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Abstract 
 
Issues related to the implementation of dynamic programming for optimal control of a three-dimensional 
dynamic model (the fish populations management problem) are presented. They belong to a class of models 
called Lotka-Volterra models. The existence of bionomic equilibria will be considered. The problem of op- 
timal harvest policy is then solved for the control of various classes of its behaviour. Therefore the focus will 
be the optimality conditions by using the Bellman principle. Moreover, we consider a different form for the 
optimal value of the control vector, namely the feedback or closed-loop form of the control. Academic ex- 
amples are studied in order to demonstrate the proposed methods. 
 
Keywords: Optimal Control Problems, Maximum Principle, Piecewise Constant Optimal Control, Bellman 

Principle

1. The Problem 

Currently the fish populations in the Baltic Sea have 
many problems, which are mainly caused by human in- 
fluence. Some fish species are catched too much. The 
fundamental risk of overfishing is that a stock (occur- 
rence of species in a given region) is so decimated that 
the natural regeneration ability is not given and at worst 
the species die out. The Living Planet Index for marine 
species of the WWF shows an average decrease of 14% 
between 1970 and 2005 (see Living Planet Report 
2008). The over fishing is the main cause apart from 
possible environmental factors (climate change, pollut- 
ants, etc.). 

Therefore, the goal of the Baltic Sea fishermen must 
be conscientious, by the policy prescribed regulations 
and the advance (such as from International Council for 
the Exploration of the Sea) to protect the Baltic Sea 
fauna deal. A responsible management must reduce the 
fishing effort to an environmentally acceptable level and 
call for the cooperation among the participating countries. 
This is of utmost importance, since the economic value 
of the catches depends on the stock and the biodiversity 
of the Baltic Sea. 

Several interacting species are modeled, which inhabit 
in a common habitat with limited resources. So, a dy- 
namic system is to be studied, which depends on several  

states and controls (e.g. the number of fishing boats). A 
typical question for such systems is to find a controller 
that regulates the system in a desired target. In many 
applications a cost functional is to be optimized, this is 
usually a functional of the state trajectory and the con- 
trols of the system. The profit of a sustainable fishing 
industry should be maximized without disappearance of 
the species. 

In this paper necessary (and sometimes sufficient) op- 
timality conditions are derived. Numerical methods are 
obtained from the optimality conditions in order to cal- 
culate (approximately) optimal controls. 

2. Optimal Control Problems 

Whenever a state function depending on the time is de- 
scribed by an ordinary differential equation which de- 
pends on the control variable, it is called a control system 
of ordinary differential equations. Optimal control is 
related to the development of space flight and military 
researches beginning from the 1950s. We can find the 
applications of the control theory in economics, in 
chemistry or even in population dynamics. The general 
task of optimal control is defined as follows: 

Let mR  be a nonempty (often convex and 
closed) control region. Let , ,g q f  be given smooth 
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piecewise continuous (or piecewise constant) function 
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the ODE 
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is valid. We are looking for admissible pairs  x  ,  u   
which maximize an objective (cost) functional of Bolza 
type: 
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Often the optimal control can be calculated by me- 
thods using the Pontryagin maximum principle or by 
solving the Hamilton-Jacobi-Bellman equation. 

3. Extended Lotka-Volterra Models with M 
Populations 

A logistic model of development for a two-population 
system can be written in the following form [1,2]. Let be 

1 2,   growth coefficients, 1 2,   the phagos coeffi-
cients and 1 2,K K  given numbers (capacities or logisti-
cal terms). We denote the population sizes as 1x  and 

2x . 
The differential equations  for the development of the 

populations are 
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We denote generally: 

i  are growth coefficients, ij  are the phagos coef- 
ficients of the population i with respect to the population 
j and Ki are logistical terms. 

We denote the control of the fish populations  iu t  
(it can be a regulation of the fishing, e.g. the number of 
the fishing boats if ), pi are fish prices (per 
ton), ri are catch proportionalities. Therefore, the devel- 
opment of m populations can be described by a general- 
ized system 

 iu t N
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where   00i ix x  are given for  1, , .i m 
The objective function (the profit) is to be maximized 
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under the restrictions  

  max0 , 1, , ;0iu t u i m t T .      

c are the cutter costs per day and d is the number of 
days in which we catch. If we calculate the present value 
of future profits, we consider a discount rate te  . This 
plays an important role in economic models. 

4. Bellman’s Principle 

A key aspect of dynamic programming is the Bellman 
principle. The basic idea is to calculate the optimal solu- 
tions of many small subproblems and then to compose 
these subsolutions to a suitable global optimal solution. It 
was formulated in 1957 by Bellman. 

An optimal policy has the property that whatever the 
initial state and initial decision are, the remaining deci-
sions must be an optimal policy with regard to the state 
resulting from the first decision [3]. 

This idea can be used to derive a necessary and suffi- 
cient condition. We consider here two forms of the opti- 
mal controls of (1), namely the open-loop form and the 
closed-loop form. The closed-loop form  gives 
the optimal value of the control vector as a function of 
the time and the current state. The form of the optimal 
control vector derived via the necessary conditions is 
called open-loop. However, even though the closed-loop 

 ˆ ,u t x

 ˆ ,u    and open-loop  *u   controls differ in form, 
they yield identical values for the optimal control at each 
date of the planning horizon. It follows   t*ˆ ,u t x   

 *u t . 
The open-loop form gives the optimal value of the 

control vector as a function of the time and the initial 
values of the state vector. The closed-loop form of the 
optimal control is a decision rule, for it gives the optimal 
value of the control for any current period and an admis- 
sible state in the current period that may arise. In contrast, 
the open-loop form of the optimal control is a curve, for 
it gives the optimal values of the control as the inde- 
pendent variable time over the planning horizon. 

We consider an optimal control problem (1) under the 
control condition: 

     0, , ,  mu t R t t T u      is piecewise con- 
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tinuous. 
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 ,t x  gives the optimal value of the o  fuV bj nc- 
tion starting from the time  0 ,t t T  and the starting 
point x, following the ODE. 

We define the Hamiltonian H as 
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Substituting this result into the previous equation and 
using  , ,x f t x u , it follows for  the partial 
di

0t 
fferential equation 

     
     

0 max ,

 , , , .x

, , t
u

0

g t x t u V


 t x t

V t x t f t x t u t



 
       (3) 

We can write the PDE (3) as 

   , max , , , ,V t x H t x u V t x   ,x       (4) 

because 

t
u

 ,V t x
n 

 does not depend on u. The
conditio

 boundary 
     , ,x T q T x TV T  follows

 (4) is the Hamilton-Jacob
volution equation with a fin

 immedi- 
ately. 

The PDE i-Bellman equation. 
It is an e al condition. The 
global solvability, assumed in the first definition, is not 
assured in general1. 

Sufficient condition 
If it’s given on  0 , nt T R  a real, continuously dif- 

ferentiable function  ,t x , wh
equation  
V ich satisfies the Hamil- 

ton-Jacobi-Bellman 

    
  

, , , , ,t x
u

V t x t x u V t x


 

  
max

, ,

H

V T x T q T x T
        (5) 

and if the control 

   ˆ , arg max , , , ,x
u

u t x H t x u V t x


        (6) 

(depending on t and x) is admissible, then 
sponding open-loop control with the c

the corre- 
orrespond-  *( )u   

ing state trajectory *( )x  is an optimal solution of (1). 
Proof: 
Since the left-hand e is independent from u, (5) can 

be rmed into: 
sid

 transfo

    max , , , , , 0.t x
u

V t x H t x u V t x


         (7) 

*( )u   and We choose admissible open-loop controls 

( )u   on  0 ,t T . 

Let *( )x   and ( )x   be the unique state trajectory, 
h are atewhic ner and in ge d by *( )u   ( )u    0 ,t T , so 

that    0 0 .*
0x t x t x   Then it m : follows fro (6) and (7)

1The name refers to William Rowan Hamilton (1805-1865), who
contributed to the development of the calculus of variations, to
Carl Gustav Jacobi (1804-1851), who studied the theory of sufficient 
conditions in the calculus of variations, and to Richard Bellman 
(1920-1984), who brought the dynamic programming on the way. 
By the way, this equation comes from Constantin Carathéodory
(1873-1950), whose name was not mentioned. 
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With the definition of the Hamiltonian 
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was added on both sides. Since  0 0,V t x  ( )u   
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is arbi- 

alue of the objective functional i  maxi- 
he control  [4,5]. 

5. Algo

o  formulate a construc-
tive algorithm: 
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mized by t *( )u 

rithm 

Now we can use this the rem and
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 with the 

mizing value
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2) Write down the corresponding Bellman equation. 
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-
m
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5) Solve the Bellman equation. (analytically or nu
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6.

 

 An Example. The Comparison with 
Methods Using the Maximum Principle 

want to co eth wn metho
based on the Pontryagin maximum principle. 

Let us consider the problem: 

      ,x t x t u t      00 ,x x  ( )u   

piecewise constant 

   
1

21 1
1 min     2

0

d
2 2

J u t t x       (8) 

A necessary optimality condition for (8) is the maxi-
necessary conditions were developed 

by Pontryagin and his co-workers in Moscow in the 
1950s. They introduced the idea of adjoi
append the differential equation to the objective func-
tio

 conditions that the adjoint function should 
sa

mum principle. The 

nt functions to 

nal [6]. 
Note that, the adjoint functions have a similar purpose 

as Lagrange multipliers in multivariate calculus, which 
append constraints to the functions of several variables to 
be maximized or minimized. Thus, one begins by finding 
appropriate

tisfy. 
Let * *( ), ( )x u   be optimal, then there is a nontrivial 

solution of the adjoint equation 

        * *, , , ,t H t x t u t t
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all t 

           * * *, , , max , , , ,
u

H t x t u t t H t x t u t 


  

 and the transversality condition  q
t T

x
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2
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   1 2 1

1
,   ,  0 1.

2
t t tt C e x t C e C e t       

The initial condition 2 1 02

1
C C x  and the final con-
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2 1

1
1

2
C e C e C e       1 give the constants 

C1, C2: 
2

0 0
1 2

2 3
.

2 2
,  

1 3 1 3

x x

e e


 

Therefore, it follows the open-loop-solution 

e
C C   
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loop solu- 
tion can be calculated. It is 
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as a func-tion of the time t. 

Control Problems with Piecewise Constant 
Controls 

Now we consider problem (1) with piecewise constant 
controls. 

th of the interv in 
- 

ble. 

7. Closed-Loop Optimality Conditions for 

If the leng al is fixed, the Pontryag
maximum principle in the classical form is not applica

There is an alternate Pontryagin-like-way. Let  * t  u
 k ku u t   be optimal on  1,k kt t  . Then it follows:  

1kt
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t
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e Bellman principle we can also win optimal- 
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k

Using th
 conditions. Let be 0 1 nt t t    predetermined 

time points and ( )x   absolutely continuous. 
The problem is now: 
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The process equation is: 

      , , ,kx t f t x t u t  if  

 1k k k k, ), 0,1, , 1.t T t t n     The optimal control 
 *

kt uu   is to be found. 
At first we consider the special case n = 1 (one control 

interval). 
We denote  0u t v  and define the new

tion 

for the process, which starts at 

 value func- 

  , , ,W t x v g x      
1

1 1, d ,
t

t

v q t x t    

time t with the vector 
 x t x  d witand is performe h the constant control 

v . This function W is continuously differentiable in 
t and x. It is not to be confused with the function V 
(chapter 4), sin s no maximum operator. 

We can form  necessary conditions [7]. 
Ne

ce here i
ulate new

cessary condition 
Let  , ,W t x v  be continuously differentiable i  t and 

x. Let 
n

 ˆ ,u t x  be
e process 

 an optimal constant control that leads 
th         , , , ,x t f t x t u t x x t x   from x 
on  1,t t . The control û  is constant also in  0 1,t t .  

 control Then this  ˆ ,u t x satisfies for all  0 1,t t t  the 

condition 

     0 0 0 0ˆ ˆ, , arg max , ,u t x u t x W t x v   
v

here  , ,W t x v  satisfiw es the partial differential equa-
tion: 
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, ,
v

f

.

t x v g 

in other words, 

t x v
t x
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8. Open-Loop Optimality Conditions for 
Control Problems with Piecewise Constant 

We can also formulate the optimality conditions for t e 
problem (11) in open-loop form. Let 

Controls 

h
 ,x t v  be a solu-

tion of the process equation 
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x


   


 

are satisfied for all 
Proof: 

nsider the equatio

.v   

We co n (13): 

      
      

,
, , , , ,

, , , , ,
,

S t v
H t x t v v t v

t

H t x t v v t v
x t v

x













 

is equivalent to 

 

       

      

,
, , , , ,

, , , , ,
, .

S t v
g t x v t v f t x v

t

H t x t v v t v
x t v






   


 

It follows from (12) 

x






           ,
, , , , , , .

S t v
g t x v t v x t v t v x v

t
 


     


  

We integrate this equation over 

t

 1,t t : 

          

   

1

1 1, , , , d ,

, , .

t

t

S t v S t v g x v t v x t v

t v x t v

   



    

 

  

1t

1,

From the previous we obtain   , , d
t

g x v    
 the transversality     1 1, , ,W t x v q t x t 

co
and from

nditions 

         
    1 1, ,t v x t v x t    

1 1
1 1 1 1

1 1

,
, , ,

, .

q t x t
S t v x t v q t x t

x

q t


   

  

It follows: 

,

n i r



because is constant. It follows with  

.

 the right-hand side of the equation is the 
function of We obtain the open-loop form: 

         
     

, , , , , ,

, , , .

S t v W t x v t v x t v W t x v

S t v t v x t v





   

  
 

As show n the p evious chapter it is 

 û   0 0 0 0ˆ, , arg max , ,
v

t x u t x W t x v


   

 ˆ ,u t x

   
        

0 0

0 0 0 0 0

, :

ˆ , arg max , ,
v

x t v x t

u t x S t v t v x t




 
 

The term on

0.t  

        *
0 0 0arg max , ,

v
u t S t v t v x t


  0 . 

nition of neces-
sary conditions is analogous. 

We have to maximize: 

n

In case of n control intervals the defi

         
1

0

, , d ,
k

tn

k n
k t

1k

J u g t x t u t t q t x




 
  

  
   t

under the constraint: 



      
 0 0  

1,, , ,

, .

k k k

k

x t f t x t u t t t t

x t x u t

  

 


 

* *( ), ( )x u   be optimal with    * * ,ku t u t  Let 
    * *, kx t x t u t , for 0, , 1,k n  then it is 

        * arg max ,ku t S t ,ku t u x t , k
u k

where  ,S t v  is a solution of 

      
      

,
, , , , ,

, , , , ,
,

S t v
H t x t v v t v

t

H t x t v v t v
x t v

x






 






   (14) 

and 



 ,t v  is a solution of 

     , ,H t v
x

 
   1

, , , , ,

, , ,k k

t v t x t v v

t v t t

 




 

  


  (15)     

with 

   
      
    
    

0 0 0

*
1

*

*

, ,

, 0,

0, , ,

0, , ,

k k k k

k k k

k k k

x t v x t x

x t v x t x t u t

t v t u t

S t v S t u t

 



 

  

 

 

 
,

he tran ns and t sversality conditio

    

         

,
, ,

,
, ,

n n
n

n n
n n

q t x t
t v

x

q t x t
S t v x t q t x t

x








   



 

n n

are satisfied. 

9. An Example. The Multistage Open-Loop 
Control 

We want to solve a two stages-optimal control problem. 
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Let be  0,1t  and 0 10,t t  0.5.

 0 10.5 , 0.5;1T T 
 We obtain two 

time  The process 
equation is: 

 intervals:  0; .

        0, 0,1; 0k ,x t x t u t k x x        6) 

 piecewise constant: 

  (1

( )u 

        
   

 

   

 

   

1

1

0 1 0 1

1
2 2

2 2

0

, , ,

0 , ,

1 1
d 1 min

1
d 1

2 2

k

k

t

k
k t

u t u t v v

u t u t T

J v t x

v t x







 

 

  

 

 

 

v

v

) 

The Hamiltonian is 

0

10.5 , ,u t u t T      (17

0

1

2 2

1
max

k

k

k
k t

t

J



  

v

v
v

u t 

    21
., , ,

2
H t x v x    

The r the problem (17) are: 

   (18) 

,    (19) 

and it is 

v v  

 necessary conditions fo

 
      

* *
10.5

arg max 0.5, 0.5, 0.5, ,
v

u u

S v v x v




  

      * *
0 00 arg max 0, 0,

v
u u S v v x


     

   

   

1 1

2
1 1

1, 1, ,

1
1, 1, ,

2

v x v

S v x v

    

 

v

v
 



It follows for 0,1i  : 

   

    2

, , ,i it v t v 

1
, ,

2i i i iS t v t v v v     

and 

   
     0 0 1 0

, , ,

0, , 0.5, 0.5 0,

i i ix t v x t v v

x v x x v x v

  

  


     (20) 

The transition conditions are: 

The solutions of the ODE 

   
   

*
0 1

*
0 1

0.5 0, 0.5, ,

0.5 0.5, .

v u

v S u

  

 
 

0,S

   , ,i i ix t v x t v v    
0,1i   are 

0

1

,

.

 
 

0 1 0

1 2 1

, ,    

, ,     

t

t

x t v A e v t T

x t v A e v t T





   

   
 

According to   00x x  we obtain 
00 vx1A   

and with (20)    0 0
0.5

1 .2 0A x v  v v  e  Therefore, 

      
     
   

0.5
1 0 0 0 1 1

1 0.5
1 0 0 0 1 1

0.5
1 0 0 0

1, ,

0.5,

t
1, ,,x t v x v v v    e e v t T
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x v x v e v



 



  

    

  

 v

and   1, ,t
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final cT  1 delivers he ondition for t =

   
    

1 1

1 0
0 0 0 1 1

1, 1,v C e x

.5x v e v v e v


 

  

     

v
 

an onstant re, d gives us the c .1C  Therefo

      1
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it v v e e   2 1.5
0 0 0 1

0,1.

x v e v v e

i

   


 

1t TIt follows for : 

   

    

2
1 1 1 1

1 2
1 1

1
, ,

2
1

.
2

t

S t v t v v v

2 1.5
0 0 0 1 1x v e v v e v e       v e v

   




 

The solution of this equation is: 

      2 1.5
1 0 0 0 1 1

1
1,

2

tS t v x v e v v e v e v e      
 

We obtain from the final condition: 



2
1 2

1
.v t C 

2C  

     

     

1
1 01,v x  0.5 2

0 0 1 1 1 1 2

22 1 0.5
0 0 0 1 1

1

2
1 1

1 0, .
2 2

S v e v v e v v v C

x x v e v v e v 

      

        v

 

Due to (18): 

        

   

  
  0.5 2

0 0 0( )
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1.5 1 2 0.5 2
0 0 0

22 1 0.5
0 0 0

1

1.5 1 0.5
0 0 0

0.5
0 0 0

0.5, 0.5,

1
arg max

4
1 1

( )
2 2

( )

v

u v x v10.5 arg max 0.5,
v

u S v

x v ve v v ve v e v

v x v e v v e v

x v e v v e ve

x v e v



  



 



  





     

     



    

  

 

This is exactly satisfied when (with differentiation 
ov itution 

x v ve v v ve v   


  

er v and subst *
0 0v u : 

  
 

0.5 * 0.5
0 0

* 1 0.5 1.5
1

2 1 2 1 2

4 2 3 .

x e u e

u e e e

e   
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Analogically, we obtain for 0 :t T  
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The optimal trajectory is: 

0
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0 0 0 1 1 1

, ,

, ,

t

t

x t x u e u t T

x t x u u u e e u t T





   

      
 

and e

This solution can be confirmed by substituting these 
values into the integral maximum principle. It is: 

0

0





10. Various Types of Control Functions 

Now we can compare the three types of tasks. 
1) Piecewise continuous or measurable control func-

tions: Here we can apply the Pontryagin maximum prin-
ciple and the Bellman principle. 

e constant functions and fixed : In this 
case we can use the Bellman principle (in terms of [7]) 
and condition (10) [8]). 

3) Integer valued control: : the Pon-

 the Bellman principle (in terms 
of [7]) and an additional constraint of the form  

      * 2 * * 1.5 * 1
0 0 0 1 1 .tt x u e u u e u e          

      

       

0.5 0.5
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0 0
0 0

1 1
* * *

1 1
0.5 0.5

, , , d ( ) d
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u
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H t x t u t t t u t

H t x t u t t t u t

 

 

 

 

 

 
 

2) Piecewis kt

 k ku t u Z 
tryagin maximum principle is not applicable. 

In this case we can use

 
1

0.
k

i
i

u u


   

The following application areas are currently offered: 
(PMP is t mum Principle) 
 

Control functions PMP Bellman Other methods 

he Pontryagin’s Maxi

Piecewise  
continuous 

or measurable 
controls 

classical
form 

applicable 
reduction to 

“direct methods” [9] 

Piecewise constant
and fixed t

integral 
form [3]

applicable 
reduction to 

“direct methods [9,10]k 

Integer valued 
controls and fixed 

tk 

doesn’t 
work 

applicable ________ 

11. Numerical Solution Using Standard 
Software 

For a concrete example of (cod-herring-sprat) we choose: 

          

       

        

       

         

1
1 1 1 1 6

0.4 1 1.5 250
10

x t
x t x t x t u t

1 2 1 3x t x t x t x t

2 2
2 2

0.02 0.02 ;
1.2 1.3

0.6 1 6.4 2

3

250
1

1.56

6

1 2 1 3

1.2 .2 10

0.0125 0.01 ;
1.2

3
3 1 30.6 1 6.4 250

61.3 1.3 10

x t x t
x t x t u t

x t x t x t x t

x t x t
x t x t u t

      

   

 
       

 

   

 
       

 


   





 1 3 2 3( )
0.0125 0.01 ;

x t x t x t x t
  

 

1.3 1.56
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3
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1
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1.2

d

1900

t
i

x t
J u u t

x t
u t

u t e t

u t



    

   

   

 

 

es in coeffi  arbi-
trarily choosen. It is assumed that the fishing cannot be 

ery in 
the Since their population in the Baltic Sea 
is currently too low, it is proposed in this strategy to fish 

Matthias Gerdts developed the Fortran 77 package 
OC-ODE (Optimal Control of Ordinary Differential 
Equations) for the numerical solution of optimal control 
problems [9]. The program is a direct discretization and 
provides a numerical estimation of the controls. The 
controls are declared as piecewise continuous or piece-
wise constant functions. 

The optimal strategy for catching a 3-population sys-
tem cod (

 10 u t  

250
i

u t







0

2
2         270 6.4 250

x t
u t



    

3

2

 and 

         460

         500 max
u

,   0 20t 

T 




The growth rat teraction cients are

reduced to zero. The only exception is the cod fish
early stages. 

for cod only after 3 years. 

1x ) - herring( 2x ) - sprat ( 3x ) for a time interval 
of s calculated wi ware. is the 
number od cu  any n year. and 
are the herring and sprat cutters. ( ). e data fo
the 0th year are based on the state of fish stocks in the 
Baltic Sea [6]. 

The system tends toward an equilibrium. The pro-
posed fishing strategy achieves the largest profit with 
respect to sustainability. (Table 2). The fishing capaci-
ties for the Baltic Sea have been estimated from statisti-
cal data. A sustainable fishery can be achieved by con-
verting the cod fishery on long lines [11,12]. 

The profit of the fishing industry in the beginning of 
the respective years are the following amounts (in mil-
lion Euro) (Figure 1). 

w the actual biomass (Figures 
2,

20 years wa
of c

th this soft
give

Table 1

1u  
2  tters in u

 Th
3u  
r 

The number of fishing cutters that were used in the 
optimal case is certainly underestimated for the Baltic 
Sea. The maximum stock of herring and sprat in our 
model was taken far belo

3,4). 
 
Table 1. The optimal strategy for catching a 3-population 
system cod ( 1x )-herring( 2x )- sprat ( 3x ) for a ti  interv l 

of 20 years. 

Year 1

me a

x  2x  3x  1u  2u  3u  

0 0.2500000 0.
1
2
3
4
5
10
15

0.3244954
0.4088918
0.4974498
0.5843451
0.5778183
0.5792128
0.5792109

8000000
0.7006421
0.7221604
0.7117310
0.7077763 
0.7075602 
0.7076102 
0.7076101 

1.0000000 
0.6495999 
0.7120884 
0.6920001 
0.6928961 
0.6918569 
0.6920774 
0.6920771 

0.000000 
0.000000 
0.000000 
0.000000 
417.7087 
381.3450 
389.0092 
388.9998 

263.6494
154.1460
185.2492
180.4876
176.9903
176.7343
176.7938
176.7

531.3586
150.5292
240.4183
218.8285
220.8658
219.4632
219.7610

2
938 219.7610

0 0.5791999 0.7076000 0.6919999 389.0686 176.8090 219.8855
 

Table 2. The profit of the fishing industry. 

Time(year) Profit Time(year) Profit 

1 
2 
3 
4 

206.10840 
260.51788 
338.06707 
404.54111 

5 
10 
15 
20 

505.68780 
916.03505 
1220.4939 
1446.0516 

 

 

Figure 1. A potential profit of the fisheries of a 3-population 
system in million Euro. 

 

 

Figure 2. The 3-population system: Cod. Development of the 
wise constant control (right). 

population (left), piecewise continuous control (middle), piece-
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F r t of the population (left), piecewise continuous control (middle), 
pi

 

igu e 3. The 3-populationen-system: Herring. Developmen
ecewise constant control (right). 

 

Figure 4. The 3-populationen-system: Sprat. Development of the population (left), piecewise continuous control (middle), 
piecewise constant control (right). 
 
12. Comments 

The value function  is globally continuously 
differentiable only in onal cases (for example, in 

n operate even if the value 
function is only piecewise differentiable. This happens 
when the set of the points of discontinuity of  is 
composed of smooth surfaces. 

Useful general principles that guarantee a -solution 
of the HJB equation are not known. In gener l, the value 
function is not smooth. Even if the value function is 
smooth, then the solution can be not expressed in explicit 
formulas [13]. 

There is a possibility of introducing a generalized so-
lution concept, which is also obtained in the case of 
non-differentiability of a value function. 

 ,V t x
 excepti

the linear-quadratic problems). 
The Bellman principle ca

V

1C
a

This solution concept should be so general that it can 
also be applied when the derivative  Dv x  does not 
exist for all nx R . On the oth

2003. 

er ha ould be 
ken so that onee does not get too many possible solu-

tions of the HJB quation - in the ideal case, the optimal 
value function is the unique solution [14,15]. This gener-
alized solution is called a viscosity solution. 
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