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Abstract 
Let D be a finite simple directed graph with vertex set V(D) and arc set A(D). A function 

( ) { }−: 1,1f V D →  is called a signed dominating function (SDF) if [ ]( ) 1Df N v− ≥  for each vertex 

v V∈ . The weight ( )fω  of f is defined by ( )∑
v V

f v
∈

. The signed domination number of a digraph 

D is ( ) ( ){ } γ ω= min is an SDF ofs D f f D . Let Cm × Cn denotes the cartesian product of directed 

cycles of length m and n. In this paper, we determine the exact values of γs(Cm × Cn) for m = 8, 9, 10 
and arbitrary n. Also, we give the exact value of γs(Cm × Cn) when m, ≡ 0n  (mod 3) and bounds for 
otherwise. 
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1. Introduction 
Throughout this paper, a digraph ( ),D V A  always means a finite directed graph without loops and multiple 
arcs, where ( )V V D=  is the vertex set and ( )A A D=  is the arc set. If uv is an arc of D, then say that v is an 
out-neighbor of u and u is an in-neighbor of v. For a vertex ( )v V D∈ , let ( )DN v+  and ( )DN v−  denote the set 
of out-neighbors and in-neighbors of v, respectively. We write ( ) ( )D Dd v N v+ +=  and ( ) ( )D Dd v N v− −=  for the 
out-degree and in-degree of v in D, respectively (shortly ( )d v+ , ( )d v− ). A digraph D is r-regular if 

( ) ( )D Dd v d v r+ −= =  for any vertex v D∈ . Let [ ] ( ) { }D DN v N v v+ +=   and [ ] ( ) { }D DN v N v v− −=  . The maxi-
mum out-degree and in-degree of D are denoted by ( )D+∆  and ( )D−∆ , respectively (shortly ∆+, ∆−). The 
minimum out-degree and in-degree of D are denoted by ( )Dδ +  and ( )Dδ − , respectively (shortly δ + , δ − ). 
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A signed dominating function of D is defined in [1] as function { }: 1,1f V → −  such that [ ]( ) 1Df N v− ≥  for 
every vertex v V∈ . The signed domination number of a directed graph D is  

( ) ( ){ }min is an SDF ofs D f f Dγ ω= . Also, a signed k-dominating function (SKDF) of D is a function  
{ }: 1,1f V → −  such that [ ]( )Df N v k− ≥  for every vertex v V∈ . The k-signed domination number of a di-  

graph D is ( ) ( ){ }min is an SKDF ofks D f f Dγ ω= . Consult [2] for the notation and terminology which are 
not defined here. 

The Cartesian product 1 2D D×  of two digraphs D1 and D2 is the digraph with vertex set ( )1 2V D D×  
( ) ( )1 2V D V D= ×  and ( ) ( )( ) ( )1 2 1 2 1 2, , ,u u v v A D D∈ ×  if and only if either 1 1u v=  and ( ) ( )2 2 2,u v A D∈  or 

2 2u v=  and ( ) ( )1 1 1,u v A D∈ . 
In the past few years, several types of domination problems in graphs had been studied [3]-[7], most of those 

belonging to the vertex domination. In 1995, Dunbar et al. [3], had introduced the concept of signed domination 
number of an undirected graph. Haas and Wexler in [1], established a sharp lower bound on the signed domina-
tion number of a general graph with a given minimum and maximum degree and also of some simple grid graph. 
Zelinka [8] initiated the study of the signed domination numbers of digraphs. He studied the signed domination 
number of digraphs for which the in-degrees did not exceed 1, as well as for acyclic tournaments and the circu-
lant tournaments. Karami et al. [9] established lower and upper bounds for the signed domination number of di-
graphs. Atapour et al. [10] presented some sharp lower bounds on the signed k-domination number of digraphs. 
Shaheen and Salim in [11], were studied the signed domination number of two directed cycles Cm × Cn when m 
= 3, 4, 5, 6, 7 and arbitrary n. In this paper, we study the Cartesian product of two directed cycles Cm and Cn for 
mn ≥ 8n. We mainly determine the exact values of ( )8s nC Cγ × , ( )9s nC Cγ × , ( )10s nC Cγ ×  and for some 
values of m and n. Some previous results: 

Theorem 1.1 (Zelinka [8]). Let D be a directed cycle or path with n vertices. Then ( )s D nγ = . 
Lemma 1.2 (Zelinka [8]). Let D be a directed graph with n vertices. Then ( ) ( )mod 2s D nγ ≡ . 
Corollary 1.3 (Karami et al. [9]). Let D be a directed of order n in which ( ) ( )d v d v k+ −= =  for each  

v V∈ , where k is a nonnegative integer. Then ( )
1s

nD
k

γ ≥
+

. 

In [11], the following results are proved. 
Theorem 1.4 [11]: 

( ) ( )3 : 0 mod3s nC C n nγ × = ≡ , otherwise ( )3 2s nC C nγ × = + . ( )4 2s nC C nγ × = .  
( ) ( )5 2 : 0 mod10s nC C n nγ × = ≡ , ( ) ( )5 2 1: 3,5,7 mod10s nC C n nγ × = + ≡ ,  
( ) ( )5 2 2 : 2,4,6,8 mod10s nC C n nγ × = + ≡ , ( ) ( )5 2 3 : 1,9 mod10s nC C n nγ × = + ≡ .  
( ) ( )6 2 : 0 mod3s nC C n nγ × = ≡ , otherwise ( )6 2 4s nC C nγ × = + . ( )7 3s nC C nγ × = . 

2. Main Results 
In this section we calculate the signed domination number of the Cartesian product of two directed cycles Cm 
and Cn for m = 8, 9, 10 and ( )0 mod 3m ≡  and arbitrary n. 

The vertices of a directed cycle Cn are always denoted by the integers { }1,2, , n  considered modulo n. The 
ith row of ( )m nV C C×  is ( ){ },  : 1, 2, ,iR i j j n= =   and the jth column ( ){ }, : 1, 2, ,jK i j i m= =  . For any 
vertex ( ) ( ), m ni j V C C∈ × , always we have the indices i and j are reduced modulo m and n, respectively. 

Let us introduce a definition. Suppose that f is a signed dominating function for Cm × Cn, and assume that 
1 ,j h n≤ ≤ . We say that the hth column of ( )m nf C C×  is a t-shift of the jth column if ( ) ( ), ,f i j f i t h= +  
for each vertex ( ), ji j K∈ , where the indices i, t, i + t are reduced modulo m and j, h are reduced modulo n. 

Remark 2.1: Let f is a ( )s m nC Cγ × -function. Then ( ), 1f r s ≥    for each 1 r m≤ ≤  and each 1 s n≤ ≤ .  
Since Cm × Cn is 2-regular, it follows from ( )( ), 1f i j = −  that ( )( ) ( )( )1, , 1 1f i j f i j± = ± =  because  

( ), 1f i j ≥   , ( )( )1, 1 1f i j+ − =  because ( )1, 1f i j+ ≥    and ( )( )1, 1 1f i j− + =  because  

( ), 1 1f i j + ≥   . On the other hand, if ( )( ) ( )( )1, , 1 1f i j f i j± = ± = , ( )( )1, 1 1f i j+ − =  and  

( )( )1, 1 1f i j− + = , then we must have ( )( ), 1f i j = −  since f is a minimum signed dominating function. 

Remark 2.2. Since the case ( )( ) ( )( ), 1, 1f i j f i j= + = −  is not possible, we get sj ≥ 0. Furthermore, sj is 
odd if m is odd and even when m is even. 
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Let f be a signed dominating function for Cm × Cn, then we denote ( ) ( )( )
1

,
m

j
i

f K f i j
=

= ∑  of the weight of a  

column Kj and put ( )j js f K= . The sequence ( )1 2, , , ns s s  is called a signed dominating sequence corres-
ponding to f. We define 

{ }: , 0,1, , .i jX j s i i m= = =   

Then we have 

0 1 .mX X X n+ + + =  

( ) 1 22 .mf X X mXω = + + +  

For the remainder of this section, let f be a signed domination function of Cm × Cn with signed dominating 
sequence ( )1, , ns s . We need the following Lemma: 

Lemma 2.3. If js k=  then 1 1, 2j js s m k− + ≥ − . Furthermore, 1j js s m k− + ≥ −  and 1j js s m k++ ≥ − . 
Proof. Let js k= , then there are ( ) 2m k−  of vertices in Kj which get value −1. By Remark 2.1, 1jK +  in-

clude at least ( )2 2m k−  of vertices which get the value 1 and at most ( )m m k k− − =  of vertices which has 
value −1. Hence, 1 2js m k+ ≥ − . Furthermore, 1j js s m k++ ≥ − . By the same argument, we get 1 2js m k− ≥ −  
and 1j js s m k− + ≥ − . □ 

Theorem 2.4. 

( )

( )
( )
( )

( )
( ) ( )
( ) ( )

8

8

8

3 : 0 mod16 ,

3 1: 3,13 mod16 ,

3 2 : 6,10 mod16 ,

3 3: 5,7,9,11 mod16 ,

3 2 3 4 : 2,4,8,12,14 mod16 ,

3 3 3 5 : 1,15 mod16 ,

s n

s n

s n

n n

n n
C C

n n

n n

n C C n n

n C C n n

γ

γ

γ

≡


+ ≡
× = 

+ ≡
 + ≡

+ ≤ × ≤ + ≡

+ ≤ × ≤ + ≡

 

Proof. We define a signed dominating function f as follows: 
( )( ) ( )( ) ( )( ), 2 1 2,2 1 5,2 1 1f i j f i j f i j− = + − = + − = −  for 1 2j n≤ ≤     and ( )( )7 6 mod8i j≡ − , 

( )( ) ( )( ), 2 3,2 1f i j f i j= + = −  for 1 2j n≤ ≤     and ( )( )7 3 mod8i j≡ − , and 

( )( ), 1f i j =  otherwise. Also we define ( )( ), 1nf i n =  for 1, ,8i =  . 
By the definition of f, we have sj = 2 for j is odd and sj = 4 for j is even. Notice, f is a SDF for C8 × Cn when 

( )0 mod 16n ≡ . Therefore, there is a problem with the vertices of K1 when ( )1, ,15 mod16n ≡  . 
Now, let us define the following functions: 

( )( ) ( )( )
1

, if ,
,

1 if 1, 2,3, 4,5,6,7,8, ,

f i j j n
f i j

i j n

 ≠= 
+ = =

, ( )( )
( )( )

2

, if ,

, 1 if 5,8, ,
1 if 1, 2,3, 4,6,7, ,

f i j j n

f i j i j n
i j n

 ≠
= − = =
+ = =

 

( )( )
( )( )

3

, if ,

, 1 if 5, ,
1 if 1,2,3,4,6,7,8, ,

f i j j n

f i j i j n
i j n

 ≠
= − = =
+ = =

, ( )( )
( )( )

4

, if ,

, 1 if 8, ,
1 if 1,2,3,4,5,6,7, ,

f i j j n

f i j i j n
i j n

 ≠
= − = =
+ = =

 

We note: 
f1 is a SDF of C8 × Cn when ( )1,2,4,8,12,14,15 mod 16n ≡ . 
f2 is a SDF of C8 × Cn when ( )3,13 mod 16n ≡ . 
f3 is a SDF of C8 × Cn when ( )6,9,11 mod 16n ≡ . 
f4 is a SDF of C8 × Cn when ( )5,7,10 mod 16n ≡ . 
Hence, 
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( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

8

8

8

8

8

8

3 : 0 mod16

3 1: 3,13 mod16

3 2 : 6,10 mod16

3 3: 5,7,9,11 mod16

3 4 : 2,4,8,12,14 mod16

3 5 : 1,15 mod16

s n

s n

s n

s n

s n

s n

C C n n

C C n n

C C n n

C C n n

C C n n

C C n n

γ

γ

γ

γ

γ

γ

× ≤ ≡

× ≤ + ≡

× ≤ + ≡

× ≤ + ≡

× ≤ + ≡

× ≤ + ≡

                        (1) 

For example, f1 is a SDF of C8 × C12, where ( ) ( )8 12 40 3 12 4s C Cγ × ≤ = + , see Figure 1. 
{Here, we must note that, for simplicity of drawing the Cartesian products of two directed cycles Cm × Cn, we 

do not draw the arcs from vertices in last column to vertices in first column and the arcs from vertices in last row 
to vertices in first row. Also for each figure of Cm × Cn, we replace it by a corresponding matrix by signs − and + 
which descriptions −1 and +1 on figure of ( )m nf C C× , respectively}. 

By Remark 2.2, for any minimum signed dominating function f of C8 × Cn with signed dominating sequence 
( )1, , ns s , we have sj = 0, 2, 4, 6 or 8 for 1, ,j n=  . By Lemma 2.3, if sj = 0 then 1 1, 8j js s− + ≥ , and if sj = 2 
then 1 1, 4j js s− + ≥ . This implies that 

( ) ( )
1

3 for 0 mod 2 .
n

j
j

f s n nω
=

= ≥ ≡∑                             (2) 

( ) ( )
1

3 1 for 1 mod 2 .
n

j
j

f s n nω
=

= ≥ + ≡∑                            (3) 

Hence, by (1), (2) and (3) we get 

( ) ( )8 3 for 0 mod16s nC C n nγ × = ≡ . 

( ) ( )8 3 1 for 3,13 mod16s nC C n nγ × = + ≡ . 

Assume that ( )0,3,13 mod16n ≡/ . 
Let f' ba a signed dominating function with signed dominating sequence ( )1 2, , , ns s s′ ′ ′

 . 
If m, n ≤ 7, then by Theorem 1.4 is the required (because m n n mC C C C× ≅ × ). Let m, n ≥ 8. We prove the 

following claim: 

Claim 2.1. For k ≥ 2, we have 
1

3
j k

d
d j

s k
+

= +

′ ≥∑  if k is even and 
1

3 1
j k

d
d j

s k
+

= +

′ ≥ −∑  when k is odd. 

 

 
(a)                                                        (b) 

Figure 1. (a) A signed dominating function of C8 × C12; (b) A corresponding matrix of a signed dominating function of  
C8 × C12. 



R. Shaheen 
 

 
58 

Proof of Claim 2.1. We have the subsequence ( )1, ,j ks s+′ ′
  is including at least two terms. Then, imme-

diately from Remark 2.2 and Lemma 2.3, gets the required. The proof of Claim 2.1 is complete. □ 
Now, if 0js′ =  for some j, then 1 1 8j js s− +′ ′= = . Without loss of generality, we can assume that 2 0s′ = . 

Then Claim 2.1, imply that 

( ) ( )
3

1 1 4
16 3 3 1 3 7.

n n

j j j
j j j

f s s s n nω
= = =

′ ′ ′ ′= = + ≥ + − − = +∑ ∑ ∑                     (4) 

Assume that 2js′ ≥  for all 1, ,j n=  . We have three cases: 
Case 1. If 8js′ =  for some j. Let 1 8s′ = . Then from Claim 2.1, we get 

( ) ( ) ( )1
1 2

8 3 1 1 3 4, when 0 mod 2 .
n n

j j
j j

f s s s n n nω
= =

′ ′ ′ ′= = + ≥ + − − = + ≡∑ ∑              (5) 

( ) ( ) ( )1
1 2

8 3 1 3 5, when 1 mod 2 .
n n

j j
j j

f s s s n n nω
= =

′ ′ ′ ′= = + ≥ + − = + ≡∑ ∑                (6) 

Case 2. Let 2 6js′≤ ≤ . If ( )1, , ns s′ ′
  include at least two terms which are equals 6, then 

( )
1

3 4.
n

j
j

f s nω
=

′ ′= ≥ +∑                                  (7) 

For ( )1 mod 2n ≡ , then 8n is even. By Lemma 1.2, ( ) ( )8s nC C fγ ω ′× =  must be even number. Hence, 
from (7) is 

( )
1

3 5.
n

j
j

f s nω
=

′ ′= ≥ +∑                                  (8) 

Assume that 2 4js′≤ ≤  for all 1, ,j n=   except once which equals 6. Thus, 

( ) ( )
1

3 2 for 0 mod 2 .
n

j
j

f s n nω
=

′ ′= ≥ + ≡∑                           (9) 

( ) ( )
1

3 3 for 1 mod 2 .
n

j
j

f s n nω
=

′ ′= ≥ + ≡∑                          (10) 

For the case 3, we need the following claim: 
Claim 2.2. Let f' be a minimum signed dominating function of C8 × Cn with signed dominating sequence 

( )1 2, , , ns s s′ ′ ′
 .Then for ( ) ( )1 1 2, , , 2, 4, 2, 4j j j js s s s+ + +′ ′ ′ ′ = , and up to isomorphism, there is only one possible con-

figuration for f", it is shown in Figure 2. The prove is immediately by drawing. □ 
 

 

Figure 2. The form ( ) ( )1 1 2, , , 2,4,2,4j j j js s s s+ + +′ ′ ′ ′ = . 
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Case 3. Let 2 4js′≤ ≤  for all 1, ,j n=  . We define 

: , 2, 4.i jX j s i i′= = =  

Then we have 

2 4 .X X n+ =  

( ) 2 42 4 .f X Xω ′ = +  

Since the case ( ) ( )1, 2, 2j js s +′ ′ =  is not possible, we have 4 2X X≥ . 
If 4 2 2X n≥ +   . Then ( ) ( ) ( )2 2 2 4 2 2 2 2 2 4f n n n n nω ′ ≥ − − + + = + +           . Thus 

( ) ( )
1

3 4 for 0 mod 2 .
n

j
j

f s n nω
=

′ ′= ≥ + ≡∑                           (11) 

( ) ( )
1

3 5 for 1 mod 2 .
n

j
j

f s n nω
=

′ ′= ≥ + ≡∑                           (12) 

If 4 2 1X n= +   . Then ( ) ( ) ( )2 2 1 4 2 1 2 2 2 2f n n n n nω ′ ≥ − − + + = + +           . Hence 

( ) ( )
1

3 2 for 0 mod 2 .
n

j
j

f s n nω
=

′ ′= ≥ + ≡∑                           (13) 

( ) ( )
1

3 3 for 1 mod 2 .
n

j
j

f s n nω
=

′ ′= ≥ + ≡∑                           (14) 

Let 4 2X n=     and 2 2X n=    . 
Then we have one possible is as the form ( ) ( )1 2, , , 2, 4, 2, 4, , 2, 4,ns s s′ ′ ′ =   . This implies that ( ) 3f nω ′ =  

for ( )0 mod 2n ≡  and ( ) 3 1f nω ′ = +  for ( )1 mod 2n ≡ . By Claim 2.2, we have f' is as the function f, which 
defined in forefront of Theorem 2.4. However, f is not be a signed dominating function for C8 × Cn when 

( )0,3,13 mod16n ≡/ . Thus 

( ) ( )8 3 for 0 mod 2 .s nC C n nγ × > ≡  

( ) ( )8 3 1 for 1 mod 2 .s nC C n nγ × > + ≡  

By Lemma 1.2, and above arguments, we conclude that 

( ) ( )8 3 2 for 0 mod 2 .s nC C n nγ × ≥ + ≡                           (15) 

( ) ( )8 3 3 for 1 mod 2 .s nC C n nγ × ≥ + ≡                           (16) 

Hence, from (1), (15) and (16), deduce that 

( ) ( )8 3 2 for 6,10 mod16 .s nC C n nγ × ≥ + ≡  

( ) ( )8 3 3 for 5,7,9,11 mod16 .s nC C n nγ × ≥ + ≡  

( ) ( )83 2 3 4 for 2,4,8,12,14 mod16 .s nn C C n nγ+ ≤ × ≤ + ≡  

( ) ( )83 3 3 5 for 1,15 mod16 .s nn C C n nγ+ ≤ × ≤ + ≡  

Finally, we result that: 

( ) ( )8 3 for 0 mod16 .s nC C n nγ × = ≡  

( ) ( )8 3 1 for 3,13 mod16 .s nC C n nγ × = + ≡  

( ) ( )8 3 2 for 6,10 mod16 .s nC C n nγ × = + ≡  

( ) ( )8 3 3 for 5,7,9,11 mod16 .s nC C n nγ × = + ≡  
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( ) ( )83 2 3 4 for 2,4,8,12,14 mod16 .s nn C C n nγ+ ≤ × ≤ + ≡  

( ) ( )83 3 3 5 for 1,15 mod16 .s nn C C n nγ+ ≤ × ≤ + ≡  □ 

Theorem 2.5. 

( )
( )
( )9

3 : 0 mod3 ,

3 6 : 1,2 mod3 .s n

n n
C C

n n
γ

≡× = 
+ ≡

 

Proof. We define a signed dominating function f as follows: ( )( ) ( )( ) ( )( ), 3, 6, 1f i j f i j f i j= + = + = −  for 
1 j n≤ ≤  and ( )mod 9i j≡ , and ( )( ), 1f i j =  otherwise. Also, let us define the following function: 

( )( ) ( )( )
1

, if ,
,

1 if 1, 2,3, 4,5,6,7,8,9, .

f i j j n
f i j

i j n

 ≠= 
+ = =

 

By define f, we have sj = 3 for 1 j n≤ ≤ . Notice, f is a SDF for C9 × Cn for ( )0 mod 3n ≡ . And f1 is a SDF 
of C9 × Cn for ( )1,2 mod 3n ≡ . For an illustration ( )9 6s C Cγ × , see Figure 3. Hence, 

( ) ( )9 3 for 0 mod3 .s nC C n nγ × ≤ ≡                            (17) 

( ) ( )9 3 6 for 1,2 mod3 .s nC C n nγ × ≤ + ≡                          (18) 

From Corollary 1.3 is ( )9 3s nC C nγ × ≥ . Then by (17), ( )9 3s nC C nγ × =  for ( )0 mod 3n ≡ . 
For ( )1,2 mod 3n ≡ . 
If 4 8n≤ ≤ , then by Theorems 1.4 and 2.4, gets the required. Assume that n ≥ 9. 
By Remark 2.2, we have sj = 1, 3, 5, 7 or 9. By Lemma 2.3, if sj = 1 then 1 1, 7j js s− + ≥ , sj = 3 then 
1 1, 3j js s− + ≥  and sj = 5 then 1 1, 3j js s− + ≥  (because if 1 1, 3j js s− + < , then we need sj ≥ 7). By Lemma 2.3, the  

cases ( ) ( ) ( )1 2, 1,3 , 3,1j js s+ + =  are not possible. Hence, 
1

3
j k

d
d j

s k
+

= +

≥∑ , for k ≥ 2. This implies that, 

( )
1

1
3 1 .

n

d
d

s n
−

=

≥ −∑                                     (19) 

We define 

{ }: , 1,3,5,7,9.i jX j s i i= = =  

Then we have 
 

 
Figure 3. A corresponding matrix of a 
signed dominating function of C9 × C6. 
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1 3 5 7 9 .X X X X X n+ + + + =  

( ) 1 3 5 7 93 5 7 9 .f X X X X Xω = + + + +  

If we have one case from the cases X9 ≥ 1, X7 ≥ 2, X5 + X7 ≥ 2 or X5 ≥ 3. Then by (19) is ( ) 3 6f nω ≥ + . 
Assume the contrary, i.e., (X9 = 0, X7 < 2, X5 + X7 < 2 and X5 < 3). 
Hence, ( ) 1 3 5 73 5 7f X X X Xω = + + + . We consider the cases X7 < 2 and X5 < 3, which are including the re-

mained cases, i.e., X7 = 1 and X5 = 2. First, we give the following Claim: 
Claim 2.3. There is only one possible for ( ) ( )1, 3,3j js s + =  is  
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( ), 3, 6, 1, 1 4, 1 7, 1 1f i j f i j f i j f i j f i j f i j= + = + = + + = + + = + + = −  and  
( )( ) ( )( ), , 1 1f i j f i j= + = , otherwise for 1 9i≤ ≤ . 

The proof comes immediately by the drawing. □ 
Case 1. X7 = 1 and X5 = X9 = 0. Without loss of generality, we can assume sn = 7. Then we have the form 

( )3,3, ,3,7 . By Claim 2.3, for 1j n< − , each column 1jK +  is 1-shift of Kj, 2jK +  is 2-shift of Kj and 3jK +  
is 3-shift = (0-shift) of Kj. Without loss of generality, we can assume ( )( ) ( )( ) ( )( )1,1 4,1 7,1 1f f f= = = −  and 

( )( ),1 1f i =  otherwise. We consider two subcases: 
Subcase 1.1. For ( )1 mod 3n ≡ . Then 1nK −  is (n − 2)-shift = (2-shift) of K1. This implies that  
( )( ) ( )( ) ( )( )3, 1 6, 1 9, 1 1f n f n f n− = − = − = − . Hence, we need ( )( ), 1f i n =  for all 1, ,9i =  . This is a 

contradiction with ( )( ) 7nf Kω = . Thus, ( ) ( )3 93 9 3 1 9 3 6f X X n nω ≥ + = − + = + . 
Subcase 1.2. For ( )2 mod 3n ≡ . Then 1nK −  is (n − 2)-shift = (0-shift) of K1. This implies that  
( )( ) ( )( ) ( )( )1, 1 4, 1 7, 1 1f n f n f n− = − = − = − . So, we need ( )( ), 1f i n =  for all 1, ,9i =  . Again, we get a 

contradiction with ( )( ) 7nf Kω = . Thus, ( ) ( )3 93 9 3 1 9 3 6f X X n nω ≥ + = − + = + . 
Case 2. X5 = 2 and 7 9 0X X= = . Here we have 5k k ds s += =  and sj = 3 otherwise. By the same argument 

similar to the Case 1, we have Kj is (j − 1)-shift of K1. Thus, if ( )1 mod 3j ≡ , then  
( )( ) ( )( ) ( )( )1, 4, 7, 1f j f j f j= = = −  and for ( )2 mod 3j ≡  is ( )( ) ( )( ) ( )( )2, 5, 8, 1f j f j f j= = = − . Also, 

for position the vertices of K1, we always have  
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1, 2, 4, 5, 7, 8, 1f n f n f n f n f n f n= = = = = = . We consider four Subcases: 

Subcase 2.1. d = 1, without loss of generality, we can assume 1 5n ns s− = = . 
For ( )1 mod 3n ≡ , ( )( ) ( )( ) ( )( )2, 2 5, 2 8, 2 1f n f n f n− = − = − = − . Then  
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )1, 1 2, 1 4, 1 5, 1 7, 1 8, 1 1f n f n f n f n f n f n− = − = − = − = − = − = . The three remaining 

vertices from each 1nK −  and Kn, most including two values −1, and this is impossible. The same arguments is 
for ( )2 mod 3n ≡ . 

Subcase 2.2. d = 2, let 2 5n ns s− = = . Then we have the form ( ) ( )1 2, , , 3,3, ,3,5,3,5ns s s =  . 
If n ≡ 1(mod 3), then ( )3 1 mod3n − ≡ . This implies that 3nK −  is 0-shift of K1. Therefore,  
( )( ) ( )( ) ( )( )1, 3 4, 3 7, 3 1f n f n f n− = − = − = − . Hence, the three columns 2 1, ,n n nK K K− −  must be including 

seven values of −1, two in 2nK − , three in 1nK −  and two in Kn and this impossible. The same argument is for n 
≡ 2(mod 3). 

Subcase 2.3. d = 3, let 3 5n ns s− = = . We have the form ( ) ( )1 2, , , 3,3, ,3,5,3,3,5ns s s =  . Then for 
( )1 mod 3n ≡ , 4nK −  is 2-shift of K1. Therefore ( )( ) ( )( ) ( )( )3, 4 6, 4 9, 4 1f n f n f n− = − = − = − . Also,  

2 1 3n ns s− −= = . Therefore, two vertices of ( ) ( ) ( ){ }1, 3 , 4, 3 , 7, 3n n n− − −  must has value −1. By symmetry, let 
( )( ) ( )( )1, 3 4, 3 1f n f n− = − = − . Then by Claim 2.3, there is one case for ( ) ( )2 1, 3,3n ns s− − = . Hence,  
( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )2, 2 5, 2 8,  2 3,  1 6, 1 9, 1 1f n f n f n f n f n f n− = − = − = − = − = − = − . Therefore, we 

need two vertices from Kn with value −1. This is a contradiction, (because the vertices of the first column must 
be a signed dominates by the vertices of the last column). The same argument is for ( )2 mod 3n ≡ . 

Subcase 2.4. d ≥ 4, let 5n d ns s− = =  (by symmetry is 4n d− ≥ ). 
We have the form ( ) ( )1 2, , , 3,3, ,3,5,3, ,3,5ns s s =   . By Claim 2.3, if ( ) ( )1, , 3,3,j js s + =   then for 

each two vertices ( )( ) ( )( ), , 1f i j f q j= = −  we must have 3i q− =  and so for 1 1, ,j n dK K+ − − . Since 
( )3 1js j n d= ≤ − −  and 5n ds − = , then n dK −  including two vertices with value −1 by 1-shift of two vertices 

in 1n dK − − . Also, 1n dK − +  including two vertices with value −1 by 1-shift of vertices in n dK −  and the third ver- 
tex must be distance 3 from any one has value −1 (Since 1 1 3n d n ds s− + − += = = , Claim 2.3). Thus, the order of 
the values −1 or 1 of the vertices 1 1, ,n d nK K− + −  does not change. Hence the vertices of 1nK −  has the same 
order of 1nK −  when we have the signed dominating sequence ( )3,3, ,3,3  and this impossible is signed do-
minating sequence of C9 × Cn for ( )1,2 mod 3n ≡ . In Subcases 2.1, 2.2, 2.3 and 2.4 there are many details, we 
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will be omitted it. 
Finally, we deduce that does not exist a signed dominating function f of C9 × Cn for ( )1,2 mod3n ≡  with 
( ) 3 4f nω ≤ + . Hence, 

( ) ( )9 3 6 : 1,2 mod3 .s nC C n nγ × ≥ + ≡                           (20) 

From (18) and (20) is ( ) ( )9 3 6 : 1,2 mod 3s nC C n nγ × = + ≡ . □ 
Theorem 2.6. ( )10 4s nC C nγ × = . 
Proof. We define a signed dominating function f as follows: 

( )( ) ( )( ) ( )( ), 3, 6, 1f i j f i j f i j= + = + = −  for 1 j n≤ ≤  and i ≡ j(mod 10), and ( )( ), 1f i j =  otherwise. 
Also, we define 

( )( ) ( )( ) ( )( )7 7 73, 7 7, 7 10, 7 1n n nf n f n f n− − −− = − = − = − , 

( )( ) ( )( ) ( )( )6 6 61, 6 5, 6 8, 6 1n n nf n f n f n− − −− = − = − = − , 

( )( ) ( )( ) ( )( )5 5 53, 5 6, 5 9, 5 1n n nf n f n f n− − −− = − = − = − , 

( )( ) ( )( ) ( )( )4 4 41, 4 4, 4 7, 4 1n n nf n f n f n− − −− = − = − = − , 

( )( ) ( )( ) ( )( )3 3 32, 3 5, 3 9, 3 1n n nf n f n f n− − −− = − = − = − , 

( )( ) ( )( ) ( )( )2 2 23, 2 7, 2 10, 2 1n n nf n f n f n− − −− = − = − = − , 

( )( ) ( )( ) ( )( )1 1 11, 1 5, 1 8, 1 1n n nf n f n f n− − −− = − = − = − , 

( )( ) ( )( ) ( )( )3, 6, 9, 1n n nf n f n f n= = = − , 

and ( )( ), 1jf i j =  otherwise for 5, 4, 3, 2, 1,j n n n n n n= − − − − − . 
By define f and 7 6 5 4 3 2 1, , , , , , ,n n n n n n n nf f f f f f f f− − − − − − −  we have sj = 4 for all 1 j n≤ ≤ . Notice that: f is a 

SDF for C10 × Cn when ( )0,3, mod 10n ≡ . 

( ) ( ) ( ) ( ) ( ) ( ){ }{ }
{ }

5 4 3 2 1

5 4 3 2 1

\ n n n n n n

n n n n n n

f f K f K f K f K f K f K

f f f f f f
− − − − −

− − − − −

    

     

 

is a SDF for C10 × Cn when ( )1 mod 10n ≡ . 

( ) ( ) ( ){ }{ } { }2 1 2 1\ n n n n n nf f K f K f K f f f− − − −       

is a SDF for C10 × Cn when ( )2 mod 10n ≡ . 

( ) ( ) ( ) ( ) ( ) ( ) ( ){ }{ }
{ }

6 5 4 3 2 1

6 5 4 3 2 1

\ n n n n n n n

n n n n n n n

f f K f K f K f K f K f K f K

f f f f f f f
− − − − − −

− − − − − −

     

      

 

is a SDF for C10 × Cn when ( )4 mod 10n ≡ . 

( ) ( ) ( ) ( ){ }{ } { }3 2 1 3 2 1\ n n n n n n n nf f K f K f K f K f f f f− − − − − −         

is a SDF for C10 × Cn when ( )5 mod 10n ≡ . 

( ){ }{ } { }\ n nf f K f   

is a SDF for C10 × Cn when ( )6 mod 10n ≡ . 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }{ }
{ }

7 6 5 4 3 2 1

7 6 5 4 3 2 1

\ n n n n n n n n

n n n n n n n n

f f K f K f K f K f K f K f K f K

f f f f f f f f
− − − − − − −

− − − − − − −

      

       

 

is a SDF for C10 × Cn when ( )7 mod 10n ≡ . 
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( ) ( ) ( ) ( ) ( ){ }{ } { }4 3 2 1 4 3 2 1\ n n n n n n n n n nf f K f K f K f K f K f f f f f− − − − − − − −           

is a SDF for C10 × Cn when ( )8 mod 10n ≡ . 

( ) ( ){ }{ } { }1 1\ n n n nf f K f K f f− −    

is a SDF for C10 × Cn when ( )9 mod 10n ≡ . 
For an illustration ( )10 11s C Cγ ×  see Figure 4, (here for ( )1 mod 10n ≡ , we are changing the functions of 

the columns: 5 4 3 2 1, , , , ,n n n n n nK K K K K K− − − − − ). In all the cases we have ( )10 4s nC C nγ × ≤ . 
By Remark 2.2, we have sj = 0, 2, 4, 6, 8 or 10. Also by Lemma 2.3, if sj = 0, then 1 1, 10j js s− + ≥  and when sj 

= 2, is 1 1, 6j js s− + ≥  and sj = 4 is 1 1, 4j js s− + ≥  (because if 1 2js − =  or 1 2js + = , then sj ≥ 6). This implies 
that 

( )10
1

4 .
n

s n j
j

C C s nγ
=

× = ≥∑  

So, we get ( )10 4s nC C nγ × = . □ 
Corollary 2.7. For ( )0 mod 3m ≡ , we have 

( ) ( )if 0 mod3 .
3s m n

mnC C nγ × = ≡  

( ) ( )2 if 1,2 mod3 .
3 3 3s m n

mn mn mC C nγ≤ × = + ≡  

Proof. By Corollary 1.3 we have 

( ) .
3s m n

mnC Cγ × ≥                                  (21) 

Let us a signed dominating function f as follows: ( )( )3 2,3 2 1f i j− − = −  for 1 3i m≤ ≤ , 1 3j n≤ ≤ , 
( )( )3 1,3 1 1f i j− − = −  for 1 3i m≤ ≤ , 1 3j n≤ ≤ , and ( )( )3 ,3 1f i j = −  for 1 3i m≤ ≤ , 1 3j n≤ ≤ . 

By define f, we have sj = m/3 for 1 j n≤ ≤ . Notice, f is a SDF for Cm × Cn for ( ), 0 mod 3m n ≡ . Hence, 
( ) 3s m nC C mnγ × ≤ . Then from (21), is ( ) 3s m nC C mnγ × =  for ( ), 0 mod 3m n ≡ . 
For n ≡ 1, 2(mod 3). 
Let ( )( ), 1nf i n =  for 1 i m≤ ≤ . Notice, ( ){ } { }{ }\ n nf f K f  is a SDF for Cm × Cn for ( )1,2 mod 3n ≡ . 
Thus, ( ) ( )1 3 3 2 3s m nC C m n m mn mγ × ≤ − + = + . Hence, by (21) is ( )3 3 2 3s m nmn C C mn mγ≤ × ≤ +  if 

( )1,2 mod 3n ≡ . □ 
 

 
Figure 4. A corresponding matrix of a signed do-
minating function of C10 × C11. 
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3. Conclusions 
This paper determined that exact value of the signed domination number of Cm × Cn for m = 8, 9, 10 and arbi-
trary n. By using same technique methods, our hope eventually lead to determination ( )s m nC Cγ ×  for general 
m and n. 

Based on the above (Lemma 2.3 and Theorems 1.4, 2.4, 2.5 and 2.6), also by the technique which used in this 
paper, we again rewritten the following conjecture (This conjecture was mention in [11]): 

Conjecture 3.1. 

( ) ( ) ( )when 0 mod 2 or 1 mod3 .
3s m n
mC C n n m nγ  × = ≡ ≡  
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