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Abstract 
 
We generalized an constructing method of noncoherent unitary space time codes (N-USTC) over Rayleigh 
flat fading channels. A family of N-USTCs with T symbol peroids, M transmit and N receive antennas was 
constructed by the exponential mapping method based on the tangent subspace of the Grassmann manifold. 
This exponential mapping method can transform the coherent space time codes (C-STC) into the N-USTC on 
the Grassmann manifold. We infered an universal framework of constructing a C-STC that is designed by 
using the algebraic number theory and has full rate and full diversity (FRFD) for t symbol periods and same 
antennas, where M, N, T, t are general positive integer. We discussed the constraint condition that the expo-
nential mapping has only one solution, from which we presented an approach of searching the optimum ad-
justive factor αopt that can generate an optimum noncoherent codeword. For different code parameters M, N, 
T, t and the optimum adjustive factor αopt, we gave the simulation results of the several N-USTCs.1 
 
Keywords: Noncoherent Uintary Space-Time Codes (N-USTC), Coherent Space-Time Codes (C-STC), 

Grassmann Manifold, Degree of Freedom, Exponenatial Map, Full Rate and Full Diversity 
(FRFD) 

1. Introduction 
 
The noncoherent unitary space-time code (N-USTC) in 
[1-4] provided a potential solution for the multiple an-
tennas communication in fading channel that neither 
transmitter nor receiver knows the channel state imfor-
mation (CSI). This paper generalized an constructing 
method for a family of the N-USTCs based on the 
Grassmann manifold. The system models on noncoherent 
and cohenent channel are comparatively built. Starting 
from the basic theory of the Grassmann manifold [4], a 
basic thought of designing the Grassmannian unitary 
space-time matrix was described. That is the exponent 
mapping method [5,6] from the M t  C-STC to the 
T M  N-USTC for the MIMO system with M  trans- 
mit and N  receive antennas, where t  and T  are co- 
herent and noncoherent symbol periods, respectively, 
and , , ,M N T t  are general positive integer, T t M   
and T M t  .  

In order to map the M t  C-STC into the T M  

N-USTC, firstly, one must consider how to construct the 
M t  C-STC. Many literatures [7-11] discussed multi-
farious methods of constructing the C-STCs. Enlightened 
by [7-11] and other literatures (omitted in reference as 
the limitation of length), we discussed a method of con-
structing the M t  universal C-STCs with FDFR based 
on the algebraic number theory. Therefore, we created 
four kinds of matrices: uncoded symbol matrix S , lin-
ear combinatorial matrix L , rotated matrix R  and lin- 
ear combinatorial symbol matrix Z  that is =Z LSR  
formed by the linear combinatorial technique of the 
symbols of constellations, such as q-PSK or q-QAM, and 
then we get the the coded matrix of a C-STC by trans-
forming matrix Z . 

In the mapping process from the M t  C-STC into 
the T M  N-USTC, we discussed the constraint condi-
tion of the only one solution of the the exponent map, 
from which we discover that the optimum codeword of 
the Grassmannian N-USTC can be obtained by searching 
the optimum adjustive factor opt . Simulation tests show 
that for BPSK constellation symbols, when T  is un-
changed and antenna number =M N  increases, the 
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spectral efficiency increases and the performance of the 
bit error rate (BER) also advances, or when =M N  is 
unchanged and T  increases, so do the spectral effi-
ciency and the BER performance; for QPSK constella-
tion symbols, when = 2M N   and 5T  , the spectral 
efficiency achieves 2.4 bits/Hz/s but at the cost of sacri-
ficing the BER performance. 

 
2. System Model and Background 

Knowledge 
 
2.1. System Model 
 
We focus on the block fading channel model on which 
the fading coefficients are assumed to be constant during 
T  periods of one codeword and to change independ-
ently from one codeword to the next. Under the assump-
tion of no inter-symbol interference, the noncoherent 
channel model with codeword periods T M  is 

TN TM MN TNT Y X H W          (1) 

For the convenience of comparison and application 
later on, we simultaneously give the coherent channel 
model with codeword periods t M : 

Nt NM Mt Nt Y H B W             (2) 

where Y  is T N  received signal matrix for nonco-
herent model or N t  matrix for coherent model, H  
is M N  or N M  fading coefficients matrix and 
W  is T N  or N t  additive noise matrix. Elements 
of H  and W  are assumed to be the independent and 
identically distributed complex Gaussian random vari-
ables respectively from distribution  0,1CN  and 

 20,CN  . TMX  and MtB  are noncoherent and co-
herent transmit signal matrices, respectively. 

 
2.2. Grassmann Manifolds and Its Tangential 

Space 
 

Manifold is a topologic space which is locally homeo-
morphic to the Euclidian space. More formally, Every 
point on n -dimensional manifold has a neighborhood 
homeomorphic to n -dimensional Euclidian space nR . 

We consider a set of all M -dimension linear sub-
spaces in T -dimension complex space. This set has the 
structure of manifold, called Grassmann manifold and 
denoted by ,

C
T MG , and its definition [12] is: 

 †
,

C
T M MG Φ Φ Φ I           (3) 

where “ † ” denotes transpose for real number or conju-
gate transpose for complex number; Φ  denotes the 
subspace spanned by M  column vectors in an T M  
unitary matrix Φ . ,

C
T MG  can also be represented by the 

quotient space of the unitary group  nU [12], i.e. 

      ,
C
T M T M T M  G U U U       (4) 

As the real dimension of the unitary group  nU  is 
  2dimR n nU , one can obtain the real dimension of 

,
C
T MG :    22 2

,dim 2C
R T M T M T M M T M     G  

[13] according to (4). So the complex dimension of 

,
C
T MG  is  ,dim C

C T M M T M G  which means that 
the N-USTCs on ,

C
T MG  have  M T M  degrees of 

freedom, and the maximal symbol rate is   1M M T  
[3].  

Literature [5,6] introduces that the tangential space of 
any a point on ,

C
T MG  forms a set of matrices as follows: 

†

0

0TM

 
   

Δ
B

Q
B

            (5) 

where  M T M B C  and the point Q  can be chosen 
arbitrarily, i.e., for simplified calculation, one can choose  

 TM M M T M M 
    

†

-,B I I 0 as a reference subspace on  

,
C
T MG . The dimension of the tangential space defined by 

(5) is also  M T M . According to the theory of Lie- 
group, i.e., the point of the tangential space on ,

C
T MG  

can be projected into the point of ,
C
T MG  by exponent 

map, the point X  of ,
C
T MG  can be denoted by the ex-

ponent form of the tangential space: 

†

0
exp

0TM TM

  
     

B
X I

B
        (6) 

(6) shows a complicated computing task, but it can be 
simplified by the technique of the singular value decom-
pose (SVD) of matrix. B  is disposed by the SVD as 
follows: 

     
†

M M M T M T M T M      ΛB U V         (7) 

where U  and V  are unitary matrices, and the form of 
Λ  is: 

1 0 0 0 0

0 0

0 0 0 0M





 
   
 
 

Λ


   


        (8) 

where 1, , M   are the singular values of matrix B . 
Putting (7) into (6), one can obtain the simplified 

TMX : 
†

†TM

T M

 
  
 

UCU
X

VSU
              (9) 

where       
1cos 0

0 cos
M M

M






 
   
 
 

C ,  
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 

†

1sin 0

0

0 sin
T M M

M




 

 
   
 
 

S . 

 
3. Coherent Space-Time Codes 
 
Most methods of constructing the C-STCs with FRFD 
are to efficaciously combine all information symbols is  
( 1, 2, ,i tM  ) to form the coding matrix MtB , where 
all is  belong to one of constellations, such as q-PSK or 
q-QAM, etc. If we adopt the technique of linear combi-
nation to design MtB , then the rank and determinant 
properties of  Mt isB  is equivalent to them of 

   Mt i Mt js sB B , where  , 1,i j Mt  and i j . Let 
r  be the minimal rank available of any codeword matrix 

 Mt isB . According to the design criterion of determi-
nate in [10], under the linear combination of all is  of 
forming MtB , we can obtain a FRFD matrix and its rank 
r M , so the maximum coding gain  

1 1

1 1

r M
r M

j j
j j

 
 

   
   

   
   can be guaranteed. Being enligh- 

tened by using the algebraic number theory to construct 
the C-STCs in [8,10,11], we investigate how to design 
the universal coherent matrix MtB  with FRFD for 

, ,M N t  being general positive integer. The applied de-
sign step is shown as follows. 

a) We first create three kinds of matrices: uncoded 
symbol matrix S , linear combinatorial matrix L  (also 
named left-multiplied matrix) and rotated matrix R  
(also named right-multiplied matrix), they have next ge- 

 

neral forms: 

 

 

1 1 1 1

2 2 1 2

2

2 1

2 2 1 1

1 2 2 1

1

,

1

1
,

1

1 0 0

0 0

0 0

M t M

M t M

M M Mt

M

M M

M M M

t

s s s

s s s

s s s

j j j

j j j

  
  

  





  

  



 

  



 
 
   
 
  
 
 
 
 
 
  
 
 
 
 
 
 





   





    





   


S

L

R

 

where 1 2, , , tMs s s  take from the constelltions; let 
t  ; choosing j  makes the determinate of matrix 

L  be unequal to zero. Let ie    which is an alge-
braic number [10], here 1i    and   is a parameter 
of needing the optimization design so that   is searched 
in  0,π 2  to maximize the coding gain. 

b) For S  left-multiplied by L  and right-multiplied 
by R , one can get the linear combinatorial symbol matrix 

M tZ  like (10) as follows: 
c) In the linear combinatorial symbol matrix M tZ , 

circulant-right-shifting the second row one time, the third 
row two times,…, the final row (i.e., the M th row) 

1M   times, respectively, one can get the coded matrix 
like (11) as follows: 

 

2 1
1 1 1 ( 1)

2 2 1 1
2 2 2 ( 1)

11 2 2 1
2

1 1
1 2 1 2 2

1 0 01

0 01

0 01

...

M
M M t

M M
M M t

M t

tM M M
M M Mt

M M
M M M M

s s s

s s sj j j

s s sj j j

s s s s s s

  
  

  


    


  

 
  



  

 
 

     
     
      
     
     
     

     



 
 

           
 

 

Z LSR

   


 
   



 
   

1
1 1 2 1

1

1
1 1 2 1

1 1 1 1
1 2 1 2 2

1 1

1 1
1 1 2 1

1 2 1 1 2 1
1 2 1 2 2

...

...

t
M t M t

M
Mt

t
M t M t

M M t t
M M M M

M M
Mt

t M
M t M t

M M M M M M
M M M M

s s

s

s j s
s j s j s s j s j s

j s

s j s
s j s j s s j s j s

j





 
    



 
    


   




   

   
 

 

 
   

     
 

 



 
     



 
     






 

   


 

2 1M M
Mts 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(10)
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     


   


   
  

   

1
1 1 2 11 1

1 2 1 2 2
1

21
1 2 2 21 1 ) 2 1 1 1

1 2
1 1 1 1

1

1 1
1 1 2 1

t
M t M tM M

M M M M
M

Mt

tt
M t M tM t M t M M

M
M M M M

Mt
Mt M t

t M
M t M t

M

s s
s s s s s s

s

s j ss j s
s j s j s

j s j s

s j s

j

 
    



  
 

 

 


    

 



        

   


 
   




     

 


  

    



 

  


 
 

   





B






1
1 21 2 1

1 2 2 12 1
2

M
M MM M M

M MM
MMt

s j s
s j s j s

j ss

 
 




   

 

 
 
 
 
 
 
 
 
 
 
 

 
   

   


 

   (11) 

 
Several examples of the C-STCs are presented as fol-

lows. Let 2M t  , according to (10), we have: 

 
 

1 3
2 2

2 4

1 2 3 4

1 2 3 4

1 1 0

1 0

s s

s sj

s s s s

s j s s j s


 

  
  



    
      

    
  

    

Z LSR

 

If 1j  , then 2 2 0 Z  which means the linear 
 

combinatorial form of information symbols is lost. If 
1j   , the linear combinatorial operation is retained. 

For  π 42 ei   , we can get the 2 2  C-STC matrix 
which is same as those in [5,6] 

 
 

1 2 3 4
2 2

3 4 1 2

s s s s

s s s s

  
  

  
    

B  

Again let 3M  , 4t  , we have 

2
1 4 7 10

2 2
3 4 2 5 8 11 2

2 2
3 6 9 12 3

1 0 0 0
1

0 0 0
1

0 0 0
1

0 0 0

s s s s

j j s s s s

j j s s s s

 


 


 




                           

Z LSR  

 
when 

π
64 e

i   , 
2π
3e

i
j  , 3 4Z  is full rank. Thus we can get the 3 4  C-STC matrix like (12) as follows: 

 

     
     
     

2 2 2 2 3 2
1 2 3 4 5 6 7 8 9 10 11 12

3 2 2 2 2 2 2 2 2 2
3 4 10 11 12 1 2 3 4 5 6 7 8 9

2 2 2 3 2 2 2 2 2 2
7 8 9 10 11 12 1 2 3 4 5 6

s s s s s s s s s s s s

s j s j s s j s j s s j s j s s j s j s

s j s j s s j s j s s j s j s s j s j s

          

          

          



        
 
         
 
         

B   (12) 

 
Similarly, we can get 2 3B , 2 4B , 2 5B  and 3 3B  
which and all above will be applied to simulation testing 
later on. 
 
4. Noncoherent Space-Time Codes 
 
Literatures [5,6] introduce the design criterion of the 
Grassmann N-USTC. Let i  and j  denote the sub-
spaces spanned by the column vectors of iX  and jX , 
respectively. Let  1 2, , , M    denote the principal 
angles between i  and j , then the chordal product 
distance between two points iX  and jX  on ,

C
T MG  is: 

2
,

1

sin
M

i j m
m




             (13) 

The design criterion of the Grassmann N-USTC C  is 

to make the minimal chordal product distance achieve  
the maximum, i.e. ,max min

i j
i j

X X CC  
 . It is known from the 

expression (6) that the product ,0iΘ  of the chordal dis-
tances between the subspace i  and the reference sub-
space 0  is equal to the product of all singular values 
in matrix iB  whose M  column vectors span the sub-
space i . The design criterion of a C-STC is to maxi-
mize its coding gain, which is equal to maximizing the 
minimum product of singular values of codeword matrix. 
Therefore we can use the matrix MtB  of (11) to design 
the matrix B  in (6).  

The exponential map from MtB  to TMX  must be the 
monotone and reversible, which requires that the expo-
nential map of (6) is the reversible map, i.e., (9) exists 
the reversible matrix. So cos m  and sin m  in (9) 
should be the monotone function, then the constraint 
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condition of m  is: 

 max π / 2, 0,1, , 1m Mt
m

B m M       (14) 

where  m MtB  is the m th singular value of any 
codeword MtB  which is equal to the m th principal 
angle between any   and 0 . Therefore, a conceiv-
able skill is that taking a scale  , called the adjustive 
factor which multiplies the codeword matrix MtB , can 
guarantee the map to be monotone and reversible. Thus 
(6) can be rewritten as follows: 

 †

0
exp

0
TM TM





  
       

B
X I

B
    (15) 

Obviously,   only affects the singular value of the 
matrix MtB . Let  max0,  denote a range of   values, 
the method of optimum searching   is described as 
follows.  

Let ,, C
i j T MX X G  be two distinct N-USTC code-

words, the SVD of the matrix †
j iX X  is † †

j i  ΣX X U V , 
where Σ  is a diagonal matrix formed by the singular 
values 1, , M  . The M  principal angles between the 
subspaces i  and j  spanned respectively by iX  
and jX  are 1cosm m  , 0,1, , 1m M  , substi-
tuting 1cosm m   for the expression (13), we can 
get: 

 2
,

1

1
M

i j m
m




             (16) 

Under the condition of making ,i j  maximize, by 
searching   in  max0, , we can get the optimum 

opt . 
Now we design TMX  by mapping exponentially 

MtB  to ,
C
T MG . The design step is:  

(a) For M  transmit antennas and t  coherent peri-
ods, according to (10) and (11), design the C-STC matrix 

MtB  from the information symbol 1 2, , , tMs s s . 
(b) Substitute MtB  for B  in (15), search the opti-

mum adjustive factor  , and construct the exponential  

mapping matrix 
 †

0

0

Mt

Mt





 
    

B
E

B
. 

(c) According to (7) and the above E  matrix, apply-
ing the SVD to  opt Mt B , we get the noncoherent 
codeword TMX  like (9), and T M t  . □ 
 
5. Examples and Numerical Simulation 

Results 
 
According to the above presented method, this section 
gives several examples of the N-USTCs whose numeri-
cal simulation curves are shown as Figure 1. Let 

 D M T M   denote the degree of freedom. Suppose 

modulation is q-PSK with symbol number p . So the 
spectral efficiency of the N-USTC is 

 2logT M p D T     bits/Hz/s. 
Example 1: Compare two curves of solid line with 

black dot and dash line with circle in Figure 1. For sys-
tem 2M N   and QPSK modulation with 4p  , let 

2t  , we construct the C-STC 2 2B ,where 
 π 42 ei   , 1j   . When 3t  , we get 2 3B , 

where  π 43 ei   , 1j   . As T M t  , having 
4T   for 2t   and 5T   for 3t  , corresponding 

to 4D   and 6D  , we compute 4 2 2    bits/Hz/s 
and 5 2 2.4    bits/Hz/s, respectively. We map the 
C-STC 2 2B  into the N-USTC 4 2X  on 4,2

CG  and 

2 3B  into 5 2X  on 5,2
CG  which correspond to the op-

timum adjustive factor 4 2
, 0.29opt Q    and 5 2

, 0.25opt Q   , 
respectively. At 510  bit error rate (BER), 5 2X  out-
perform 4 2X  about 3 dB. Obviously, under all para- 
meter being same except T  increasing, the N-USTC 
BER performance and the spectral efficiency are im-
proved.  

Example 2: Compare four curves of solid line with 
black square, dash line with white square, solid line with 
black diamond and dash line with white diamond in Fig-
ure 1. For system 2M N   and BPSK modulation 
with 2p  , let 2,3, 4,5t  , get 4,5,6,7T   and 

4,6,8,10D  , so 4 2 1   , 5 2 1.2   , 6 2 1.33    and 

7 2 1.43    bits/Hz/s, respectively. We map 2 2B , 

2 3B , 2 4B  and 2 6B  into 4 2X , 5 2X , 6 2X  and 

7 2X  whose factors are 4 2
, 0.41opt B   , 5 2

, 0.36opt B   , 
6 2

, 0.32opt B    and 7 2
, 0.29opt B   . At 510  BER, the 

performance of the N-USTC improve about 0.5 - 1.0 dB 
and the spectral efficiency increases along with T  in-
creasing. 

Example 3: Compare two curves with solid line with 
black triangle and dash line with white triangle in Figure 
1. For system 3M N   and BPSK modulation with 

2p  , let 3, 4t  , get 6,7T   and 9,12D  , so 

6 3 1.5    and 7 3 1.71    bits/Hz/s, respectively. We 
map 3 3B  and 3 4B  into 6 3X  and 7 3X  whose fac- 
 

 

Figure 1. Performance comparison of several N-USTCs. 
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tors are 6 3
, 0.24opt B    and 7 3

, 0.22opt B   . At 510  BER, 
the performance of the N-USTC improve about 0.8 dB 
from 6T   to 7T  , and the spectral efficiency also 
increases 0.2 bits/Hz/s. 
 
6. Conclusions 
 
A specific step that maps the coherent space-time matrix 
into the noncoherent space-time matrix by means of the 
exponent form of the tangential space of Grassmann 
manifold was summed up for designing the N-USTCs. 
Especially, our work makes the structural parameters 

, , ,M N T t  with regard to both the N-USTC based on the 
Grassmann manifold and the C-STC based on the alge-
braic number theory be able to be designed more flexibly. 
We also discovered that in the discussed family of 
Grassmannian N-USTC, the optimum codeword can be 
obtained by searching the optimum adjustive factor opt . 
It is noticed that the design of the parameter j  in left- 
multiplied matrix L  is open problem, we will track this 
problem in the future. 
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