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Abstract 
We consider a multi server and multichannel real-time system with identical servers (e.g. un- 
manned aerial vehicles, machine controllers, etc.) that provide services for requests of real-time 
jobs arriving via several different channels (e.g. surveillance regions, assembly lines, etc.) working 
under maximum load regime. Each channel has its own constant numbers of jobs inside at any in-
stant. Each channel has its own specifications, and therefore different kinds of equipment and in-
ventory are needed to serve different channels. There is a limited number of identical mainten-
ance teams (less than the total number of servers in the system). We compute analytically steady- 
state probabilities of this system, its availability, loss penalty function and other performance 
characteristics, when both service and maintenance times are exponentially distributed. 
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1. Introduction 
Real-time systems (RTS) are defined as those for which correctness depends not only on the logical properties 
of the computed results, but also on their temporal properties. In RTS, a calculation that uses temporally invalid 
data may be useless and sometimes harmful—even if such a calculation is functionally correct. Examples in-
clude industrial automation, traffic control, aerospace, robotic, intelligence and defense system, telecommunica-
tion and distributed process control, just to name a few. 

Several researchers ([1]-[3]) have proposed a number of classic priority algorithms for scheduling real-time 
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tasks on a single processor. The problem of minimizing the number of processors in multiprocessor computer 
system executing real-time tasks is studied in [4]. 

Different scientific communities are treating RTS problems. During last three decades several meta-heuristic 
methods, such as Tabu Search [5], Simulated Annealing [6] and Greedy Randomized Adaptive Search Proce-
dure [7] are developed. Good surveys on Artificial Intelligence and real-time decision problems (RTDP) are 
given in references [8]-[11]. 

The use of analytical methods of queueing theory [12] and stochastic processes [13] has significant benefits in 
developing RTS. 

We will focus on RTS with a zero deadline for the beginning of job processing. In these RTS, jobs are pro- 
cessed immediately upon arrival, if there are available servers. That part of the job which is not processed im-
mediately is lost forever, since queueing of jobs or their parts are not allowed. The particular interest in such 
RTS is aroused by military intelligence problems involving unmanned aerial vehicles (UAV), which demon-
strate a very high efficiency in many local conflicts. It is proved that the non-mix policy of never relieving an 
operative server maximizes the availability of a multiserver single-channel RTS involving preventive mainten-
ance and working in general regime with any arrival pattern under consideration and constant services and 
maintenance times ([14] [15]). This policy appears to be optimal for any finite time interval, and not only for in-
finite horizon. Multiserver (identical servers) and multichannel (identical channels) RTS [16] [17] (with limited 
and unlimited number of maintenance facilities respectively), working under maximum load regime were treated 
as finite source queues. Two-dimensional birth-and-death processes [18] [19] were applied in analysis of a mul-
tiserver RTS (with ample and limited number of maintenance teams respectively) with two different channels 
operating under a maximum load regime, when both service and maintenance times are exponentially distributed. 
In [20] the results of [18] for 2r ≥  different channels operating under a maximum load regime were extended. 
Optimal assignment probabilities maximizing availability of RTS (with ample and limited number of mainten-
ance teams respectively) with large number of servers and two channels were obtained [21] [22]. Amultiserver 
and multichannel RTS with identical servers and channels and ample maintenance facilities, working in general 
regime with exponentially distributed service, maintenance, jobs inter-arrival and duration times were treated as 
Markov chains [23] in order to obtain various performance characteristics. The researchers [24] [25] obtained 
moments of RTS with ample and limited maintenance facilities respectively. In [26] RTS with preemptive prior-
ities policy were considered. In [27] the RTS with exactly one job in each channel was studied. The researchers 
[28] computed analytically (for exponentially distributed service times) and via Cross Entropy [29]-[31] simula-
tion approach (for generally distributed service times) optimal routing probabilities for RTS with ample main-
tenance facilities. 

This work extends the models [27] [28] as follows. The RTS under consideration assumes the constant num-
ber of jobs, specific for each channel. We compute analytically steady-state probabilities of this system, its 
availability, loss penalty function and other performance characteristics. 

The paper is organized as follows: in Section 2 describes the model; Section 3 provides steady state probabili-
ties; Section 4 presents various performance measures; Finally, Section 5 summarizes our results. 

2. Description of the Model 
We consider a multiserver RTS consisting of N identical servers that provide service for requests of real-time 
jobs arriving via rdifferent channels required to be under nonstop surveillance. There are exactly kr  ( )1kr ≥ , k 
= 1, ∙∙∙, r requests of real-time jobs in k-th channel at any instant (there are no additional job arrivals to the busy 
channel), and therefore kr  servers at most are used to serve the i-th channel (with others being on stand-by or 
providing the service to another channel or in maintenance or waiting for maintenance) at any given time. Thus,  

the total number of operating servers in the system is at most 
1

r

k
k

r
=
∑ . 

Each channel has its own specifications and conditions, etc., and therefore different kinds of equipment and 
inventory are needed to serve different channels. 

A server providing service for the k-th channel is operative for a period of time kS  before requiring kR  
hours of maintenance. kS  and kR  areindependent exponentially distributed random variables with parameters 

kµ  (k = 1, ∙∙∙, r) and λ  respectively. 
It is assumed that there are K ( )K N≤  maintenance teams available to repair (with repair times kR  being 

i.i.d.r.v.) the servers. Thus, a shortage of maintenance facilities is possible. In that case the server waits for 



E. Ianovsky, J. Kreimer 
 

 
370 

maintenance. This server is assigned to the k-th channel with probability kp  (k = 1, ∙∙∙, r). It receives the ap-
propriate kind of maintenance (equipment, programming, etc.), and therefore cannot be sent to another channel. 
Assignment probabilities kp  may depend upon inventory conditions. They also can be used as control para-
meters. The duration kR  of repair is exponentially distributed with parameter λ , and does not depend on the 
channel. After maintenance, the server will either be on stand-by or serving the channel it was assigned to. 

The system works under a maximum load (worst case) of nonstop data arrival to each one of r channels. This 
kind of operation is typical in high performance data acquisition and control systems, such as self-guided mis-
siles, space stations, satellites, etc. 

If, during some period of time of length T, there is no available server to serve one of the jobs, we will say 
that the part of the job of length T is lost. 

Queues of jobs or their parts cannot exist in RTS, nevertheless they can be fitted into a framework of finite 
source queues, while using a dual approach of changing the roles between jobs and servers. 

3. Steady State Probabilities 
Denote: k kpλ λ=  and k k kρ λ µ= , ( )1 2, , , , ,i rn n n n   the state of the system, where kn  (k = 1, ∙∙∙, r) is a 

number of fixed servers assigned to the k-th channel (obviously 
1

r

k
k

n N
=

≤∑ ), and 
1 2, , , rn n np



 the corresponding 

steady state probability. There are 
N r

r
+ 

 
 

 states in total. 

The above RTS can be presented as a closed Jackson queuing network (Figure 1) consisting of N customers (N 
servers of the RTS), r + 1 nodes (r channels and maintenance station of the RTS) with kr  servers at k-th node 
( kr  jobs in the k-th channel of the RTS) (k = 1, ∙∙∙, r) and K servers at r + 1-th station (K maintenance teams of 
the RTS). The network has transition probabilities kp  (assignment probabilities of the RTS) from r + 1-th node 
to k-th one (k = 1, ∙∙∙, r), and transition probabilities from k-th station to r + 1-th are equal to 1. Other transition 
probabilities are equal to 0. Service times at the network stations (operating and maintenance times of the RTS) 
are exponentially distributed. The customers of the network cannot leave it and cannot come to it from outside. 
Thus, the network is a closed Jackson network by definition. 

From the description of the RTS as a closed Jackson network we obtain ([12] [32]) that the steady-state prob 
abilities 

1 2, , , rn n np


 are given by the following: 

Theorem 1: A real-time system with N servers, K ( )K N<  maintenance crews, r ( )2r ≥  different chan- 
nels operating under a maximum load regime with kr  jobs in k-th channels at any instant, and exponentially 
 

 
Figure 1. Closed Jackson network.            
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distributed operating and maintenance times (with parameters kµ  (for the k-th channel (k = 1, ∙∙∙, r)) and λ  
respectively) has following values of the steady-state probabilities 

( ) ( )

1

1 2

min , 

, , , 0, ,0max ,0
1

1

!

min , !min , !

r
i ji

r j j

n N K nr
j

n n n r n r
j

j j ji
i

K Kp p
n r rN n K

ρ=

 
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 

−
=

=

∑

=
 − 
 

∏
∑

 

,              (3.1) 
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,            (3.2) 

where ( )1 2, , , rn n n  is a state of the RTS, kn  is number of fixed servers of the RTS in the k-th channel and 
k k kρ λ µ=  (k = 1,∙∙∙,r). 
We will use the following notations: 
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and 
2) ( ) ( )1, , ,k

N k rP n ρ ρ  the probability that kn  fixed servers are assigned to the k-th channel ( )1,k r= . 

Then, using Theorem 1, we obtain: 
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where 0,kn N= , 1,k r= . 

4. Performance Characteristics 
After the text edit has been completed, the paper is ready for the template. Duplicate the template file by using 
the Save As command, and use the naming convention prescribed by your journal for the name of your paper. In 
this newly created file, highlight all of the contents and import your prepared text file. You are now ready to 
style your paper. 

In this section we show how to obtain some useful performance characteristics of the RTS under considera-
tion. 

Each server can be in one of following states: 
(i) busy (serving a job of one of the channels); 
(ii) in maintenance; 
(iii) on stand-by (for one of the channels); 
(iv) waiting for maintenance. 
Each job of k-th channel ( )1,k r=  can be in one of two positions: 

(i) in service; 
(ii) out of service. 
Keeping in mind that kn  is a number of fixed servers assigned to the k-th channel ( )1,k r= , we can repre- 

sent the number of channels and servers in different positions in terms of kn , namely: 

Number of fixed servers is 
1

r

k
k

n
=
∑ ; 

Number of fixed servers serving the k-th channel (also a number of jobs served in the k-th channel) is 

( )min , , 1,k kn r k r= ; 

Number of fixed servers on stand-by for the k-th channel is ( )max ,0k kn r− , 1,k r= ; 

Number of broken servers is 
1

r

k
k

N n
=

−∑ ; 

Number of broken servers in maintenance is 
1

min ,
r

k
k

N n K
=

 − 
 

∑ ; 

Number of broken servers waiting for maintenance is 
1

max ,0
r

k
k

N n K
=

 − − 
 

∑ . 

Now we can obtain corresponding average values (performance characteristics): 

[ ]

1

11

1
1 2

, ,
0 0 0

r
j

j

r
r
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N nN

k k k n n
n n n

L E n n p

−

=
−

−

= = =

∑

= = ∑ ∑ ∑


  

for average number of fixed servers assigned to the k-th channel, 1,k r= ; 

1

r

k
k

L L
=

= ∑  

for average number of fixed servers in the system; 

( ) ( )

1

11

1
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, , ,
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=
−

−

= = =

∑

 = =  ∑ ∑ ∑


  

for average number of busy servers serving the k-th channel (of jobs served in the k-th channel), 1,k r= ; 

( ), ,max ,0 , 1,k ns k k k k bL E r n r L k r = − = − =   
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for average number of nonserved jobs in the k-th channel,; 

,
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r

b k b
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=

= ∑  

for average number of busy servers in the system (average number of jobs in service); 
N L−  for average number of broken servers; 
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for average number of broken servers in maintenance; 

k mp L  

for average number of broken servers in maintenance assigned to the k-th channel, k = 1, ∙∙∙, r; 
1
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for average number of fixed servers on stand-by assigned to the k-th channel, 1,k r= ; 

,
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r
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k
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for average number of fixed servers on stand-by in the system; 

av mLλ λ=  

for average rate of servers arriving from maintenance; 

,av k k mp Lλ λ=  

for average rate of servers arriving from maintenance and assigned to the k-th channel, 1,k r= ; 

kavsbksbk λLW  , , , =
 

for average time spent on stand-by by server assigned to the k-th channel, 1,k r=  (Little Theorem); 

, 1k k sb kW W µ= +  

for average time of server assigned to the k-thchannel being fixed, k = 1, ∙∙∙, r(Little Theorem). 
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is an average number of jobs served in the k-th channel(k = 1, ∙∙∙, r) at any given moment. 
It follows from (3.3) that 
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( ) ( ) ( ), , 1max ,0 , ,k
k ns k k k k b k N rL E r n r L r R ρ ρ = − = − = −    

for average number of nonserved jobs in the k-th channel, k = 1, ∙∙∙, r. 
The use of RTS relies on the principle of availability. We will introduce therefore several definitions. 
Definition 4.1: For a channel (with kr  jobs inside) operating under maximum load regime, the average 

availability is given by the following formula 

[ ] ( ) ( )1number of served jobs in -th channel , ,k
k k N r kAv E k r R rρ ρ= =  . 

Definition 4.2: For a multichannel system (number of channels 2r ≥ ) operating under maximum load re-
gime, the average system availability is given by the formula  

( ) ( ) ( )1 1
1 1

, , , ,
r r

k
N r N r k

k k
Av R rρ ρ ρ ρ

= =

= ∑ ∑  . 

Another important characteristic is an average loss penalty (or operation cost) of system operation in equili-
brium during time unit. 

Definition 4.3: Let kC  ( )1,k r=  be the cost of time unit during which one job in k-th channel is out of ser- 

vice (penalty). Then formula 

( ) ( ) ( )( )1 1
1

, , , ,
r

k
N r k k N r

k
TC C r Rρ ρ ρ ρ

=

= −∑   

represents average loss penalty function. 
We also have the following important relationship between system availability and its loss penalty function, 

namely for 1 2 1rC C C= = = =  

( ) ( )1 1
1

, , 1 , ,
r

N r N r k
k

Av TC rρ ρ ρ ρ
=

= − ∑                           (4.3). 

5. Conclusion 
We presented a multiserver multichannel real-time system working in maximum load regime with the shortage 
of maintenance teams. The system consists of r different channels with exactly kr  jobs in k-th channel. We ob-
tained analytically the steady state probabilities and various performance measures, providing complete descrip-
tion of this system. These analytical results could be used immediately without long simulations by researchers 
and practitioners. Our next goal is to find the optimal routing probabilities, maximizing the system availability. 
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