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Abstract 
The aim of this work was to evaluate the photokilling efficiency of synthesized titanium dioxide 
nanoparticles in suspension. Two strains of Escherichia coli, Lactobacillus casei rhamnosus and 
Staphylococcus aureus were used as probes to test the photokilling activities of the nanoparticles. 
The toxicity effects of TiO2 nanoparticles on the environment were determined by a standard test 
using gram-negative bioluminescent bacteria Vibrio fischeri. The antimicrobial activity of these 
nanoparticles (NPs) was then investigated versus NPs concentration, UV irradiation time and mi-
cro-organism strains. We evaluated the LC50 values of the nanoparticles suspension by counting 
the Colony-Forming Units. Results highlighted the differences in bacteria sensitivity facing photo-
killing treatment induced by the irradiation of anatase TiO2 nanoparticles suspension. At the con-
centration of 1 g·L−1 TiO2, tested bacteria were killed after 30 minutes of photo-treatment. Using 
different TiO2 concentrations, the Staphylococcus aureus gram-positive/catalase-positive bacteria 
were more resistant than gram-negative/catalase-positive ones or gram-positive/catalase-nega- 
tive bacteria. An effect of UV irradiation was evaluated by the quantification of hydrogen peroxide 
generated by the photolysis of water molecules in presence of the nanoparticles with or without 
the most resistant bacterium (S. aureus). After 30 minutes with UV irradiation in these two condi-
tions, the concentration of hydrogen peroxide was 35 µM in presence of 1.2 g·L−1 TiO2 suspension. 
This result suggested that the resistance mechanism of S. aureus was not due to an extracelullar 
H2O2 enzymatic degradation. 
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1. Introduction 
Photokilling of pathogen species is a promising alternative compared to conventional disinfection process. In 
particular, when chemical cleaning products are not effective or dangerous, a disinfection protocol based on the 
irradiation of photoactive species can be interesting. Contrary to other cleaning treatments, such as chlorination 
[1] [2] and ozonation [3]-[5], less toxic by-products are generated and the process can remain effective for a 
long time. The photokilling disinfection is mainly based on photoinduced oxidative reactions. Among all the 
photoactives species, TiO2 anatase is widely studied [6] [7] under UV irradiation. The use of photoactive tita-
nium opens the way to the development of self-cleaning materials [8]-[11]. Works have been done to improve 
the process, concerning the antimicrobial selectivity. Nanocomposite materials with magnetic nanoparticles [12] 
have been used to enhance the photoactivity of silver/titanium oxide [13] [14]. Within environmental toxicity 
assessments, the supervising of the effects of nanoparticles on micro-organisms is still very limited. The biolu-
minescence test Microtox® is often chosen as the first test in a test battery based on speed and cost consideration 
[15]. It is a standardized toxicity test (AFNOR T90-320, EN ISO 11348-3) system which is also sensitive and 
reproducible. It is recognized and used throughout the world as a standard test for aquatic toxicity testing [16] to 
determine EC50 (half maximal Effective Concentration). The photoinactivation of bacteria is a complex and 
multifaceted phenomenon. Currently many factors are taken into consideration regarding TiO2 nanoparticles 
toxicity. According to Cai et al. [17], the bactericidal activity of TiO2 NPs, in the presence of UV light, was due 
to oxidative stress. Gogniat et al. [18] suggested a sequence of nanoparticle interactions with the cell membrane 
followed by cell membrane oxidation facilitated by Reactive Oxygen Species (ROS). Accordingly, many studies 
have attributed to ROS production, the nanoparticles bactericidal effect generated under UV light [19] [20]. 
Furthermore, recent reports have shown that TiO2 nanoparticles can induce the oxidative stress defense of the 
cell against endogenous ROS like H2O2, which can sequentially elicit lipids, proteins and DNA damage [21]- 
[23]. Many studies also investigated the possibility of nanoparticle penetration inside the bacterial cell mem-
brane as a possible toxicity mechanism [24] [25]. The cell is surrounded by the plasma membrane, a lipid bilay-
er which contains opposing monolayers, or leaflets, of phospholipids with the hydrophilic head groups facing 
the extracellular and intracellular solutions, and the hydrophobic tails facing each other. Generally three routes 
for nanoparticle entry into cells exist: diffusion, endocytosis and channel implication [26]-[28]. When entering 
the cell, nanoparticles can probably produce intracellular H2O2. Cells naturally produce this metabolite. This is 
the reason why a specific mechanism exists to counteract the presence of hydrogen peroxide for detoxifying the 
cell. Catalase is a tetrameric heme-containing enzyme, and is one of the key antioxidant enzymes present in al-
most every aerobic organisms, catalyzing the breakdown of hydrogen peroxide to water and molecular oxygen 
to protect cells against the toxic effects of hydrogen peroxide [29]. 

In this study, we synthesized an original and stable anatase-crystallized suspension of TiO2 nanoparticles. Esche-
richia coli strains LE392 and ETEC H10407 (gram-negative/catalase-positive bacteria), Lactobacillus casei rham-
nosus strain Lcr35® (gram-positive/catalase-negative bacteria) and Staphylococcus aureus (SA51, gram-posi- 
tive/catalase-positive bacteria) were used as probes to test the photokilling efficiency of the nanoparticles in 
suspension. In particular, the resistance behaviour of different bacteria strains was evaluated using LC50 tests, 
focusing on two different parameters: the bacteria wall thickness (gram+ or gram−) and the presence or absence 
of the catalase gene (catalase+ or catalase−). Bioluminescent tests were performed to investigate the environ-
mental toxicity of TiO2 in suspension. The quantification of H2O2 allowed a better understanding of the inactiva-
tion mechanism involved in the photokilling process. 

2. Material and Methods 
2.1. Synthesis of the Nanoparticles Suspension 

The precursor solution was 10 mL titanium IV isopropoxide supplied by Sigma Aldrich mixed with 10 mL of an-
hydrous isopropanol (from Sigma) using a magnetic stirrer at 300 rpm. The titanium alkoxide reactivity was lo-
wered by the use of acetylaceton. The spontaneous hydrolysis of the titanium isopropoxide was obtained by the 
quick addition of 75 mL of acidified water. The reacting medium was then heated to 100˚C under reflux for almost 
8 hours (peptidization process). After this step, the dispersion was cooled down to room temperature, approx-
imately 20˚C. A clear, yellow, anatase crystallized nanoparticles suspension was obtained, and stored in the dark. 
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2.2. Transmission Electron Microscopy 
The morphology and the particle sizes were characterized using a Philips CM 20 transmission electron micro-
scope (TEM). The accelerating voltage was 200 kV. The samples were dispersed in methanol by ultrasonication. 
A drop of the suspension was then laid on a carbon-coated grid and dried. Selected Area Electron Diffraction 
(SAED) was performed to determine the crystalinity of the structure. The interplanar spacings were evaluated 
from the SAED patterns using the following formula: 

λL = Rd                                         (1) 
where λL is the constant of the microscope, R is the ring radius, and d is the interplanar spacing. The constant of 
the microscope was calculated by measuring the radius of a gold standard pattern whose interplanar spacings 
were well documented in scientific publications [30]. 

2.3. Bacterial Culture 
Four micro-organisms were used for photokilling experiments: Escherichia coli LE392, Enterotoxigenic Esche-
richia coli H10407, Lactobacillus casei rhamnosus Lcr35® and Staphylococcus aureus (SA51). These bacteria 
have a size comprised between 0.5 and 5 µm. E. coli cells were cultured at 37˚C for 24 h in Nutrient Broth me-
dium at pH 7.2 (Biokar diagnostics) containing Tryptone (10 g·L−1), Meat extract (5 g·L−1) and Sodium Chlo-
ride (5 g·L−1) after 12 h of pre-culture in the same conditions. Lactobacillus casei rhamnosus Lcr35® was cul-
tured in De Man, Rogosa, Sharpe (MRS) medium (Bio-Rad, Mitry Mory, France) and S. aureus in Brain Heart 
Broth (Brain Heart Infusion 17.5 g·L−1, Pancreatic digest of gelatin 10 g·L−1, Sodium Chloride 5 g·L−1, Dis-
odium phosphate 2.5 g·L−1, Glucose 2 g·L−1, Biokar diagnostics) under the same conditions than E. coli strains. 
Cells were centrifuged at 2500 g for 15 min at 4˚C and the pellet was re-suspended in de-ionized water to pre-
vent unintentional increase in cell numbers. The initial population of bacteria was determined by enumeration 
with a Petroff-Hausser Counting Chamber. 

2.4. Bioluminescent Tests 
The Microtox® Procedure employs the bioluminescent marine gram-negative bacterium Vibrio fischeri as test 
organism. The bacteria are exposed to a range of concentration of the TiO2 in suspension being tested. The re-
duction in intensity of light emitted from the bacteria is measured along with standard solutions and control 
samples. Toxicity is, then, inversely proportional to the intensity of the light emitted after contact with the toxic 
substances. The change in light output and concentration of the toxicant produce a dose/response relationship. 
The results are normalized and the EC50 (concentration producing a 50% reduction in light) is calculated. 

The basic test protocol (consisting of four test dilutions) was carried out to evaluate the ecotoxicity of the me-
dium containing TiO2 nanoparticles. All tests were performed using the Microtox 500 Analyser, and biolumi-
nescence measurements were monitored at 0, 5 and 15 min of exposure. The effective concentrations causing 
50% of bioluminescence inhibition were computed using the software for Microtox Omni Azur (AZUR envi-
ronmental, 1998). Toxicity tests were performed in triplicate each week during a two months period and the re-
sults are expressed in mg·L−1. 

2.5. Inactivation Kinetics Measurements and LC50 Tests 
For inactivation kinetics measurements, an amount of 20 mL of de-ionized water was inoculated with Escheri-
chia coli LE392 or Enterotoxigenic Escherichia coli H10407 suspension in order to achieve a concentration of 
106 CFU·mL−1 (Colony-Forming Unit by mL). This suspension was placed in a Petri plate with TiO2 nanopar-
ticles to achieve a final concentration in TiO2 of 1 g·L−1. The slurries were continuously mixed and irradiated 
with UV (polychromatic fluorescent UV lamps (©Philips TLD 8 W) providing a total power of 48 W, in a con-
figuration delivering 1.5 mW·cm−2 at the liquid surface). A complete mixing was done with a sterilized Teflon 
magnetic stir bar placed in the Petri dish with a speed of 200 rpm. 

Sampling of the solutions was done at requisite time intervals (from 0 to 30 min) by pipetting 1 mL from the 
suspension and serially diluted in 9 mL of Ringer’s solution. After sufficient mixing, 100 µL aliquots of each 
dilution were plated onto solid Nutrient Gelose medium (Biokar diagnostics) with agar 15 g·L−1. Colony-Forming 
Units were counted after overnight incubation at 37˚C. All experiments were made in aseptic conditions to pre-
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vent any contamination in the media. The counts from three independent experiments corresponding to a partic-
ular sample were averaged. The method used for the LC50 tests was similar to that used for inactivation kinetics 
and was performed on all bacteria strains with nanoparticles concentrations from 50 to 1200 mg·L−1 TiO2 under 
30 min UV irradiation at 1.5 mW·cm−2. 

2.6. Hydrogen Peroxide Concentration Determination 
Generation of hydrogen peroxide by TiO2 nanoparticules in an aqueous liquid suspension was determined as 
described by Batdorj et al. [31] with slight modifications. Aqueous solutions of TiO2 particles concentrations 
ranging from 0 to 1200 mg·L−1 were placed in Petri plates and continuously mixed in the dark or irradiated with 
UV for 30 minutes. H2O2 concentrations were measured after eliminating the nanoparticles by centrifugation for 
15 min at 200000 g. One mL of supernatant was added to a solution containing 100 µl of 4-aminoantipyrine (4 
mg·mL−1 solution of 4-amino-2, 3-dimethyl-1-phenyl-3-pyrazolin-5-one, Sigma), 40 µl of water-satured phenol, 
60 µl of horseradish peroxidase type VI-A (Sigma, 500 U·mL−1 solution in sodium phosphate buffer pH 6) and 
800 µl of phosphate buffer Na2HPO4/NaH2PO4 (0.1 M, pH 7). The reaction was allowed to proceed for 5 min 
and the absorbance was measured at 505 nm. The hydrogen peroxide was quantified using a standard curve per-
formed with concentrations ranging from 10 to 200 µM. 

3. Results and Discussion 
3.1. Nanoparticles Suspension Synthesis 
Stable titanium dioxide nanoparticles in suspension are fabricated using a derivate sol gel process. Figure 1 
shows the main steps of the synthesis protocol. This soft chemistry process is a one-pot, low temperature and ef-
ficient method to obtain highly dispersed colloids in a carrying liquid. The first step consists in the chelation of 
the titanium isopropoxide with an organic ligand, acetylacetone. This reaction is a substitution of alkoxy group 
of the titanium alcoxyd molecular species by beta diketone ligands. In consequence, the hydrolysis kinetic of the 
titanium precursor is lowered and undesirable precipitation avoided. Hydrolysis-condensation reactions were 
carried out by dropping acidified water in the homogeneous medium previously diluted in some isopropylic al-
cohol. The reacting mixture was heated under reflux for almost 8 hours to obtain a stable dispersion of TiO2 
 

 

Ti(OiPr)4 

1. CHELATION STEP: with acetylacetone C5H8O2: 
chemical grafting of beta diketone ligands 

2. HYDROLYSIS and CONDENSATION: 
titanium dioxide fabrication 

Heated under reflux at 100˚C 

Stable TiO2 nanoparticles in suspension 

Beta diketone ligand anchored on 
the nanoparticle surface 

 
Figure 1. Main steps of the synthesis of homogeneous suspension of TiO2 nanoparticles in an aqueous medium. 



M. Bonnet et al. 
 

 
217 

nanoparticles in an aqueous liquid. Taking into account that the pH of liquid carrier is low, the TiO2 mineral 
oxide nanoparticles have a positive surface charge. 

3.2. Transmission Electron Microscopy 
A TEM picture and the associated SAED pattern of our as-synthesized sample are presented in Figure 2. The 
TEM image (Figure 2(a)) shows that most of the particles are elongated, some of them are spherical. From 
these TEM pictures, the mean crystallite diameter is approximately 8 nanometers. 

The SAED patterns of the most intense spots are shown in Figure 2(b). The comparison, in Table 1, between 
the interplanar distances calculated from the SAED patterns and the tabulated ones obtained for the anatase 
crystallographic structure exhibits a good agreement and confirms the anatase crystalline structure of our syn-
thesized sample. 

3.3. Bioluminescent Tests 
The Microtox® test has been routinely applied to treated waste waters or single compounds and mixtures of in-
organic and organic compounds [32]. Furthermore, bioluminescence test becomes a recognized tool to investi-
gate ecotoxicity of nanoparticles [33]. No visible precipitate was observed during the test over the two months 
period, which confirmed nanoparticles suspension stability. Our results showed EC50 values of respectively 
43.75 ± 23.38 mg·L−1 and 36.51 ± 20.55 mg·L−1 at 5 min and 15 min. The calculated EC50 after 5 and 15 mi-
nutes exposure time are quite similar. The slight decrease could mean that the nanoparticles need a short time to 
diffuse into the cells and interact with lipids, carbohydrates, proteins and DNA [34]. Obtained EC50 values for 
TiO2 particles are much higher, relative to the literature [35] [36]. This may be due to our particular and original 
way of synthesis of nanoparticles with the use of acetylacetone which is known as a toxic molecule [37]. Our 
TiO2 nanoparticles with EC50 ranging from 36 to 44 mg·L−1, can be classified as harmful to aquatic micro-or- 
ganisms (EC50 in the range of 10 - 100 mg·L−1) according to the Commission Directive 93/67/EEC from the 
European Union for the assessment of risk to man and the environment of substances. 

We have demonstrated the toxicity of our nanoparticle suspension in the dark on a very sensitive bacterium, 
Vibrio fischeri. 

3.4. Inactivation Kinetics Measurements 
As in previous studies on Escherichia coli LE392 [38] where we clearly observed the total destruction of bacteria  
 

 
Figure 2. TEM image of TiO2 nanoparticles (a) and SAED pattern of the par-
ticles (b). 

 
Table 1. Interplanar distances for the TiO2 nanoparticles deduced from the 
SAED patterns, compared to the expected ones for ideal anatase phase. 

Interplanar distance from the SAED pattern (Å) 3.57 2.41 1.93 1.70 

Theoretical distance for the anatase phase (Å) 3.51 2.33 1.89 1.66 

Corresponding Miller indice (101) (103) (200) (211) 
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after only 1 hour of treatment with 1 g·L−1 TiO2 suspension under UV irradiation, we could wonder what hap-
pens during this time duration. Figure 3 shows that after 10 min of treatment, approximately 40% of bacteria 
tested (E. coli LE392 and ETEC H10407) died. Ten minutes later, we can observe a drastic diminution of the 
population with around 80% of mortality. Finally, under these particular conditions, we clearly observed the to-
tal destruction of both strains of bacteria after only 30 minutes. 

Freshly grown bacterial cultures (106 CFU·mL−1) were treated with 1 g·L−1 of TiO2 and irradiated with UV 
(1.5 mW·cm−2). This experiment was carried out in triplicate. Wang et al. [39] found quite similar results show-
ing that a lower TiO2 nanoparticles concentration (0.4 g·L−1) had a similar inactivation effect on E. coli but after 
2 h UVA irradiation. 

3.5. TiO2 Suspension Phototoxicity against Bacteria 
The 30 minutes-LC50 tests were then performed on all strains in order to make a comparison between bacteria 
differing in cell wall structure and detoxification system implicating the catalase enzyme (Table 2). 

Concentration-dependent mortality in E. coli exposed to TiO2 suspension under 30 minutes UV irradiation 
(1.5 mW·cm−2) showed a linear profile for both strains at a concentration ranging from 100 to 600 mg·L−1 
(Figure 4). The LC50 calculated by linear regression were 340 mg·L−1 for LE392 and 281 mg·L−1 for ETEC 
H10407 (Table 2). The TiO2 nanoparticles suspension had differing inactivation efficiency regarding Lactoba-
cillus casei rhamnosus and Staphylococcus aureus. LC50 was calculated to be 195 mg·L−1 for L. casei rhamno-
sus 35® whereas the value of 585 mg·L−1 was determinated for S. aureus. We can observe that concentration-de- 
pendent survival is higher for the S. aureus gram-positive catalase-positive bacteria compared to the other ones. 

The fact that TiO2 nanoparticles showed a lower effect on S. aureus than on the other ones, under the same 
conditions, indicates that the resistance of bacteria to TiO2 nanoparticles is species-dependent. These differences 
might be due to different structural properties of cell wall and/or a higher self-defense property [40] or self-repair 
ability of S. aureus than the other ones. Only focusing on the cell wall property of bacteria tested, we can see 
that the more resistant one is S. aureus which has a gram-positive cell wall. This is in accordance with previous 
 

 
Figure 3. Influence of irradiation time on the mortality rate of Escherichia coli LE392 and 
Enterotoxigenic Escherichia coli H10407. 

 
Table 2. Wall type and catalase activity of different tested bacteria strains. 

Bacteria Gram Catalase LC50 (mg·L−1) 

E. coli LE392 negative positive 340 

Enterotoxigenic E. coli negative positive 281 

L. casei rhamnosus positive negative 195 

S. aureus positive positive 585 
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Figure 4. Determination of LC50 for Escherichia coli LE392, Enterotoxigenic Escherichia coli 
H10407, Lactobacillus casei rhamnosus Lcr35® and Staphylococcus aureus SA51 when exposed to 
TiO2 nanoparticles with concentrations ranging from 50 to 1200 mg·L−1 under 30 min UV irradia-
tion at 1.5 mW·cm−2. Experiments were carried out in triplicate. R2 is a measure of goodness-of-fit 
of linear regression. 

 
results [41] [42] respectively using ZnO and Ag nanoparticles, which exhibited a much stronger antibacterial 
effect on gram-negative bacteria. This difference in antimicrobial activity between gram-positive and gram- 
negative micro-organisms is often attributed to the structure of their perspective cell walls [43]. On the other 
hand, our results are not similar with another report using ZnO nanoparticles that showed a much stronger anti-
bacterial effect on gram-positive bacteria than on gram-negative ones [44]-[46]. In addition, van Grieken et al. 
[47] observed no significant differences between the photocatalytic inactivation of gram-negative and gram- 
positive bacteria for all experiments and concluded that despite their differences in cell wall structure, both E. 
coli and E. faecalis showed similar reaction to the treatment. Moreover, in our study, the most sensitive bacte-
rium is Lcr35® even if this micro-organism belongs to the gram-positive bacteria class. All these results confirm 
that the cell wall structure is not the primary factor involved in resistance to nanoparticles. 

Major constituents of the cell wall are each specific strains and the surface charge of the bacteria is associated 
with the presence of the ionized groups of the macromolecules [48]. Generally, the cell wall of gram-positive 
bacteria has a stronger negative charge than gram-negative bacteria. This negative charge is due to the presence 
of teichoic acid in gram-positive bacteria and lipophosphate in gram-negative ones [49]. 

There are reports in the literature that show that electrostatic attraction between negatively charged bacterial 
cells and positively charged nanoparticles is crucial for the activity of nanoparticles as bactericidal materials. 
Nanoparticles are capable of penetrating bacterial cells and act as a catalyst, to inactivate enzymes that micro- 
organisms need for their metabolism by interacting with thiol groups of proteins, disrupt bacterial membranes 
and also affect DNA replication [50] [51]. In the case of nanoparticles of TiO2 illuminated with UV, the pro-
duced hydrogen peroxide will contribute to this phenomenon [52]. Marugán et al. [40] found that bacteria by 
themselves had self-protection ability and could grow again after being injured. Therefore, the inactivation of 
bacteria requires a certain amount of cumulative damage. 

In our study, we have to take into account the presence or absence in cells of an enzyme responsible for cata-
lyzing the breakdown of hydrogen peroxide into water and molecular oxygen: catalase [53] [54]. The highest re-
sistance of S. aureus encountered here could be explained by the combination of its cell wall gram+ and the di-
minution of extracellular and/or intracellular H2O2 concentration by catalase. 

3.6. H2O2 Measurements 
TiO2 is a semiconductor [55] which can be excited by UV light. In these conditions, an electron of TiO2 receives 
photon energy and is excited [56]. It then reacts with H2O and/or O2 and produces hydroxyl radicals and/or ac-
tive oxygen species [57]. The active species further react with bacteria and inactivate them. The damage cannot 
be completed in a short time, even though there are enough radicals produced by photocatalytic nano-TiO2 [39]. 

With the aim of evaluating the H2O2 production capacity by TiO2 nanoparticles in the dark or under UV ir-
radiation after 30 minutes, we measured concentration of this molecule with regard with different nanoparticles 
concentrations (0 from 1200 mg·L−1, Figure 5). The influence of the presence of bacteria on this parameter was 
also evaluated. 
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Figure 5. Influence of Staphylococcus aureus on the concentration of hydrogen peroxide (mg·L−1) after 30 minutes in the 
dark or under UV irradiation, for different nanoparticles concentrations. Experiment was carried out in triplicate. 
 

For this experiment, we chose S. aureus because it was the most resistant bacterium among the four tested. Its 
resistance may be due to a detoxification capacity of the external environment by a catalase activity. Effectively, 
in order to counteract excess ROS, various antioxidant mechanisms are activated in the organisms. The initial 
mechanisms that act to adjust antioxidant levels to protect the cells include changes in antioxidant gene expres-
sion [58]. 

We observed (Figure 5) that in the dark the presence of H2O2 was proportional to TiO2 concentration. The 
maximum value obtained was 13.23 ± 4.49 µmol·L−1 with 1200 mg·L−1 of nanoparticles in presence of S. au-
reus. This result shows that even in the dark, the TiO2 nanoparticles cause the synthesis of hydrogen peroxide. 
Several studies indicate that certain nanomaterials, including metal oxide nanoparticles, have the potential to ex-
hibit spontaneous ROS production based on material composition and surface characteristics [59]-[61]. The 
presence of S. aureus did not significantly affect this content. Under these conditions, it was not possible to 
show a detoxifying activity, by the micro-organism, in its environment. 

Under UV irradiation, H2O2 concentration obtained was significantly greater than in dark condition. The 
maximum concentration (35 ± 1.66 µM hydrogen peroxide) was achieved with 1200 mg·L−1 of nanoparticles 
without S. aureus. As in the dark condition, the bacteria did not change the content of H2O2 in their extracellular 
environment. 

The greatest resistance of S. aureus to TiO2 nanoparticles under UV irradiation is probably due to an intracel-
lular detoxification process and wall thickness properties. 

4. Conclusion 
In this study, we synthesized stable anatase titanium dioxide nanoparticles in suspension. We evaluated the en-
vironmental toxicity of suspension using Microtox® test. The Microtox® test using Vibrio fischeri has classified 
our nanoparticles as harmful to aquatic micro-organisms. The hydrogen peroxide quantification indicated that 
H2O2 was involved in the biological mechanism. The comparison between the bacteria strains showed a higher 
resistance with S. aureus than with E. coli and Lcr35®. This resistance may be due to the presence of the catalase 
gene in its genome and its thicker wall. 

However, further studies are needed in order to elucidate mechanisms of toxicity induced by our TiO2 nano-
particles, so it could be interesting to determine intracellular ROS concentration, lipid peroxidation level, mem-
brane integrity and DNA damage. Gene expression analysis by RT-qPCR and/or RNA-Seq will also permit us to 
assess all the effects of our nanoparticles on the different metabolic pathways and especially on the oxidative 
pathway. 
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