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Abstract 
Water on the Earth’s surface is an essential part of the hydrological cycle. Water resources include 
surface waters, groundwater, lakes, inland waters, rivers, coastal waters, and aquifers. Monitoring 
lake dynamics is critical to favor sustainable management of water resources on Earth. In cryos- 
phere, lake ice cover is a robust indicator of local climate variability and change. Therefore, it is 
necessary to review recent methods, technologies, and satellite sensors employed for the extrac- 
tion of lakes from satellite imagery. The present review focuses on the comprehensive evaluation 
of existing methods for extraction of lake or water body features from remotely sensed optical 
data. We summarize pixel-based, object-based, hybrid, spectral index based, target and spectral 
matching methods employed in extracting lake features in urban and cryospheric environments. 
To our knowledge, almost all of the published research studies on the extraction of surface lakes 
in cryospheric environments have essentially used satellite remote sensing data and geospatial 
methods. Satellite sensors of varying spatial, temporal and spectral resolutions have been used to 
extract and analyze the information regarding surface water. Multispectral remote sensing has 
been widely utilized in cryospheric studies and has employed a variety of electro-optical satellite 
sensor systems for characterization and extraction of various cryospheric features, such as glaci- 
ers, sea ice, lakes and rivers, the extent of snow and ice, and icebergs. It is apparent that the most 
common methods for extracting water bodies use single band-based threshold methods, spectral 
index ratio (SIR)-based multiband methods, image segmentation methods, spectral-matching me-
thods, and target detection methods (unsupervised, supervised and hybrid). A Synergetic fusion of 
various remote sensing methods is also proposed to improve water information extraction accu-
racies. The methods developed so far are not generic rather they are specific to either the location 
or satellite imagery or to the type of the feature to be extracted. Lots of factors are responsible for 
leading to inaccurate results of lake-feature extraction in cryospheric regions, e.g. the mountain 
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shadow which also appears as a dark pixel is often misclassified as an open lake. The methods 
which are working well in the cryospheric environment for feature extraction or landcover classi-
fication does not really guarantee that they will be working in the same manner for the urban en-
vironment. Thus, in coming years, it is expected that much of the work will be done on ob-
ject-based approach or hybrid approach involving both pixel as well as object-based technology. A 
more accurate, versatile and robust method is necessary to be developed that would work inde-
pendent of geographical location (for both urban and cryosphere) and type of optical sensor. 
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1. Introduction 
Water on the Earth’s surface is an essential part of the hydrological cycle. Water resources include surface water, 
groundwater, inland water, rivers, lakes, transitional waters, coastal waters and aquifers [1]. In this study, we are 
essentially looking at the extraction of information on lakes because water resources have been degraded and 
exhausted in last few years. It is necessary to understand the changes in spatial extents of water resources. Lakes 
are inland bodies of standing water. Lakes are an essential component of the hydrological cycle and hence key 
tools for the management of water resources [2]-[4]. Although millions of lakes are scattered over the earth’s 
surface, most are located at higher latitudes and mountainous areas. Lakes may be classified according to their 
manner of formation or characteristics (Table 1). Lakes can be formed by glaciers, tectonic plate movements, 
river and wind currents, and volcanic or meteorite activity. Some lakes are only seasonal, drying up during parts 
of the year. All lakes are either open or closed. If water leaves a lake by a river or other outlet, it is said to be 
open. If water leaves a lake only by evaporation, the lake is closed. Closed lakes usually become saline. Lakes 
usually show circular, semi-circular or elongated shape. Understanding and evaluating lake dynamics is nece- 
ssary to conduct the sustainable management of water resources [5]. In addition, lake surface areas (especially 
closed lakes) are sensitive to natural changes and thus may serve as significant proxies for variations in regional 
environmental and fluctuations in global climate [3] [6]. Changes in the areal extent of lake surface water may 
occur due to various factors, including the progressive unveiling of the lake basin by sediments, climate change, 
tectonic activity causing uplift or subsidence, and the development of drainage faults [7] [8]. Being able to ac-
cess the spatial distribution and geographical extent information on lakes in real time has great significance in 
limnology and for understanding interactions between regional hydrology and climate change [9]. Satellite re-
mote sensing (RS) has advantages because it can track land surface information in real-time macroscopically, 
multitemporally, multispectrally, dynamically, and repetitively; hence, it is appropriate for surveying and map-
ping surface water bodies [10]. The present review especially focuses on the broader category of cryo- spheric 
lakes and their extraction using optical RS methods. The cryosphere refers to those parts of the Earth containing 
water in its frozen state: snow, glaciers, permafrost, seasonally frozen ground, lake and river ice, sea ice, ice 
sheets, and shelves. The cryosphere holds a significant amount of the Earth’s total supply of freshwater. About 
77% of Earth’s freshwater is frozen, 91% of which is contained in the Antarctic ice sheet, 8% in the Greenland 
ice sheet, and the remaining 1% is contained in glaciers [11]. Many studies and research works have been car-
ried out on cryospheric lakes in order to track environmental changes and behavior. Cryospheric lakes are clas-
sified into 5 types as depicted on Table 2. Inclement weather in the polar regions (Arctic and Antarctic), few 
numbers of fine-weather days in summer, and high logistic cost restricts research trips to polar Regions. There-
fore, satellite RS data and aerial photography are important sources of information for monitoring the short-term 
and long-term changes that occur at a specific location in cryospheric regions over time. Although RS data can 
never replace aerial photographs, which provide images at a resolution as high as 0.2 - 0.3 m, it is suitable for 
lake-feature extraction in the cryospheric regions, where frequent aerial photography is difficult because of the 
extremely harsh environment and the high logistical costs. Hence, development of automated or semi-automated 
feature extraction methods using RS data is much needed for continuous monitoring of the geographical features 
in a cryospheric environment. 
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Table 1. Types of lakes (Source: [12]).                                                                         

Type of lake Description Examples 

Artificial lake 
They may be constructed for various purposes,  
such as hydroelectric power generation, recreation,  
industrial use, agricultural use, or domestic water supply. 

Lake Mead and Lake Powell, USA 

Crater lake 
A lake that is formed in a volcanic crater after the volcano  
has been inactive for some time. Lake water may be fresh  
or highly acidic and may contain various dissolved minerals. 

Mount Aso crater lake, Japan 
Taal Volcano, Phillippines 

Endorheic lake A lake that has no significant outflow,  
either through rivers or underground diffusion. 

Lake Eyre, central Australia, 
Aral Sea in central Asia 

Fjord lake A lake in a glacially eroded valley that  
has been eroded below sea level. 

Geirangerfjord, Norway 
Tracy Arm fjord, Alaska 

Former lake Prehistoric lakes and those that have permanently  
dried up through evaporation or human intervention. Owens Lake in California, USA 

Underground lake A lake that is formed beneath the surface of the Earth’s crust.  
Such a lake may be associated with caves, aquifers, or springs. 

Reed Flute cave, China 
Lake Vostok, Antarctica 

Seasonal lake A lake that exists as a body of water during only part of the year. Badhkal lake and Sambhar lake,  
Rajasthan, India 

Oxbow lake Characterized by a distinctive curved shape, it is formed  
when a wide meander from a stream or a river is cut off. Gambi lake on River Tana, Kenya 

Lava lake 
This term refers to a pool of molten lava in a volcanic crater  
or other depression. The term lava lake may  
also be used after the lava has partly or completely solidified. 

Erta Ale, Ethiopia 
Nyiragongo, Democratic  
Republic of the Congo 

 
Table 2. Types of cryospheric lakes (Source [13]).                                                              

Type of lake Description Examples 

Supraglacial/Epiglacial  
lakes (SGLs)/ 

The lakes formed over the glacial surface due to the processes active  
on the glacial surface. Shifting, merging, and draining are characteristics  
of SGLs. SGLs are more dynamic and vary in time and space. 

SGL on Milam glacier 

Open lake 
(Landlocked lakes) 

A body of water that is surrounded completely by land. A landlocked lake  
has no water source such as a river. It is fed by water seepage  
in the ground and water runoff with the surrounding land. 

Lake Vanda in Antarctica 

Epishelf lake 
When ice shelves completely block the mouth of a fjord, an epishelf lake  
is created. This is caused by melt water that flows into the fjord  
every summer, but is impounded behind the ice shelf. 

The largest epishelf lake,  
Disraeli Fiord,  
Arctic Ocean. 

Pro-glacial lake 
Pro-glacial lakes are ice-contact lakes occurring adjacent to the frontal  
margin/snout of a glacier. Many such types of lake are ice-core  
moraine-dammed or ice-dammed and show ephemeral or perpetual nature. 

Vasundhara Tal at  
Raikana glacier,  
Himalayas 

Moraine-dammed lake 
A lake formed as a glacier recedes from its terminal moraine, the moraine acting  
as an unstable dam. Most of these lakes are formed when valley and cirque  
glaciers retreated from advanced positions achieved during the Little Ice Age. 

Laguna Paron, Peru 

2. Brief Review on RS Methods Used for Lake Feature Extraction 
A brief review of the most commonly used methods employed in mapping of water feature from urban and 
cryospheric regions is depicted in Table 3 and Table 4. Optical satellite systems have most frequently been ap-
plied to lake or water body extraction research. The parts of the electromagnetic (EM) spectrum covered by 
these sensors include the visible and near-infrared (NIR) ranging from 0.4 to 1.3 μm, the short wave infrared 
(SWIR) between 1.3 and 3.0 μm, the thermal infrared (TIR) from 3.0 to 15.0 μm and the long wavelength infra-
red (LWIR) from (7 - 14 μm). The decision tree and programming method are used for extracting water body 
information from the flood affected region [14]. The semi-automated change detection approach is used for ex-
tracting water feature form satellite image [15]. An automatic extraction method is used for extracting water 
body from IKONOS and other high resolution satellite image [16]. Thresholding and multivariate regression 
method [17], a conceptual clustering technique and dynamic thresholding [18], an original entropy-based me- 
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Table 3. Methods used for extraction of urban lakes.                                                                 

Satellite Used Study area Methods Advantages 

Landsat 5 (TM) 
Landsat 7 (ETM+) 

Landsat 8 (OLI) 
Resolution: 30 m [35] 

Lake Urmia 
located in the 

northwest of Iran 

Normalized Difference Water  
Index (NDWI) and Principal  
Component Analysis (PCA) 

NDWI performed slightly better than the  
NDWI-PCs. NDWI-PCs have an advantage  
over the NDWI, that it detects the surface  
water changes of two and three different times  
simultaneously by applying a single  
threshold to the selected PC. 

Landsat TM ETM+ 
Resolution: 30 m [36] 

Rift Valley  
lakes in Kenya 

Water Index (WI) using  
Tasseled Cap Wetness (TCW)  

index and NDWI 

WI detected the shorelines with an accuracy  
of 98.4%, which was 22.3% higher than the TCW,  
and 43.2% more accurate than the NDWI. 

Landsat 4 - 5 
Resolution:  
30 m [37] 

Huanghe river 
delta, China 

B2 + B3 > B4 + B5 
B4 < 60 

B4 > B5 and B5 < B2 

The decision tree algorithm failed  
to extract small water bodies at scales  
below the sensor resolution. 

Landsat TM and  
ETM+ Resolution:  

30 m [38] 

Hebei, Jiangxi, 
Ningxia, China 

A watershed segmentation  
method is adopted to detect  
mixed water pixels at the  
edges of lakes or rivers 

Automatic method for extracting rivers and  
lakes (AMERL) successfully extracted most  
of the narrow rivers and lakes. 

SPOT 4 
Resolution:  
10 m [39] 

Jiangning  
county of  

Jiangsu, China 

Decision Tree (DT) model based on 
both spectral and auxiliary  

information of Digital Elevation 
Model (DEM) and Slope (DTDS). 

It is difficult to extract water bodies effectively  
by applying a single technique due to effects of 
shadows. Unsupervised classification yields  
result with low accuracy. 

Landsat 5 TM 
Resolution:  
30 m [40] 

Murrumbidgee, 
Wagga Wagga, 

Australia 

Single band density slicing and  
Maximum Likelihood (MXL). 

MXL proved to be more accurate than density 
slicing to detect water bodies. Density slicing 
yielded a less speckled output image as  
compared to MXL. 

Landsat 5 TM 
Resolution:  
30 m [41] 

Denmark,  
Switzerland, 

Ethiopia, 
South Africa, 
New Zealand. 

AWEISh = Blue + 0.25*Green − 1.5 * 
(NIR + SWIR1) − 0.25 * SWIR2 
AWEINSh = 4 * (Green − SWIR1)  
− (0.25 * NIR + 2.75 * SWIR2) 

Automatic Water Extraction Index (AWEI)  
successfully extracted surface water with high  
accuracy, particularly in mountainous regions 
where hills cast shadows on background surfaces 
and in urban areas with complex land cover.  
It is a simple technique to extract water  
in different environmental conditions. 

MODIS (250 - 500 m) 
and ASTER  

(15 - 90 m) [42] 
Bihor, Romania Threshold method and  

supervised classification 

This approach is useful in providing  
information about water classification  
from different resolution data. 

ASTER (15 m) and 
MODIS [43] 

Koros basin,  
Roma-

nian-Humgarian 
border 

0.87 0.66
0.87 0. 6

ND I
6

V R R
R R

−
+

=  

Band 1 (0.66 μm) - 250 m 
Band 2 (0.87 μm) - 250 m 

Cloud shadow and water pixels are  
not completely separated out. 

ASTER 
Resolution: 15 m 

[44] 
Beijing, China 

4 segmentation levels were  
created for differentiation  
between water, vegetation 

and non-vegetation 

Accuracy of object-oriented classification is  
higher than the accuracy of MXL classification. 

 
Table 4. Methods used for extraction of cryospheric lakes.                                                        

Satellite Data Study area Specifications Remarks 

Landsat (30 m)  
and ASTER (15 m) 

[71] 

Gangotri glacier, 
Himalayas 

NIR1 blue
NIR1

N
ue

D
l

WI
b

−
+

=  

ASTER ratio Green
NIR

=  

Results led to the accurate identification of  
glacial lakes using the NDWI. Lake  
identification based on ASTER dataset  
is slightly more accurate than Landsat dataset. 

World View 2  
(WV2) (2 m) 

[72] 

Greenland  
Ice Sheet (GrIS) 

blue red
blu r

WI
d

ND
e e
−
+

=  

The slush elimination process was not accurate, 
but it can be made accurately by fusing  
morphological procedures using edge  
detection with multi-threshold procedures  
(accuracy = 85.2%). 
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Continued 

WV2 (2 m) 
[73] [74] 

Larsemann Hills,  
Antarctica 

Coastal NIR2
Coasta

NDW
IR

I1
l N 2
−
+

=  

Coastal NIR1
Coasta

NDW
IR

I2
l N 1
−
+

=  

Blue NIR1
Blu

NDW 3
I 1

I
e N R
−
+

=  

Blue NIR2
Blu

NDW 4
I 2

I
e N R
−
+

=  

NDWI-based indices approach offers several 
advantages as it is consistent in extracting water 
bodies against noise, flexible as the threshold 
values can be adjusted to remove background 
noise by not affecting the target extraction, time 
efficient in processing and producing the output 
and comparatively easier to implement. 

Landsat ETM+  
(15 m and 30 m) 

[75] 

Lake Merzbacher, 
border of China 

NIR Blue
NIR

ND
lue

WI
B

−
+

=  

Threshold 0.35 to 0.55 

To accurately extract area  

of floating ice, ratio is used: NIR
Red

 

Results show that the index can predict the  
outburst process of the lake and determine the 
outburst period of the lake after its drainage 
had occurred. 

The automatic program is not so perfect due to 
the Interferential factors such as snow or  
spissatus in images (accuracy= 92.0%). 

Landsat TM and  
SPOT 

(Fused 10 m) 
[76] 

Swiss Alps 

NIR Blue
NIR

ND
lue

WI
B

−
+

=  

TM4 TM1
TM

ND
4 T

W
M

I
1

=
−
+

 

Simple channel ratio: TM4
TM1

 

TM4 and TM1 bands can be replaced by TM5 
and TM7, but TM4 and TM1 are capable of  
discriminating water from snow and ice more 
accurately. The simple channel ratio works  
well, but NDWI showed an enhanced contrast 
between water and surrounding environment. 

 
thod [19], are also used for extraction of water bodies. The water body can be extracted by classification; unsu-
pervised classification [20]; the support vector machine (SVM) with one-against-one (1A1) and one-against-all 
(1AA) techniques are used for land cover mapping [21]. A supervised classification algorithm [22] of RS satel-
lite image that uses the average fuzzy intra-cluster distance within the Bayesian algorithm [23]; sometimes com-
binations of supervised and unsupervised classification [24] are used for water information extraction. A new 
index normalized optical water index (NOWI) was proposed to accurately discriminate between land and water 
regions in multi-spectral satellite imagery data from DubaiSat-1 [25]. 

3. Importance of Cryospheric Lakes 
Lake ice cover has been established as a robust indicator of local climate variability and fluctuations. Lake ice 
forms an essential component of the cryosphere, especially at high mountainous latitudes where a large number 
of lakes exist. Long-term records of lake ice have been significantly used as a proxy indicator of winter climate 
conditions. Previous studies have identified lake ice as a highly sensitive cryospheric component to climatic 
conditions [26]. Spatio-temporal changes in lake ice cover have an imperative feedback on energy exchanges 
between the lake surface and the atmosphere. Persistent warmer air temperatures [27] and raised snowfall had 
been observed in the Arctic over the last decades [28], and found to be associated with an amplified reduction of 
sea-ice concentrations, thickness and extent [29], which had been accelerated during recent years [30]. These 
spatio-temporal changes in the Arctic climate system have likely had an impact on ice phenology of lakes in 
coastal regions adjoining to the Arctic Ocean. SGLs play an important role in establishing hydrological connec-
tions that allow lubricating seasonal meltwater to reach the base of the ice sheet [33] [34]. 

Among all components of glacier system, SGLs are the most straightforward to be recognized. SGLs have al-
ready been researched on the Greenland ice sheet, Svalbard, and Himalaya. SGLs on Greenland characteristi-
cally form as a response to summer melting. SGLs typically form below 1500 m altitude, in topographic low re-
gimes in the ablation zone and can expand to numerous kilometers in size on the surface of the Greenland ice 
sheet. SGLs can also form in the lower ablation area of debris-covered valley glaciers. The life span of SGLs is 
unpredictable and in situ monitoring is less practical. Hence, RS can be effectively used for studying SGLs and 
their seasonal variations to address the status of glacier or ice sheet. SGLs and firn aquifers store a substantial 
amount of meltwater, providing a buffer between melting and mass loss to the ocean [31] [32].  



S. D. Jawak et al. 
 

 
201 

4. RS for Extracting Cryospheric Lake Features 
To our knowledge, almost all of the published works on an extraction of surface lakes in cryospheric environ-
ments have used the satellite RS data. Multispectral RS has been widely utilized in cryospheric studies and have 
employed a variety of electro-optical satellite sensor systems for characterization and extraction of various 
cryospheric features, such as glaciers, sea ice, lakes and rivers, the extent of snow and ice, and icebergs. Aerial 
photography of ice-covered terrain began during the early 20th century by expeditions to the high altitudes and 
was used primarily to document the progress of the expedition. Wilkins documented ice cover in the Antarctic 
Peninsula during the first successful flight in Antarctica by using a handheld, folding Kodak 3A camera [45] 
[46]. The quality of the photographs is often exceptional, but the reason behind opting for satellite RS instead of 
aerial photography is the harsh environment of cryosphere where frequent monitoring is difficult by the use of 
aerial photography which adds up to high logistics costs. Cryospheric RS applications initiated as early as 1962 
with the launch of the Argon satellite. Thereafter, in the 1970s Landsat 1, 2, and 3 Multi-Spectral Scanner (MSS) 
images constituted an important glaciological resource [47]. Initial successes in large-scale mapping were 
achieved through the use of the moderate spatial resolution (1 - 2.5 km) and wide swath (2400 km) advanced 
very high resolution radiometer (AVHRR) images, [48] which helped reveal details about ice stream flow in 
West Antarctica [49]. After the original AVHRR mosaic of Antarctica, the United State Geological Survey 
(USGS) made subsequent improvements to the mosaic by eliminating more clouds, separating the thermal band 
information to illustrate surface features more clearly, and correcting the coastline of the mosaic to include the 
grounded ice while excluding thin, floating fast ice [50]. Another large-scale mapping has been completed with 
MODIS for both the Arctic and the Antarctic [51]. Most recently, Landsat imagery of Antarctica has been com-
piled into a single, easily accessible map-quality data set [52] and SPOT stereo imagery have been used to de-
rive DEM of ice sheets, ice caps, and glaciers [53]. In the snow and glaciated terrain of the Himalayas, satellite 
RS was established as the best tool because many of the glacial lakes are located at very high altitude, cold 
weather, and rugged terrain conditions, making it a tedious, hazardous and time-consuming task to monitor by 
conventional field methods. Satellite RS technology facilitates the study of initial and qualitative hazard assess-
ment of glacial lakes of the Himalayas systematically with a cost-to-time benefit ratio [13]. 

Cryospheric lake features have been researched primarily by means of multispectral satellite images from the 
ASTER [54] [55], Landsat-7 [56], and MODIS imagery [57] instead of aerial photography despite its very high 
spatial resolution. The relatively high spectral reflectance response from a water body feature in the ASTER, 
MODIS, and Landsat multispectral bands is the foundation for employing these sensors in water body mapping 
and surveying applications. An accurate manual delineation of lake extent is used [55] [58] [59] when lakes are 
easily identifiable on images. Applications of methods that discriminate water from surrounding ice and snow 
are possible on optical images using semi-automatic methods that employ different spectral bands of the satellite 
sensors [60]-[62]. Many research studies have surveyed methods for semi-automatic or automatic lake feature 
extraction using medium and coarse resolution satellite RS data (e.g., [57] [63] [64]). Automated or semi-auto- 
mated methods have the advantage of rapid extraction of lakes from multi-temporal images with large areal 
coverage [57] [62]. Although manual delineation is highly accurate [65], it is time-consuming and thus unsuit-
able for wide geographical areas. Therefore, accurate manual delineation is preferable for studies over smaller 
areas, but studies that encompass larger areas would benefit from automatic or semi-automatic methods [63]. 
The most common method for deriving surface water bodies from satellite images is the density slice method, 
which uses single or multiple spectral bands, and multi-spectral classification [66] [67]. Frazier and Page re-
viewed numerous methods employed by various authors to extract water bodies from Landsat TM and MSS 
image classifications [40]. Yu et al. [68] investigated and discussed a few methods for deriving water informa-
tion using SPOT-4 images. The thresholding and multivariate regression method, a conceptual clustering tech-
nique, the dynamic thresholding method, and entropy-based method, have been successfully implemented in 
surface water extraction studies [17] [18]. The water body features can be extracted by unsupervised classifica-
tion [20], supervised classification (e.g., a Bayesian algorithm) [23], and a combination of both supervised and 
unsupervised classification [24]. Waldemark et al. [69] proposed a neural network (NN) approach for extracting 
water bodies from satellite images. In addition to the aforementioned water classification methods, there are 
several other original methods, such as the Decision Tree (DT) method and the step iterative method [39] [70]. It 
is evident that the most common methods for extracting lakes are, single band–based threshold methods, spectral 
index ratio (SIR)-based multiband methods, image segmentation methods, spectral-matching methods, and su-
pervised target detection methods. 



S. D. Jawak et al.  
 

 
202 

SIRs are utilized to extract a specific target or feature, and they are computed from the difference in reflec-
tance values of the bands used to formulate the ratio [77]. Conventionally, water and vegetation have been the 
primary focus of normalized difference SIRs because they are simple to classify based on the difference in re-
flectance values, ranging from 450 nm to 750 nm. Presently, the methods for extracting lakes are based on a 
spectral index or multiband techniques, which are spectrum property–based methods [78], such as the NDVI [79] 
and NDWI [80]-[83]. Since a single spectral index could not demarcate lakes effectively in different environ-
ments, many improved indices have been proposed to yield better results in specific environments [84]. Ouma 
and Tateishi [36] proposed a novel water extraction index for shoreline delineation by combining the TCW in-
dex (TCWI) and the NDWI. 

A comprehensive water body information extraction technique was proposed by Wu et al. [85] through the 
fusion of the spectral relationships between various bands with supervised classification methods. Rogers and 
Kearney [86] proposed the NDWI for medium spatial resolution and high temporal resolution with MODIS 
multispectral satellite images (MSI). Furthermore, Xiao et al. [87] proposed a land surface water index (LSWI), 
while Mo et al. [88] proposed a mixed water index (MWI) by combining the NDVI and NIR data to identify 
water bodies in MODIS images. Lu et al. [89] recommended an integrated water body extraction technique with 
HJ-1A/B satellite imagery by utilizing differences between NDVI and NDWI. These modified indices have been 
commonly used to map surface water bodies using Landsat and MODIS images [90]-[97]. These indices are 
normalized, ranging from −1 to 1, in which zero acts as a threshold to discriminate water from vegetation and 
land surface. However, because of the complexity of cryospheric environments, various ground targets may 
have the same spectrum characteristics. Therefore, only one type of spectral index method cannot extract water 
bodies under all environmental conditions [98]. 

5. RS Methodologies for Extracting Lake Features 
Methodologies of a lake or water body extraction can be summarized into three groups: feature extraction using 
pixel-based and object-based classification, and SIRs. Nath and Deb [66] provided a comprehensive overview of 
methods for water extraction from high resolution satellite images. June et al. [37] developed an automatic ex-
traction of water bodies from a Landsat TM image using DT algorithm. The proposed algorithm was based on 
spectral characteristics of the water body in TM images. Wang et al. [99] developed water extraction method 
based on texture analysis. Luo et al. [100] developed an algorithm for water extraction using Landsat TM which 
combines water index computation, whole-scale segmentation, whole-scale classification and local scale seg-
mentation and classification to achieve highly-precise water extraction result [101]. The traditional pixel based 
digital image classification has been and is still being used for characterization and mapping the spatial extent of 
forests, urban, water bodies, coastal, and wetland areas [102]. In principle, three types of classification methods 
exist, namely unsupervised, supervised and hybrid [103]. Unsupervised classification clusters pixels in a dataset 
based on statistics only, without any user-defined training classes. The most commonly used unsupervised land 
cover/land use (LC/LU) classifier is the Iterative Self-Organizing Data Analysis (ISODATA) classification al-
gorithm. On the other hand, several types of statistics-based supervised classification algorithms have been de-
veloped. Examples of the more popular classifiers (in increasing complexity) are parallelepiped, minimum dis-
tance, MXL, and Mahalanobis distance [104]. Hybrid methods can combine the advantages of manual, parame-
tric and non-parametric methods in various combinations to optimize the classification process [105]. Object- 
based Image Analysis (OBIA), a recent image analysis approach appears to be more popularly used for the clas-
sification of LC/LU of urban areas [106]. Object-based method considers image classification based on objects 
such as topologic (neighborhood, context) and geometric (form, size) information [107]. The object-oriented 
approach analyzes objects within images as a processing unit instead of using pixels. Geographic object-based 
image analysis (GEOBIA), as opposed to pixel-based image processing, is also emerging as a popular classifica-
tion method [108]. Studies that monitored extreme cold areas using new satellite sensors were initiated by using 
medium and low spatial resolution images [109]. Sundal et al. [62] proposed an automatic method based on a set 
of fuzzy logic membership functions to identify and map lakes. The method used a single threshold developed 
by Box and Ski [60] to differentiate between meltwater and ice, exploiting the different sensitivity to water of 
MODIS bands 1 and 3. Certain types of lakes, such as deep lakes, were particularly hard to identify. A semi- 
automatic method to track lakes was developed by Selmes et al. [57]. Liang et al. [64] developed an automatic 
method for lake identification, mapping, and tracking. Exploiting the characteristics of the changing nature of 
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the lakes and their surroundings, Johannson and Brown [63] developed a method known as Adaptive Lake Clas-
sification (ALC); ALC, specifically targeting the identified problem lakes [110]. Methods used for water feature 
extraction in an urban environment and cryospheric environment are summarized in Table 5 and Table 6. 

6. Discussion 
We have reviewed various methods utilized for extraction of a lake or water body features in urban and cryos-
pheric environments. In this section, we summarize and discuss the generalized trend in methods, satellite data-
sets and achieved accuracies for lake feature extraction. Table 7 depicts different water feature extraction me-
thods and accuracies expressed in kappa value. For extracting urban lakes (or other urban features), per-pixel 
based approaches were always the primary tool because of their low cost and easy implementation. Per-pixel 
based classification approach was considered to be the favorite choice of most of the researchers to extract lakes. 

Unfortunately, this procedure always resulted in mixed pixel’s problem. Pixel based classification approaches 
on high spatial resolution satellite images (e.g. SPOT, Landsat), often results in “salt and pepper” representation, 
which is even increasing when considering the new generation of very high spatial resolution data (e.g. 
IKONOS, QuickBird, GeoEye, WV2 etc.). This problem has led many researchers to incorporate segmentation, 
texture, context, color, and many other parameters to glide the mixed or wrongly classified pixels into their 
proper classes [118]. So, to overcome the limitations of pixel-based approach, a new approach was developed 
known as an object-oriented approach which has gained more and more interest, especially when dealing with 
very high spatial resolution satellite images to capture the finer details of the urban area. In almost all the case 
studies, object-based classification approach resulted in improved accuracy ranging from 84% to 89% (approx-
imately). Object-based classification can, not only use spectral information of land types, but also use images’ 
spatial position, shape characteristic, texture parameter and the relationship between contexts, which effectively  

 
Table 5. Technologies used for water body extraction in cryospheric environment.                                    

Satellite data Method name Remarks 

WV2 (0.5 m) 
[72] Automated Spectral-Shape Procedure 

Average positional offset between delineated and manually  
digitized streams is about 1 pixel. NDWIice was discovered in  
order to increase the contrast between ice and water.  
(accuracy = 92.1%). 

MODIS (250 m) 
[63] 

ALC approach based on  
object-oriented classification. 

ALC mainly focuses on the changing nature of lakes.  
Difficulty in detecting small lakes (<0.1 km2) cannot be  
resolved. Lakes with partial or total ice cover posed a challenge  
for ALC as both lake ice and glacier ice have similar reflectance. 

ASTER (15 m) 
[111] 

Non-parametric classification,  
Spectral indices NDWI using green and NIR 
band, and square pixel metric (SqP) method 

99% accuracy attained by applying NDWI, elevation  
and NIR/Red band ratio to separate water features from ice debris 

Landsat (30 m) 
RADARSAT  
(7 m) [112] 

Supervised MXL Classification 
Difficulty in mapping small ponds which can be overcome  
by using high resolution imagery or a high resolution  
aerial photograph. User’s accuracy for water class = 95%. 

MODIS (250 m) 
ASTER (10 m) 

Landsat  
ETM+ (10 m) [113] 

Lakes were delineated automatically  
using object oriented segmentation and  

classification methods [57] [62] [63] [110]. 

Sundal [110] had difficulty in resolving ice-covered lakes.  
Johannson and Brown [63] reported that as many as 18%  
of reported SGLs are likely to be false positive. In Selmes et al. 
[57] any lake <0.125 km2 does not feature in the dataset.  
It is found to report lake area most accurately. 

WV2 (0.5 m) 
[77] 

Spectral indices using customized  
NDWIs having Coastal and Blue  

band against NIR1 and NIR2 

The coastal band produced less false positive results in  
comparison to the blue band during the detection of lakes. The 
PAN-sharpening process does affect the accuracy  
of feature classification. 

WV2 (0.5 m) 
[98] 

Support vector machine (SVM),  
Spectral angle mapper (SAM), MXL,  

NN classifier, Winner takes all (WTA) 

The study concluded that WTA (accuracy = 97.23%) was  
better for mapping water and land and SVM and NN  
classifier for mapping snow/ice. 

IKONOS (4 m) 
Hyperion 

[109] 

For improving the accuracy of water  
classification, IKONOS tasseled cap  
transformation is applied to wetness 

Small lakes were detected due to the high spatial resolution of 
IKONOS image. The water class was defined by an IKONOS 
NDVI of greater than −0.1 (accuracy = 86.70%). 
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Table 6. Technologies used for water body extraction in an urban environment.                                       

Satellite data Method name Remarks 

Landsat TM (30 m) 
[114] 

Object-oriented classification,  
Pixel-based supervised MXL. 

MXL classification produced salt and pepper image,  
whereas the classified image derived from polygon-based  
classification is closer to human visual interpretation. 

Landsat TM (30 m) 
[115] 

Supervised MXL classification,  
Unsupervised ISODATA classification. 

Accuracy assessment showed that the ISODATA could  
multispectrally classify the urban water successfully. 
Even smaller ponds or rivers (<30 m) can be extracted  
if the high resolution imagery is used. 

Quickbird (0.61 m) 
[116] 

Statistical Regional Merging (SRM)  
for image segmentation, NDWI and  

Normalized Saturation-value Difference 
Index (NSVDI) for water extraction. 

The results prove that the accuracy of the extracted  
water features can be significantly improved and shadows  
can be effectively eliminated. 

Zi-Yuan 3 (ZY-3)  
(2.1 m sharpened) 

[117] 

Object oriented multi-resolution  
segmentation, Edge detection  
using Canny-edge detector. 

The extraction results on the high resolution remotely  
sensed image are significant by taking into account  
the spectrum geometry and texture information  
of images. (Accuracy = 94.6%). 

Landsat ETM+ (15 m),  
ERS SAR (26 m), SPOT 

(10 m sharpened) [19] 

Knowledge-based DT method including 
spatial features as size, shape, position  

and multi-spectral characteristics. 

The proposed algorithm is differentiated from other  
existing algorithms as it is independent of the image sensor.  
It can be applied on either PAN images or any spectral  
band of optical images. The proposed algorithm  
failed to extract small water areas. 

WV2 (2 m) 
Rapid Eye (2 m) 

Pleiades (5 m) [103] 

Hierarchical land-use classification, 
ISODATA unsupervised classification  

to extract additional subclasses. 

RapidEye showed a higher overall accuracy of 78%,  
surpassing the result of Pleiades (74%). Pleiades showed the 
best classification accuracy compared to RapidEye and WV2. 
WV2 proves to be more versatile to extract various sub-classes. 

WV2 (0.5 m sharpened) 
[102] 

Object-based image classification  
utilizing Nearest Neighbor decision rules. 

The analysis found that object-based classification  
using scale parameter of 60 produced the best result  
of wetland delineation compared to scale 30 and 300. 

 
Table 7. Water feature extraction methods with kappa statistics values.                                                

Satellite data Study area Method Kappa value 

Landsat TM [37] Huanghe river delta, China 
DT algorithm: TM2 + TM3 > TM4 + TM5  

was used to extract reservoirs,  
ponds and broad rivers 

0.92 

Landsat 5 TM [41] 

Test site 1: Denmark, 
Test site 2: Switzerland, 

Test site 3: Ethiopia, 
Test site 4: South Africa, 
Test site 5: New Zealand. 

AWEI 

Test site 1: 0.93 
Test site 2: 0.95 
Test site 3: 0.97 
Test site 4: 0.98 
Test site 5: 0.98 

Landsat TM and ETM+ [84] Bayi lake, Fuzhou City, China Modified NDWI 0.99 

ASTER [44] Beijing, China An object-oriented approach using  
Hierarchical classification and DT classification 0.81 

Landsat 5-TM 
Landsat 7-ETM+ 

Landsat 8-OLI [35] 
Lake Urmia, Iran NDWI-PC 0.73 

Quickbird [130] Phoenix and  
Scottsdale, Arizona 

Object-based approach using multi-resolution  
segmentation algorithm, Minimum distance  

supervised classification 

Scottsdale: 0.81 
Phoenix: 0.82 

IRS LISS III and 
LISS IV [131] Bhopal, India NN supervised classification approach LISS III: 0.98 

LISS IV: 0.96 

WV2 and Airborne Imaging 
Spectroradiometer 

Analysis (AISA) [132] 

Study area 1: Turtle Creek  
Corridor, Dallas, Texas 

Study area 2: National Mall  
Area, Washington, DC 

Fuzzy Kolmogorov-Smirnov (FKS) AISA: 0.79 
WV2: 0.99 
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avoid the “salt and pepper phenomenon” and greatly improve the accuracy of classification [119]. After review-
ing numerous methods for water feature extraction in the general environment, it is apparent that common water 
classification methods for optical imagery could be categorized into four basic types [120]: a) thematic classifi-
cation [121], b) linear un-mixing [122], c) single-band thresholding [123] and d) two-band spectral WI [80] [84] 
[86]. A Synergetic fusion of various automatic and semi-automatic methods are also proposed to improve water 
information extraction accuracies. The spectral band method is easy to implement, but frequently misclassify 
mountain shadows, urban areas or other background noise as lakes [124]. The most notable supervised classifi-
cation methods used for lake extraction are MXL, DT, artificial NN and SVM [125], while the most common 
unsupervised classification methods include the K-means and ISODATA [126] [127]. These methods may 
achieve superior accuracy than spectral band methods under some environmental conditions; however, existing 
ground reference datasets are required, which restrict these methods from being applied over large study regions 
[40]. The WIs have been extensively used because of their comparatively high accuracy in lake detection and 
low-cost implementation [128]. In many WIs, the lack of stability of the threshold is still a problem [120], mak-
ing it difficult to use uniformly. The lack of a reasonably stable threshold may make the classification more 
time-consuming and lead to a subjective choice of threshold which may also affect accuracy [41]. The design 
and implementation of WIs have been persistently improving [38]. Despite the fact that a number of lake extrac-
tion methods are published in the literature, the choice of method for a specific application is constrained by ac-
curacy issues. Water classification accuracy problems are especially pronounced in areas where the background 
land cover includes low albedo surfaces such as shadows from mountains, buildings, and clouds. The occurrence 
of shadows may cause misclassification because of the resemblance in reflectance patterns, which may hamper 
the accuracy of the surface water mapping and change analysis [41] [129]. 

Even if the object-oriented based approach is most widely researched topic in urban applications yet it is not 
really popular with cryospheric regions [74]. Still cryospheric applications such as feature extraction from 
cryospheric regions, detailed land-cover classification of cryosphere employ pixel-based approach. These days, 
for obtaining detailed land-cover classification or for accurate feature extraction from cryospheric region very 
high resolution optical satellite imagery is being used with the resolution of the order of ~0.5 - 5 m. The popular 
optical satellites falling in this category are: WV2, SPOT5, IKONOS, GeoEye etc. 

Most commonly used methods for lake feature extraction from cryospheric region are:  
a) Spectral indices making use of two satellite imagery bands,  
b) Supervised classification involving MXL, parallelepiped, NN, SAM and SVM, target, WTA approach 
c) Unsupervised classification: involving ISODATA technique 
d) Target detection methods which include: matched filter (MF), constrained energy minimization (CEM), 

adaptive coherence estimator (ACE), SAM, orthogonal sub-space projection (OSP) and target-constrained 
interference-minimized filter (TCIMF) 

e) Single band threshold and spectral relation method 
Despite so many methods being developed for lake feature extraction, none of them is known to yield highly 

accurate results in all environments. The methods developed so far are not generic rather they are specific to ei-
ther the location or the satellite imagery or to the type of the feature to be extracted. Lots of factors are responsi-
ble for leading to inaccurate results of lake feature extraction in Cryospheric regions, e.g. the mountain shadow 
which also appears as a dark pixel, is often misclassified as open lake, which can be corrected using topograph-
ical modeling using DEM [133]-[139]. There are various other target features which possess similar spectral 
characteristics which result in overestimation and thus outputs an inaccurate result. Thus, after knowing the past 
and present of methods being developed for lake feature extraction, it’s felt that there is a strong urge for devel-
oping new methods that would yield results with higher accuracy. Also the method should be highly versatile 
and robust as well as dynamic, so that it can be used for extraction of all types of lakes in all environments under 
all situations without any change in the design of the method.  

7. Summary and Conclusion 
Satellite sensors of varying spatial, temporal and spectral resolutions have been used to extract and analyze in-
formation regarding surface water. Studies using ASTER and Landsat ETM+ data have focused on smaller re-
gions with a limited number of lakes, mainly using manual delineation of lake extent. For coverage of larger 
areas MODIS imagery is generally been adopted. ASTER and ETM+ images have a high spatial resolution of 
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the order of ~10 m, conducive to accurate lake area delineation, MODIS imagery is much coarser i.e. of the or-
der of ~250 m but the temporal resolution of MODIS is higher (at least once a day rather than biweekly). Land-
sat series of satellites are among the most extensively used multispectral sensors in surface water extraction stu-
dies. Medium resolution satellite data (10 - 90 m) are available for cryospheric studies since the early 1970s, 
with the launch of the new space-borne sensors: Landsat MSS, Landsat TM and ETM+, SPOT, Terra ASTER, 
IRS, and more recently the Advanced Land Observing Satellite (ALOS) launched in 2006. The other group of 
optical satellites is high resolution, of the order of a meter and sub-meter: WV2, IKONOS, Quickbird, and Geo 
Eye-1, are now being brought up in use for the extraction of lakes from the cryospheric environment [140]-[150]. 
Now a day’s much of the work based on cryosphere such as feature extraction and land cover classification em-
ploys high resolution imagery because of its high spatial resolution, which enables to achieve finer details of the 
region, which is otherwise not possible by using medium resolution imagery (e.g. Landsat TM, ETM+, SPOT, 
ASTER etc.). After reviewing numerous methods available for cryospheric lake feature extraction, we conclude 
that the most popular and effective method for extracting lake is based upon spectral indices which make use of 
two optical bands at a time. This method is the most researched and emerging methods because of its high-term 
advantages which include low implementation cost, simple in understanding, easily modifiable and effective in 
producing stable output. Despite its potential benefits, it does suffer from few limitations, which include high 
location or feature dependency which makes it working only for a specific application, high misclassification 
which usually occurs because of objects possessing similar spectral characteristics and the commonly known 
misclassified objects are mountain shadows or hill shadows which possess dark pixel that almost appear similar 
to a water body and often get misclassified and results in a false positive result. The problem of misclassification 
can thus be minimized by selecting appropriate threshold which would be then able to discriminate between dif-
ferent objects based on their precise spectral response to a greater extent. The methods which are working well 
for the cryospheric environment for feature extraction or land-cover classification does not really guarantee that 
they will be working in the same manner for the urban environment. Thus, in coming years it is expected that 
much of the work will be done on object-based approach or hybrid approach involving both pixel-based as well 
as object-based technology, with respect to lake feature extraction and a more accurate, versatile and robust me-
thod will be developed that would work independent of location (for both urban and cryosphere, single method 
would be able to extract water bodies accurately) and feature (for extraction of different types of lake a single 
method would be able to work). And also in coming years, super high spatial and temporal resolution optical sa-
tellites will be active which will yield even micro details of a region. 
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