesis and Lemma 3.3, we have from (16) t>T >t,

imss (6518602501 ) o= A s oM 5) <

Df(p(t)Df‘z(t))+Zm: a; 9,() z(t+r—a*)so. (25)

n

= 1+Zci(t+r—0'j)
i
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Let z(t)=2(¢&). Then DW (t)=W'(¢£) and DZp(t)=p'(£), so the last inequality becomes

2(¢+7-0")<0. (26)

(p(£)7() +2|

Integrating (26) from &—o to & we have

p(&)7'(£)-p(é-0")7(&-07)+ j-*g(s)f(§+r—0'*)ds <0,

. 1 %= _ “ -
7 +£ﬁ(§)§JG*B(S)dS]Z(§+T_G )<o.

condition (15) implies that the last inequality has no eventually positive solution, a contradiction. This completes
the proof.

Corollary 3.1. Let conditions of Theorem 3.1 be hold. If the inequality (16) has no eventually positive
solutions, then every solution u(x,t) of (E), (By) is oscillatory in G.

Corollary 3.2. Let assumption (14) in Theorem 3.1 be replaced by

IimgggmiH (&5)A(s) 3(s)ds = oo
and
¢
Ilmigg m <§ 2 ! Q’(&5)ds < oo,

Then every solution u(x,t) of (E), (B) is oscillatory in G.

Let H (5,3):(5—5)"'1,(5,5)6 D for some integer n>2. Then Theorem 3.1, implies the following the
result.
Corollary 3.3. Let assumption (14) in Theorem 3.1 be replaced by

limsup(&—&,) " j (&-s) A(s)ﬁ(s)——ﬁ(s) Iz(s_(y)(é—s)"'3 ((n—l)—

Eow &

for some integer n > 3. Then every solution u (x,t) of (E), (By) is oscillatory in G.
Next we establish conditions for the oscillation of all solutions of (E), (B,) subject to the following con-
ditions:

©

dt
Cg) {[W < 00;

u
Cs) fil )>M >0 for u=#0 and ye(1,0) isaratioof odd integers.
u’

Theorem 3.2. In addition to conditions (Cs) and (C,) assume o; >z forall jel . Then all the solutions
of (E), (B,) are oscillatory if

$1:0,(5)1- 3 (s-0)| @50, o5 -

and
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%;qj(s)[l—g](ﬂr—oj )jy Q7 (s)ds = oo, (28)

N © ds
where =| —.

Proof. Suppose that u(x,t) is a non oscillatory solution of (E), (By), which has no zero in Qx|[t,,0) for
some t, >0. Without loss of generality we may assume that u(x,t)>0, u(x,t—7;)>0, u(x,t—p,)>0 and
u(x,t—aj)>0, in Qx[t, o), t>t, kel jel, iel,. Then the function v(t) defined by (1) satisfies
the inequality (16).

Let z(t)=v(t)+>." ¢ (t)v(t—7). Then z(t)>0 for t>t. From (16), we have

[Eid]

DY (p(t)Drz(t))<0 fort>T >t (29)
and p(t)D“z(t)< p(T)Drz(T) for t=T, D z(t)< p(T)p[(’f)Z(T)
Let z(t)=2(&). Then Dfz(t)=2'(£), therefore the above inequality becomes 7'(&)< ﬁ(fop)é')(fo)
Integrating the last inequality from &, to &, we have
6)-2(&)< D& ()] 51y €26 (30)
since Z(&) is bounded above. From (30) we obtain
5 - o d
2(50)2_(p(§o)z(§o))ji r)(ss)’ 5250
Letting & — oo, we obtain
2(50)2—(f)(fo)Z'(fo))Q(.fo), 5250- (31)

where Q(&) is defined by (28) and & is an arbitrary large number.

From Lemma 3.2 there are two possible cases for z(t). First we consider that z(t)>0, D{z(t)>0 for
t>T. Let z(t)=2(£). Then Dfz(t)=2'(£),q;(t)=0(¢), v(t-0;)=7(&-0;), using this in (16) we
have

’

(b(6)7(2)) +220,(8)F, (v(¢-0y)) <0,
Integrating the last inequality from &, to &, we have

E; (B(s) Z’(s))' ds + jzri:j;qj (s)f, (\7(5 -0, ))ds <0. (32)

DT P(&)7(6) M [, (31T (s-0)) | 7 (50 )as <0 @)

M, joqj (s)[l—znfi (s-o, )jy 7 (s-0,)ds < p(&)7'(&):

j=1

Letting & — oo, we have
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iMj .4, (S)(l—gﬁi(s—aj )jy 7’ (s-0;)ds <o, (34)

j=1

For this case z(t)=1Z(¢) is increasing, so there exists a number ¢ such that Z(&)>c>0 for £>¢&,.
Thus there exists a & > &, such that

1(é-0,)2Q(&-0y), forézg, (35)

and jel,, since Q(£)—>0 as &
From (34) and (35) we have

iij;Qj(s)(l‘g~i(S—aj )JV Q (S—O'j)dS<oO (36)

j=1

which contradicts (27).
Next we consider the case that z(t)>0 and D{z(t)<0 for t>T. From (31), we have

2(8)=-(p($)7'(£))Q($) forg=4&,. @37)
Consider Df(p(t)sz(t))%l, since y isan odd ratio integer.
D¢ ( p(t)sz(t))ﬁ+1 =(-r+1)(p(t) sz(t))ﬁy D¢ (p(t)DIz(t)).

Let z(t)=2(&). Then Dfz(t)=17'(¢)

(p(&)2() ™) = (7 +1(p(&)2(2))” (B(2)7(2))
<rp@r (@) (S0,

@@ Mg o) 7(0)

< —(y—l)g'\/' i9j (5)[1_;::@ (f‘”_o'j )Jy Q" (¢)

here we have used (C,), (37) and Lemma 3.4. Integrating the last inequality from &, to &, we obtain

(=03, (8, 6) 135 s+ 7-01) | @ (o)t = (p(&)21(5)

and so letting & — oo, we obtain

iMi ;qj (5)(1—27 (s+7-0, )]y Q7 (s)ds <o

j=1

which contradicts (28). This completes the proof.
Next we consider (E), (B;) subject to the following conditions:
fo(u
Cs) #2 M;>0 for u#0 and y<(0,1) isaratioof odd positive integers.
u

Theorem 3.3. In addition to conditions (Cs) and (Cs) assume that
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I;i~i(s)(1_i~i(s_ai )Jyd(s_aj)dsz‘”’ (38)

and
j;gqj(s)(l—gﬁi<s+r—0'j )Jy(j(s)ds:oo. (39)

Then every solution u(x,t) of (E), (By) is oscillatory in G.
Proof. Without loss of generality we may assume that u(x,t)>0, u(x,t—z)>0,u(xt-p,)>0 and
u(x,t—aj)>0, in Qx[tl,oo), t>t,kel, jel,, jel,, isasolution of (E), (By). Therefore

Df(p(t)sz(t))SOfortzT >t,.

If D{z(t)>0 for t>T, we have from (34) and (36). For large t we have Q(t)=Q(&)<1 and
Q7 (£)<Q(&). Therefore from (36), we obtain

[139,0,5)1-35 (51| Q5o Jos <

which contradicts (38). For this case D{'z(t)<0 for t>T, from (33)

B(E)Z(E)-p(&)7(&) IZM (1 Zc (S+z’ a)ij’(Hr—aj)dssO, for&> &,

i=1

_ Loz ( By (S+r—o'j)j727(s+r—aj)ds for &> &,

i=1
We consider the fractional differential D¢z (t) where &>0 suchthat 2c<1-y
-D?z% (t) = -2z (t) DIz (t).
Let z(t)=Z(&). Then Dfz(t)=127'(¢).
_(225(5)) ——28( 251 )

(2“ ) j ( -3¢ (s+r a)jy27(s+r—aj)ds

i=1

>

n

Ui ()(1 S (s+e- a)jyzwl(m_a,.)ds
gl

according as z>o; or r<o; and Z(&) is decreasing. Since ¢, >7(£)>0 for £>& where ¢, >0 is
a constant, there exist positive number k such that

Integrating and rearranging we obtain

(&)= (¢)= J;,Zm:'\" o (5)(1‘;} (s+7-0, )j/ (J.fins'

10
(o)

M:

¢ (s+7-0, ))y 77477 (s)ds

i=1
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and so letting & — o, we have

I. ZM (1 Zc (s+7-0, )] Q(s)ds <o
which contradicts (39). This completes the proof.

4. Oscillation of (E), (B2)

In this section we establish sufficient conditions for the oscillation of all solutions of (E), (B,). For this we need
the following:
The smallest eigen value £, of the Dirichlet problem

Aw(x)+ Bo(x)=0 in Q
w(x)=0 on oQ,
is positive and the corresponding eigen function ¢(x) is positive in Q..

Theorem 4.1. Let all the conditions of Theorem 3.1 be hold. Then every solution of (E), (B,) oscillatesin G.
Proof. Suppose that u(x,t) is a non oscillatory solution of (E), (B,), which has no zero in Qx[to,oo) for
some t, >0. Without loss of generality, we may assume that u(x,t)>0, u(x,t—7)>0, u(xt-p,)>0 and
u x,t—crj)>0 in Qx[ti,oo),tizto,ke I, jel, iel,. Muliplying both sides of the Equation (E) by
¢

x)>0 and integrating with respectto x over Q.
We obtain for t>t,

E[Df{p(t) D, (U(th)+iZ::Ci (t)u(x,t—ri)Hqﬁ(x)dx+jQq(x,t)u(x,t)¢(x)dx
+i_|'ﬂqj(x,t) fj(u(x,t—o-j )>¢(x)dx (40)
= a(t)IQAu(x,t)¢(x)dx+gak (t)J'QAu(x,t—pk )¢(x)dx+jQF(x,t)¢(x)dx.

Using Green’s formula and boundary condition (B,) it follows that

JAu(xt)g(x)dx = [ u(x,t) Ag(x)dx =4, [ u(x.t)¢(x)dx <0, t=t, (41)
and for kel,.
JAu(xt=p)g(x)dx=[u(xt-p)Ap(x)de =4, [u(xt-p,)d(x)dx<0, t2t, (42
Also from (Ag), (As), we obtain
Jaa(xu(xt)p(x)dx=q(t) [ u(xt)g(x)dx, t=t, (43)

and using and Jensen’s inequality we get
[a;(x0)f (u(x,t—o—j)) X)dx =g (1) [ f; ( (x,t—aj))qﬁ(x)dx

4 (44)
>q (t)jﬂgﬁ(x)dxfi(J'Qu(x,t—oj)¢(x)dx)(fg¢(x)dx> ,t>tand jel .

Set
v(t)= [u(xt)g(x)dx([ #(x)dx) ", t=t, (45)

In view of (41)-(45) and (As), (40) yield

(29
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n m

D { p(t)D” {v(t)Jchi (tv(t-7, )ﬂ +q(t)v(t)+ X0, (1) f, (v(t-0;)) <0. (46)

i=1

j=1

for t>t,. Restof the proof is similar to that of Theorems 3.1 and hence the details are omitted.

Using the above theorem, we derive the following Corollaries.

Corollary 4.1. If the inequality (46) has no eventually positive solutions, then every solution u(x,t) of (E),
(B,) is oscillatory in G.

Corollary 4.2. Let the conditions of Corollary 3.2 hold; then every solution u (x,t) of (E), (B») is oscillatory
inG.

Corollary 4.3. Let the conditions of Corollary 3.3 hold; then every solution u (x,t) of (E), (B») is oscillatory
inG.

Theorem 4.2. Let the conditions of Theorem 3.2 hold; then every solution u(x,t)
inG.
Theorem 4.3. Let the conditions of Theorem 3.3 hold; then every solution u(x,t) of (E), (B,) is oscillatory
inG.

The proof Theorems 4.2 and 4.3 are similar to that of Theorem 4.1 and ends details are omitted.

of (E), (B,) is oscillatory

5. Examples

In this section we give some examples to illustrate our results established in Sections 3 and 4.
Example 1. Consider the fractional neutral partial differential equation

5
_| & t4 + ~t2 |u(x,t—4n) (Ev)

5 7 3
= E%t“ +t4 +%t+§\/£t+t2 Au[x,t—z]
RUGNGG . 2
r— r|—

4

for (x,t)e(0,m)x[0,0), with the boundary condition

u(0,t)=u(mt)=0,t>0. (47)

Example 1 is particular case of Equation (E). Here

7

a=1/2,N=1n=1s=1m=1 p(t)=t*, cl(t)zi, 1, =2m, T =max{z,} = 2m,
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5 7
a(t)=| 2" iy "
r

and f (u)=u.
It is easy to see that

q(t)=min, 5 a(xt)= { .

ql(t):minxe(z ql(Xt){z:L K 2t%+ Zmzt;}’
Ae)=a()1-35 (6) |+ S, (0) -3 (=),
Heren=1,m=1, so we have

Take o, =1

A(g)[ L—
T
4

)

Here m=1, n =1 so we have

Consider
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Choose n=3 and p(&)=1, we get

j[(f—s)z A(s)p(s)-p(s) ﬁ(s_g)st

¢ 5 1 7
S | S R S . S L N 2\/%252 1-— 1l (s—am)t |ds
1 TR ey ey ) e
4 4 4
4 5 1 7
<J’ 2)_ ” 3 g 2Ty 2/2x s? |t —(s—4n)4s |ds — o0, 8 — 0.
%

5 2 2

) ()
4 4

Thus all the conditions of Corollary 3.3 are satisfied. Hence every solution of (E;), (47) oscillates in

(0,m)x[0,0). Infact u(x,t)=sinxcost issuch a solution.
Example 2. Consider the fractional neutral partial differential equation

15 1 1 5 1\W 2 5 - 1ot 51
D2 | t*D2 | u(x, )+ Fu(xt=2m) | |+| —| | = || t* +t* +———t2 + 242+t fu| x,t—2
, : 24m\ \ 4 ( 1 n 2

1 2
‘ (3]
4
(E2)
5 ((1\).2 n 22 n n
=- —[1‘(—}] t4+—2t2+\ﬁt2 Au(x,t)+—2\ﬁcosxsint
24n 4 ( 1 T 1 2
(3] (&)
4
for (x,t)e(0,m)x[0,0), with the boundary condition
u (0,t)=u,(mt)=0, t=0 (48)
Here
2 1
a=12,N=1Ln=1s=1m=1p(t)=t*c(t)=7, 7, =2m,
t4

5 (Y2 2 o o2
r=max{z,} =2m, q(x,t)=0, g (x,t) = E(F(ZD t4+t4+—2t2+\/;t2+t ,0, =5m/2,

23 1 1
U:max{al}z%t,al(t):— %[FGD t4 +(%t2+\/%t2 . =0,
)
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It is easy to see that

Take o =1

AE)=| g r(5)] € et [ ; Df L 1[515”)

5(6)-| 2 r(L)] et et §2+§( ji
e (U] o e2)

Consider j[(g—s) A(s )p(s)—m((g—s)”3((n—l)—&(§—s)J }ds

%o
Choose n=3 and p(&)=1, we get

A(s)5(s)-(s) B(s—o) |ds

¢ 2.3 5 1 1 5
=I (5_5)2 L(F(ED s* +s4 +Lzs2 +\/zsz +5s l——:L - _(S_S_ET ds
% 24n 4 ( ( )j T T >
2

2 3 5 1 1 s
52 S r(lj s4 454 +Lzs2 +\/§s2 +5 _(5_5_7:)4 ds — o0, as& — .
24n 4 ( (1)) T 2
I =
4
Thus all the conditions of Corollary 3.3 are satisfied. Therefore every solution of (E,), (48) oscillates in
(0,m)x[0,0). Infact u(x,t)=cosxsint issuch a solution.
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