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Abstract 
The author [Pakkar, M.S. (2014) Using Data Envelopment Analysis and Analytic Hierarchy Process 
to Construct Composite Indicators. Journal of Applied Operational Research, 6(3), 174-187.] re-
cently proposed a multiplicative approach using Data Envelopment Analysis (DEA) and Analytic 
Hierarchy Process (AHP) to reflect the priority weights of indicators in constructing composite in-
dicators (CIs). Nonetheless, this approach is limited to the situations with a single level hierarchy 
which might not satisfy the needs of a multiple level hierarchy. Therefore, the current paper ex-
tends this approach to the situations in which the indicators of similar characteristics can be 
grouped into sub-categories and further linked into categories to form a three-level hierarchical 
structure. An illustrative example of road safety performance for a set of European countries high-
lights the usefulness of the proposed “extended approach”. 
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1. Introduction 
A composite indicator (CI) is a mathematical tool to aggregate a set of multidimensional indicators in order to 
produce a single measure of performance. In a recent paper, Pakkar [1] proposed a multiplicative approach using 
DEA and AHP to reflect the priority weights of indicators in constructing CIs. This approach can be organized 
into the following steps: 

1) Using a multiplicative DEA based-CI model to compute the composite value of each Decision Making 
Unit (DMU). The computed composite values are used in the next step. 

2) Using a minimax distance model to obtain the optimal weights of indicators for each DMU (minimum 
composite loss).  
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3) Using the minimax distance model bounded by AHP to obtain the priority weights of indicators for each 
DMU (maximum composite loss). 

4) Using a parameter goal programming model to assess the performance of each DMU in terms of its relative 
closeness to the priority weights of indicators.  

In the basic multiplication DEA based-CI models, all indicators are simply treated to be at the same level of 
hierarchy [2]. Nonetheless, these indicators might also belong to different sub-categories and further be linked to 
one another constituting a three-level hierarchical structure. To overcome this limitation, we integrate AHP to a 
three-level DEA-based CI model in a multiplicative context. A three-level DEA based-CI model can reflect the 
characteristics of the generalized multi-level DEA based-CI model developed by [3]. 

2. Methodology 
2.1. DEA-Based CI Model 
A DEA-based CI model can be formulated similar to a multiplicative DEA model without explicit inputs [2]. In 
the following, and in line with the more common CI terminology, we will often refer to outputs as “indicators”. 
In order to eliminate the scale differences between all (output) indicators, and moreover, to ensure that all of 
them are in the same direction of change the normalized counterparts of indicators, using a min-max method, are 
computed as follows [4]: 

( )

( ) ( )

min

max min

ˆ ˆ

ˆ ˆ
rj r

rj
r r

y y
y x

y y

 −
 = +
 − 

, ( ) { }1 2maxˆ ˆ ˆ ˆmax , , ,r r rnry y y y=   for desirable indicators,        (1) 

( )

( ) ( )

max

max min

ˆ ˆ

ˆ ˆ
rjr

rj
r r

y y
y x

y y

 −
 = +
 − 

, ( ) { }1 2minˆ ˆ ˆ ˆmin , , ,r r rnry y y y=   for undesirable indicators.       (2) 

Here, yrj is the normalized value of (output) indicator ( )1,2, ,r r s=   for DMU ( )1,2, ,j j n=  . Since in a 
multiplicative aggregation, the value of each indicator must always be larger than 1, we add a positive constant x 
to the normalized values of each indicator. We choose x so that ( )( )minry x+  turns to 1.01 while ( )minry  is the 
minimum normalized value of indicator r for all DMUs. Although the model used in this paper does not satisfy 
the desirable unit invariant property, it is very robust to changes in the measurement units [2]. Therefore, this 
would only slightly change the composite values without making a significant change in DMUs’ rankings. Then 
a multiplicative optimization model in the construction of a composite indicator can be formulated as  

1
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≤∏  with 0ru ≥ , where CIk is the composite value of DMUk 

( )1,2, ,k n=   or the DMU under assessment, ur is the weight of indicator ( )1,2, ,r r s=   and e is the base 
of the natural logarithm. Taking logarithms with base e, the multiplicative model can be converted to the fol-
lowing log-linear programming model: 
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where the tilde symbol (~) denotes natural logarithms. The combination of (3)-(5) forms a single level DEA- 
based CI model in a log-linear context that looks like an output-oriented DEA model without explicit inputs. 
This model is theoretically similar to the log-linear DEA model for efficiency analysis introduced in [5]. 

2.2. Three-Level DEA-Based CI Model 
We develop our formulation based on a generalized distance model (for example, see [6]) in such a way that the 
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hierarchical structures of indicators, using a weighted-average approach, are taken into consideration [3]. Let  
( )lnll rj ll rjy y′ ′=  be the value of indicator ( )1,2, ,r r s=   of sub-category ( )1,2, ,l l S′ ′ ′=   of category  

( )1,2, ,l l S=   for DMU ( )1,2, ,j j n=   after normalizing the original data. Let ll ru ′  be the internal weight  

of indicator r of sub-category l' of category l while 
1

1
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To develop a linear model, the new multiplier of indicator r of sub-category l' of category l is defined as: 
ll r l ll ll ru p p u′ ′ ′′ = . Similarly, the new multiplier of sub-category l' of category l is defined as: ll l llp p p′ ′′ = . Let  

( )* 1, 2, ,kCI k n=

  be the best attainable composite value for the DMU under assessment, calculated from the 
one-level DEA-based CI model. We want the composite value ( )k ll rCI u ′′ , calculated from the set of weights 

ll ru ′′  to be closest to *
kCI . Our definition of closest is that the largest distance is at its minimum. Hence we 

choose the form of the minimax model: ( ){ }*min max
ll ru k k k ll rCI CI u
′′ ′′−   to minimize a single deviation which is 

equivalent to the following linear model: 
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0θ ≥ .                                              (12) 
The combination of (6)-(12) forms a three-level DEA based-CI model in the log-linear context that identifies 

the minimum composite loss minθ  needed to arrive at an optimal set of weights. Constraint (7) ensures that each 
DMU loses no more than θ  of its best attainable composite value, *

kCI . The second set of constraints (8) sat-
isfies that the composite values of all DMUs are less than or equal to their upper bound of *

jCI . Two sets of 
constraints (9) and (10) are added to the model. This implies that the sum of weights under each (sub-)sub-cat- 
egory equals to the weight of that (sub-)sub-category. It should be noted that the original (or internal) weights 
used for calculating the weighted averages are obtained as ll r ll r llu u p′ ′ ′′ ′=  and ll ll lp p p′ ′′= . 

2.3. Prioritizing Indicator Weights Using AHP 
The three-level DEA based-CI model identifies the minimum composite loss minθ  needed to arrive at a set of 
weights of indicators by the internal mechanism of DEA. On the other hand, the priority weights of indicators, 
and the corresponding (sub-)categories are defined out of the internal mechanism of DEA by AHP. 

In order to more clearly demonstrate how AHP is integrated into the three-level DEA-based CI model, this 
research presents an analytical process in which indicator weights are bounded by the AHP method. The AHP 
procedure for imposing weight bounds may be broken down into the following steps: 

Step 1: A decision maker makes a pairwise comparison matrix of different criteria, denoted by A, with the en-
tries of ( )1,2, ,lqa l q S= =  . The comparative importance of criteria is provided by the decision maker using a 
rating scale. Saaty [7] recommends using a 1-9 scale. 
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Step 2: The AHP method obtains the priority weights of criteria by computing the eigenvector of matrix A 
(Equation (13)), ( )T

1 2, , , Sw w w w=  , which is related to the largest eigenvalue, maxλ . 

maxAw wλ= .                                    (13) 

To determine whether or not the inconsistency in a comparison matrix is reasonable the random consistency 
ratio, C.R., can be computed by the following equation: 

( )
max. .

1 . .
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N R I
λ −

=
−

                                 (14) 

where R.I. is the average random consistency index and N is the size of a comparison matrix. In a similar way, 
the priority weights of (sub-)sub-criteria under each (sub-)criterion can be computed. To obtain the weight 
bounds for indicator weights in the three-level DEA-based CI model, this study aggregates the priority weights 
of three different levels in AHP as follows: 
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where lw  is the priority weight of criterion ( )1, ,l l S=   in AHP and lle ′  is the priority weight of sub-crite- 
rion ( )1,2, ,l l S′ ′ ′=   under criterion l and ll rf ′  is sub-sub-criterion ( )1, ,r r s=   under sub-criterion l′ . 

In order to estimate the maximum composite loss maxθ  necessary to achieve the priority weights of indica-
tors for each DMU the following set of constraints is added to the three-level DEA-based CI model: 

ll r ll ru uα′ ′′ =  , , ,l l r′∀  while 0.α >                            (16) 

The set of constraints (16) changes the AHP computed weights to weights for the new system by means of a 
scaling factor α . The scaling factor α  is added to avoid the possibility of contradicting constraints leading to 
infeasibility or underestimating the relative composite scores of DMUs [8]. 

2.4. Parametric Goal Programming Model 
In this stage we develop a parametric goal programming model that can be solved repeatedly to generate the 
various sets of weights for the discrete values of the parameter θ , such that min maxθ θ θ≤ ≤ . The purpose of the 
model is to minimize the total deviations from the priority weights of indicators with a city block distance 
measure. Choosing such a distance measure, each deviation is being equally weighted subject to the following 
constraints: 
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and constraints (7)-(12). 
Here, ll rd +

′  and ll rd −
′  are the positive and negative deviations from the priority weight of indicator r under 

sub-category l' of category l, for DMUk. The set of equations (18) indicates the goal equations whose right-hand 
sides are the priority weights of hierarchical indicators adjusted by the obtained value of the scaling variable in 
(16).Because the range of deviations computed by the objective function is different for each DMU, it is neces-
sary to normalize it by using relative deviations rather than absolute ones. Hence, the normalized deviations can 
be computed by:  
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where ( )kZ θ∗  is the optimal value of objective function (17) for min maxθ θ θ≤ ≤ . We define ( )k θ∆  as a meas- 
ure of closeness which represents the relative closeness of each DMU to the weights obtained from the three- 
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level DEA based-CI model in the range [0, 1] after adding the set of constraints (16) to it. Increasing the pa-
rameter ( )θ , we improve the deviations between the two systems of weights obtained from the three-level 
DEA based-CI model before and after adding the set of constraints (16). This may lead to different ranking posi-
tions for each DMU in comparison to the other DMUs. It should be noted that in a special case where the pa-
rameter max 0θ θ= = , we assume ( ) 1k θ∆ = .  

3. Numerical Example 
In this section we present the application of the proposed approach to assess the road safety performance of a set 
of European countries (or DMUs). The data for eight hierarchical indicators that compose road safety perfor-
mance indicators (SPIs) for 11 European countries has been adopted from [9]. Table 1 presents the normalized 
data, using (1) and (2), for SPIs on a logarithmic scale. 

The notations in Table 1 are as follows: 1y  = Road user behavior, 2y  = Vehicle, 11y  = Alcohol, 12y  = 
Seat belt, 111y  = Roadside police alcohol tests per 1000 population in 2008, 112y  = The percentage of drivers 
above legal alcohol limit in roadside checks in 2008, 121y  = Daytime seat belt wearing rates on front seats ag-
gregated of cars in 2009, 122y  = Daytime wearing rates of seat belts on rear seats of cars in 2009, 21 211y y=   = 
The average percentage of occupant protection score for new cars sold in 2008, 22 221y y=   = The average per-
centageof pedestrian protection score for new cars sold in 2008, 23 231y y=   = Renewal rate of passenger cars in 
2007, 24 241y y=   = Median age of passenger cars in 2008. AT = Austria, BE = Belgium, BG = Bulgaria, CY = 
Cyprus, CZ = Czech Republic, DK = Denmark, EE = Estonia, FI = Finland, FR = France, DE = Germany, EL = 
Greece.  

The results of the AHP model for prioritizing hierarchical SPIs as constructed by the author in Expert Choice 
software are presented in Table 2. One can argue that the priority weights of SPIs must be judged by road safety 
experts. However, since the aim of this section is just to show the application of the proposed approach on nu-
merical data, we see no problem to use our judgment alone. 

Solving the three-level DEA based-CI model for the country under assessment, we obtain an optimal set of 
weights with minimum composite loss ( )minθ . It should be noted that the composite value of all countries cal-
culated from the three-level DEA based-CI model is identical to that calculated from the one-level DEA 
based-CI model. Therefore, the minimum composite loss for the country under assessment is min 0θ =  (Table 
3). This implies that the measure of relative closeness to the AHP weights for the country under assessment is 

( )min 0k θ∆ = . On the other hand, solving the three-level DEA based-CI model for the country under assessment  
 
Table 1. Normalized data for hierarchical SPIs on a logarithmic scale. 

Country 

1y  2y  

11y  12y  21y  22y  23y  24y  

111y  112y  121y  122y  211y  221y  231y  241y  

AT 0.579 0.523 0.517 0.505 0.558 0.412 0.448 0.558 

BE 0.555 0.553 0.382 0.469 0.587 0.313 0.698 0.570 

BG 0.654 0.625 0.480 0.352 0.395 0.364 0.010 0.249 

CY 0.430 0.519 0.382 0.010 0.698 0.698 0.641 0.435 

CZ 0.539 0.666 0.552 0.372 0.463 0.545 0.209 0.233 

DK 0.650 0.423 0.603 0.557 0.496 0.503 0.517 0.558 

EE 0.567 0.688 0.517 0.487 0.587 0.503 0.375 0.233 

FI 0.010 0.682 0.603 0.683 0.644 0.545 0.295 0.415 

FR 0.417 0.614 0.698 0.646 0.587 0.412 0.448 0.511 

DE 0.497 0.362 0.683 0.691 0.587 0.313 0.517 0.511 

EL 0.506 0.621 0.272 0.039 0.463 0.503 0.448 0.375 
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Table 2. The AHP hierarchical model for SPIs. 

Objective level Criteria level Sub-criteria level Sub-sub-criteria level 

Prioritizing road  
safety performance 

indicators 

Road user behavior 
w1 = 0.65 

Alcohol e11 = 0.60 
Roadside police alcohol tests f111 = 0.40 

Driving above legal alcohol limit f112 = 0.60 

Seat belt e12 = 0.40 
Seat belt wearing in front seats f121 = 0.70 

Seat belt wearing in rear seats f122 = 0.30 

Vehicle w2 = 0.35 

Occupant protection for cars e21 = 0.30 Occupant protection for cars f211 = 1.00 

Pedestrian protection for cars e22 = 0.20 Pedestrian protection for cars f221 = 1.00 

Renewal rate of passenger cars e23 = 0.40 Renewal rate of passenger cars f231 = 1.00 

Age of passengercars e24 = 0.10 Age of passenger cars, f241 = 1.00 

 
Table 3. Minimum and maximum losses in composite values for each coun-
try. 

Countries kCI ∗
  minθ  maxθ  

AT 1.000 0.000 0.1516 

BE 1.000 0.000 0.1594 

BG 1.000 0.000 0.3328 

CY 1.000 0.000 0.1942 

CZ 1.000 0.000 0.1626 

DK 1.000 0.000 0.1621 

EE 1.000 0.000 0.0462 

FI 1.000 0.000 0.1142 

FR 1.000 0.000 0 

DE 1.000 0.000 0.2289 

EL 1.000 0.000 0.3466 

 
after adding the set of constraints (16), we adjust the priority weights of hierarchical SPIs obtained from AHP in 
such a way that they become compatible with the weights’ structure in the three level DEA-based CI model. 
Table 4 presents the optimal weights of hierarchical SPIs as well as its scaling factor for all countries. It should 
be noted that the priority weights of AHP used for incorporating weight bounds on indicator weights after add-  

ing (16) to the three-level model are obtained as ll r
ll r

uu
α
′

′

′
= . Similarly, the priority weights of AHP at criteria 

level can be obtained as l
l

pw
α

=  while 
1 1

S s

ll r l
l r

u p
′

′
′= =

′ =∑∑  and 
1

s

ll r ll
r

u p′ ′
=

′ ′=∑ .  

In addition, the priority weights of AHP at sub-criteria and sub-sub-criteria levels can be obtained as 
ll ll le p p′ ′′=  and ll r ll r llf u p′ ′ ′′ ′= , respectively.  
The maximum composite loss for each country to achieve the corresponding weights in the three-level 

DEA-based CI model after adding (16) is equal to maxθ  (Table 3). As a result, the measure of relative close-
ness to the priority weights of SPIs for the country under assessment is ( )max 1k θ∆ = .  

Going one step further to the solution process of the parametric goal programming model, we proceed to the 
estimation of total deviations from the AHP weights for each country while the parameter θ  is max0 θ θ≤ ≤ . 
Table 5 represents the ranking position of each country based on the minimum deviation from the priority 
weights of indicators for 0θ = . It should be noted that in a special case where the parameter max 0θ θ= =  we  
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Table 4. Optimal weights of hierarchical SPIs obtained from three-level 
DEA based-CI model bounded by AHP weights for all countries. 

Weights of categories Weights of sub-categories Weights of 
sub-sub-categories 

1 1.2322p =  

11 0.7393p′ =  
111 0.2957u′ =  

112 0.4436u′ =  

12 0.4929p′ =  
121 0.3450u′ =  

122 0.1479u′ =  

2 0.6636p =  

21 1.991p′ =  211 0.1991u′ =  

22 0.1327p′ =  221 0.1327u′ =  

23 0.2654p′ =  231 0.2654u′ =  

24 0.0664p′ =  241 0.0664u′ =  

1.8957α =   

 
Table 5. The ranking position of each country based on the minimum dis-
tance to priority weights of hierarchical SPIs. 

Countries ( )minZ θ∗  Rank 

AT 0.9288 9 

BE 0.4619 5 

BG 1.2375 10 

CY 0.3956 4 

CZ 0.8410 8 

DK 0.5135 6 

EE 0.1307 2 

FI 0.3775 3 

FR 0.0000 1 

DE 0.7205 7 

EL 1.5300 11 

 
assume ( ) 1k θ∆ = . Table 5 shows that France (FR) is the best performer in terms of the CI  value and the 
relative closeness to the priority weights of indicators in comparison to the other countries. Nevertheless, in-
creasing the value of θ  from 0 to maxθ  has two main effects on the performance of the other countries: im-
proving the degree of deviations and reducing the value of composite indicator. This, of course, is a phenome-
non, one expects to observe frequently. The graph of ( )θ∆  versus θ , as shown in Figure 1, is used to de-
scribe the relation between the relative closeness to the priority weights of indicators and composite loss for 
each country. This may result in different ranking positions for each country in comparison to the other coun-
tries (Table A1). 

4. Conclusion 
We develop a multiplicative (or log-linear) aggregation approach based on DEA and AHP methodologies to 
construct CIs for hierarchical indicators. We define two sets of weights of hierarchical indicators in a three- 
level DEA framework. All indicators are treated as benefit type which satisfy the property of “the larger the bet-
ter”. The first set represents the weights of indicators with minimum composite loss. The second set represents  
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Figure 1. The relative closeness to the priority weights of hierarchical indi-
cators [∆(θ)], versus composite loss (θ) for each country. 

 
the corresponding priority weights of hierarchical indicators, using AHP, with maximum composite loss. We 
assess the performance of each DMU in comparison to the other DMUs based on the relative closeness of the 
first set of weights to the second set of weights. Improving the measure of relative closeness in a defined range 
of composite loss, we explore the various ranking positions for the DMU under assessment in comparison to the 
other DMUs. To demonstrate the effectiveness of the proposed approach, we apply it to construct a composite 
road safety performance index for eight hierarchical indicators that compose SPIs for 11 European countries. 
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Appendix 
Table A1. The measure of relative closeness to the priority weights of hierarchical SPIs [Δk(θ)] vs. composite loss [θ] for 
each country. 

θ AT BE BG CY CZ DK EE FI FR DE EL 

0 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000 0.0000 

Rank N/A N/A N/A N/A N/A N/A N/A N/A 1 N/A N/A 

0.01 0.1373 0.0627 0.0695 0.0627 0.0993 0.0617 0.2163 0.0875 1.0000 0.0437 0.0428 

Rank 3 7 6 8 4 9 2 5 1 10 11 

0.02 0.2576 0.1255 0.1358 0.1253 0.1987 0.1234 0.4326 0.1751 1.0000 0.0874 0.0856 

Rank 3 7 6 8 4 9 2 5 1 10 11 

0.03 0.3261 0.1882 0.1771 0.1880 0.2980 0.1850 0.6489 0.2626 1.0000 0.1311 0.1283 

Rank 3 6 9 7 4 8 2 5 1 10 11 

0.04 0.3942 0.2510 0.2184 0.2506 0.3742 0.2467 0.8652 0.3502 1.0000 0.1747 0.1711 

Rank 3 6 9 7 4 8 2 5 1 10 11 

0.05 0.4508 0.3137 0.2597 0.3076 0.4454 0.3084 1.0000 0.4377 1.0000 0.2184 0.2131 

Rank 3 6 9 8 4 7 1 5 1 10 11 

0.06 0.5075 0.3765 0.3009 0.3556 0.5166 0.3701 1.0000 0.5253 1.0000 0.2621 0.2542 

Rank 5 6 9 8 4 7 1 3 1 10 11 

0.07 0.5642 0.4392 0.3329 0.4036 0.5775 0.4318 1.0000 0.6128 1.0000 0.3058 0.2906 

Rank 5 6 9 8 4 7 1 3 1 10 11 

0.08 0.6209 0.5020 0.3639 0.4516 0.6373 0.4935 1.0000 0.7004 1.0000 0.3495 0.3212 

Rank 5 6 9 8 4 7 1 3 1 10 11 

0.09 0.6776 0.5647 0.3950 0.4997 0.6970 0.5551 1.0000 0.7879 1.0000 0.3932 0.3509 

Rank 5 6 9 8 4 7 1 3 1 10 11 

0.1 0.7342 0.6275 0.4260 0.5477 0.7568 0.6168 1.0000 0.8755 1.0000 0.4368 0.3799 

Rank 5 6 10 8 4 7 1 3 1 9 11 

0.11 0.7874 0.6902 0.4571 0.5957 0.8103 0.6785 1.0000 0.9630 1.0000 0.4805 0.4089 

Rank 5 6 10 8 4 7 1 3 1 9 11 

0.12 0.8385 0.7530 0.4881 0.6437 0.8477 0.7402 1.0000 1.0000 1.0000 0.5242 0.4379 

Rank 5 6 10 8 4 7 1 1 1 9 11 

0.13 0.8897 0.8157 0.5191 0.6917 0.8835 0.8019 1.0000 1.0000 1.0000 0.5679 0.4669 

Rank 4 6 10 8 5 7 1 1 1 9 11 

0.14 0.9408 0.8785 0.5502 0.7397 0.9192 0.8635 1.0000 1.0000 1.0000 0.6116 0.4959 

Rank 4 6 10 8 5 7 1 1 1 9 11 

0.15 0.9919 0.9412 0.5811 0.7877 0.9550 0.9252 1.0000 1.0000 1.0000 0.6553 0.5249 

Rank 4 6 10 8 5 7 1 1 1 9 11 

0.16 1.0000 1.0000 0.6058 0.8357 0.9908 0.9869 1.0000 1.0000 1.0000 0.6990 0.5524 

Rank 1 1 10 8 6 7 1 1 1 9 11 

0.17 1.0000 1.0000 0.6305 0.8837 1.0000 1.0000 1.0000 1.0000 1.0000 0.7426 0.5797 

Rank 1 1 10 8 1 1 1 1 1 9 11 
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Continued  

0.18 1.0000 1.0000 0.6542 0.9317 1.0000 1.0000 1.0000 1.0000 1.0000 0.7863 0.6071 

Rank 1 1 10 8 1 1 1 1 1 9 11 

0.19 1.0000 1.0000 0.6774 0.9798 1.0000 1.0000 1.0000 1.0000 1.0000 0.8300 0.6343 

Rank 1 1 10 8 1 1 1 1 1 9 11 

0.2 1.0000 1.0000 0.7006 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8737 0.6607 

Rank 1 1 10 1 1 1 1 1 1 9 11 

0.21 1.0000 1.0000 0.7238 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9174 0.6871 

Rank 1 1 10 1 1 1 1 1 1 9 11 

0.22 1.0000 1.0000 0.7470 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9611 0.7135 

Rank 1 1 10 1 1 1 1 1 1 9 11 

0.23 1.0000 1.0000 0.7703 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7398 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.24 1.0000 1.0000 0.7935 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7662 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.25 1.0000 1.0000 0.8167 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.7926 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.26 1.0000 1.0000 0.8399 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8190 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.27 1.0000 1.0000 0.8631 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8454 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.28 1.0000 1.0000 0.8864 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8668 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.29 1.0000 1.0000 0.9081 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.8868 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.3 1.0000 1.0000 0.9296 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9068 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.31 1.0000 1.0000 0.9510 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9268 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.32 1.0000 1.0000 0.9725 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9468 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.33 1.0000 1.0000 0.9939 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9668 

Rank 1 1 10 1 1 1 1 1 1 1 11 

0.34 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9868 

Rank 1 1 1 1 1 1 1 1 1 1 11 

0.35 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

Rank 1 1 1 1 1 1 1 1 1 1 1 
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