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Abstract

Considering a decomposition R*N =A@ B of R>*N, we prove in this work, the existence of at least
(1 +dim A) geometrically distinct periodic solutions for the first-order Hamiltonian system

IX'(t)+H '(t, X(t)) +e(t)=0 when the Hamiltonian H (t,u+V) is periodic in (t,u) and its growth at
infinity in v is at most like or faster than |v|a , 0<a<l,and e is a forcing term. For the proof, we use the
Least Action Principle and a Generalized Saddle Point Theorem.
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1. Introduction

Consider the nonautonomous first-order Hamiltonian
system

I (t)+H'(t,x(t))+e(t)=0

where H:RxR*N 5> R, R,(t,x) > H(t,x) is a
continuous function, T — periodic (T >0) in the first
variable and differentiable with respect to the second

variable with continuous derivative H '(t, x) = E;_H(t’ x) R
X

e:R—>R’N is a continuous T — periodic function
with mean value zero and J is the standard symplectic
matrix:

I, being the identity matrix of order N .

Using variational methods, there have been many pa-
pers devoted to the existence of periodic solutions for
(H), we refer the readers to [1-5] and the references
therein. However, there are few papers discussing the
multiplicity of periodic solutions for (H) (see [6-9]).
Under the assumptions that H is periodic in X5 Xy s
where 1< p<2N-1, X:(Xl""asz) and there exists

fe LQ(O,T;]Rf) such that

[H'(tx)|< f(t).vxeR™, aete[0.1].  (L1)

IT H (t,x)dt — +o0 as|x| > o0, x e {0} xRN P, (1.2)
0
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the author has shown in [9] that system () possesses at
least (p+1) geometrically distinct periodic solutions.
The first goal of this note is to generalize the existence
result of multiple periodic solutions obtained above to
the sublinear case. Precisely, consider a decomposition
R*™N =A®B of R*™ with

A=space{el,---,eip},B =space{ei p+l’“"ei2N}

where 0<p<2N-1 and (g)__,, is the standard
basis of R*M and let us denote P, (resp. P,) the pro-
jection of R*" into A (resp. B). We obtain the fol-
lowing result

Theorem 1.1 Assume that H satisfies
(Hy)H is periodic in the variables. Xipo X

(H1) There exist a € [0, 1] and two T—periodic functions
ac L%(O,T;R*) and be L (0,T;R") such that
-

[H'(t.x)|<a(t)|Py ()" +b(t), vxeR*", aete[0,1],

(H,) Either
1) #J:H(t,x)dt—)oo aS|X|—>oo,XeB
X
or
2) #L}T H (t,X)dt > —w as|x| > o0, x e B
X

Then the Hamiltonian system (J) possesses at least
(p+1)T — periodic solutions geometrically distinct.
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Example 1.1 Let a:R*™ >R be a periodic and
continuously differentiable function. Consider the Ham-
iltonian:

3
H(t,r,p)=(%+sin(2T—“t)J|p—a(r)|z (1.3)
Then H satisfies conditions (H,)—(H,) with
A=R"x0 and B={O}><RN,

It is easy to see that conditions (H,),(H,) don’t
cover some sublinear cases like

H(tr.p) =G+[2?tD 1(2|i|_:1 _(;)lr)r)’ 1.4

v(t,r,p)eRxR™"

The second goal of this paper is to study the existence
of multiple periodic solutions for () when the Hamilto-
nian H satisfies a nonlinearity condition which covers
the cases like (1.4). Precisely, we will require the
nonlinearity to have a partial growth at infinity faster
than |X|a ,0<a<l

Our second main result is:

Theorem 1.2 Consider a nonincreasing positive func-
tion weC ([0, +o0 [, R*) with the properties:

ofs)
a)(S) 0,

@(s) = 0,0(5)s — +w as s — +o,

liminf, — +oo

and assume that H atisfies (H,) and the following as-
sumptions
(Ha) There exist a positive constant a d a function

geLz(O,T;R+) such that for all ¥xeR?™ and
aete[0,1]

[H(t,x) < @ (R () )P ()| + 9 (1)

(H,) Either

1) ;ZIOT H (t,x)dt — +o0 as |X|—>oo,xe B,
[ o(x))Ix]
! IOTH(t,X)dt—>—ooas |X|—>oo,XeB-

2) ———
[o()Ix]
Then the system (3) possesses at least (p+1)
geo-metrically distinct T —periodic solutions.
Remark 1.1 The Hamiltonian H defined in (1.4)
satisfies the conditions (H,),(H,) introduced above

with gp(s)=——— 5>0,
)= e e)
2. Preliminaries

Firstly, let us recall a critical point theorem due to G.
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Fournier, D. Lupo, M. Ramos and M. Willem [10].
Given a Banach space E and a complete connected
Finsler manifold V of class C*, we consider the space
X =ExV .Let E=W®Z (topological direct sum) and
(E,®Z,) be a sequence of closed subspaces with
Z,cZ, W, cW, 1<dimW, <. Define X, =EXV.
For feC'(X,R), we denote by f, = f, . Then we
have f,eC'(X,,R) forall n>1.

Definition 2.1 Let C' (X,R). The function f satis-
fies the Palais-Smale condition with respect to (X,) at
alevel ceR ifevery sequence (X,) satisfying

X, € X, f(x,)—>c f(x,)>0

has a subsequence which converges in X to a critical
point of f. The above property will be referred as the
(PS), condition with respectto (X, ).

Theorem 2.1 (Generalized Saddle Point Theorem).
Assume that there exist constants r >0 and a<f<y
such that .

1) f satisfies the (PS)
(X,) forevery ce[B,y],

2) f(w,v)<a for every (W,v)eWxV such that

wl=r,
“ ﬂ) f(z,v)>p forevery (z,v)eZxV,

4) f(wv)<y for every (w,v)eWxV such that
<.

Then f~' ([ B, y]) contains at least cuplength (V)+1
critical points of f. 1

Consider the Hilbert space E =H? (S',RZN) where
R/(TZ) and the continuous quadratic form Q efined in
Ey

condition with respect to

Q(x):%joT I () x(t)dt

where X,y inside the sign integral is the inner product
of x,yeR™ . Let us denote by E°, E*, E* respec-
tively the subspaces of E on which Q is null, negative
definite and positive definite. It is well known that these
sub-spaces are mutually orthogonal in L (S],RZN ) and
in E with respect to the bilinear form:

1 7.,
BOuy) = [, X(O.y(dt, xyeE

associated to Q. If XxeE" and yeE™ then

B(x,y)=0 and Q(x+y)=Q(X)+Q(Y).
For x=Xx"+Xx +x" e E, the expression

b =[a(x )rafx )+

is an equivalent norm in E. Moreover, the space E is
compactly embedded in L*(S',R*") for all se[l,o0].
In particular for all se[l,c0], there exists a constant
A, >0 suchthatforall xeE,
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3. Proof of the Theorems

i <)X @n

Firstly, let us remark that if x(t) is a periodic solution
of (), then by replacing t by -t in (H) we obtain

I (—t)+H'(-t,x(-t))+e(-t)=0.

So it is clear that the function y(t)=x(-t) is a pe-

riodc solution of the system
Jy'(t)—H'(-t,y(-t))—e(-t)=0.

Moreover, —H(-t,x) satisfies (H,)(i) (resp.
(H,)(i)) whenever H(t,x) satisfies (H,)(ii) (resp.
(H,)(ii)). Hence, in the following, we will assume that
H satisfies (H,)(i) in Theorem 1.1 and (H,)(i) in
Theorem 1.2.

Associate to the system (H) the functional ¢ de-
fined on the space E, by:

u(t)dt+ [ (H(tu)+e(t)-u(t))dt.

It is well known that the functional ¢ is continu-
ously differentiable in E and critical points of ¢ on
E corres-pond to the T — periodic solutions of the
system ('), moreover one has

g'(u)v =, [3u(t)+ H'(tu(t))+e(t) ]-v(t)dt

for all u,veE . Consider the subspaces W =E~ ,
Z=E"®B of E and the quotient space

V =A/{x~x+ei,i =i,,---,ip}

which is nothing but the torus T,. We regard the func-
tional ¢ as defined on the space X = (W @Z)XV as
follows

u)= [ ()

p(u+v) j Ju'( t)dt+.f0TH(t,u(t)+v

+j0et )-u(t)d

To find critical points of ¢ we will apply Theorem
2.1 to this functional with respect to the sequence of sub-
spaces X, =E,xV , where for n>0

E, ={X€ E:x(t)= quexp( mt\]jum a.e}.

Proof of the Theorem 1.1. Assume (H,), (H,)
and (H,)(i) hold. Firstly, let us check the Palais-
Smale condition.

Lemma 2.1. For all level ceR, the functional ¢

(1)t

satisfies the (PS): condition with respect to the se-

quence (X,)

neN *
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Proof. Let ceR and let (u,,v,) , be a sequence
of X such that forall neN, (u,,v )eX and

n>on

p(u,+v,)—>c and ¢ (u,+v,)>0 as n—oo,(3.1)

where ¢, is the functional ¢ restricted to X, . Set

u, =u’+u-+u’ with u'eE", u eE", u'eB. We
have the relation
(pr"(u +V, )uy
(3.2)
=lu; +f [H'(tu, +v,)+e(t)]-urdt

Since ¢, (u,+V,)—>0 as n—>oo, there exists a
constant ¢, >0 such that

vneN,

+
nll -

u (3.3)

25 (Uy +v, )up| <c,
By assumption (H,) and Holder’s

1 1
p:_3 q:_>
a -

inequality, with

we have
UOT H'(t.u, +vn)-u;dt‘

< .[OT[a(t)‘PB (u, (V) +b(t)} u’|dt
i . [l [ (o )+l

Then by (3.2), (3.4) and (2.1), there exist two positive
constants C,, C; such that

(3.4)

<

us [l <c, [Py (u (3.5)
Observing that a similar result holds for (u; ) :
Uy [l <c, [Py (u (3.6)

We conclude from (3.5) and (3.6) that the sequence
(u,) is bounded if and only if the sequence (P, (u,))
is bounded. Assume that (P;(u,)) is not bounded, we
can assume, by going to a subsequence if necessary, that
||PB(un)||—>oo as Nn—oo. Since 0<a<l, we con-
clude by (3.5) and (3.6) that

+

u
L —0, L —>0asn—oo. 3.7
||PB (un) ||PB (un)
Therefore, we have
"Pu——>yeB yeB|y|=lasn—>w (38)
It follows that
Uy
—lasn— oo, 3.9
[Pe (u

Consequently, by (3.5), (3.6) and (3.9), we can find a
positive constant C, such that
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ull<c, luel”i=+—. (3.10)

Now, we apply the fact that (¢(u, +vn)) is bounded
to get

2 2
Upll = [Un ] (7 H(tu,+v,)
0|2« J.o 0|2« dt
! ) (3.11)
ITe(t).(un —-u )dts c,
0 0|2« 0|2«
un un

where ¢, is a positive constant. Using (3.10) and (3.11),

we can find a constant c, satisfying

rH(tu)

o

_J~TH (t,u, +v,)

2a

dt

0
n

n

H(t,u))-H(t,u, +v,
g Hb) Kt )

: at  (3.12).

H (t,ug)—H (t,u, +vn)dt

2a

£c6+jo -

n

On the other hand, by the Mean Value Theorem and
assumption (H, ), we have

jOT[H (t,u;’)— H (u, +vn)]dt

=—IOT H’(t,ug +6(u; +u, +vn)).(un+ +Uy +V, )

< J'J{a(t) P, (u;’ +:9(un+ +u,j))r +b(t)}
<[l
] o

By considering (3.13) and Sobolev’s embedding
Eol? (O,T;RZN) we can find a constant ¢, >0 such
that

(3.13)

a

( 2+6(u;+u;)) i

L

j;[H(t,u;’)—H(unJrvn)]dt
; (3.14)
sg[u u, }[ ur i+ luy ]
After combining (3.10), (3.12) and (3.14), we get
+H (t u )

o o

for some positive constant ¢

Oa
n

—disc, (3.15)

. However, the condition
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(3.15) contradicts (H,)(i) because urﬂ—> © as
n— oo . Consequently, (U,) is bounded in X. Going if
necessary to a subsequence, we can assume that u, — u,
u? - u’ and v, — V. Notice that

Q(u*—u*)z(gor',(u +vn)—(p,’](u+v))(u;—u+)
—f [H'(tu, +v,)-H'(tu+v)+e(t)]
(uy —u")dt

(3.16)

which implies that u; —u” in E. Similarly, u, —>u"
in E. It follows that (u,v,)—(u,v) in X and
go'(u +v)= 0. So ¢ satisfies the (PS) condition for
all ceR. The Lemma 3.1 is proved.

Now, let us prove that the functional ¢ satisfies the
conditions a), b) and c¢) of Theorem 2.1.

a) Let (u,v)eW xV . By using the Mean Value Theo-

rem, assumptions (HO), (H1) and (2.1), we have
p(u+v)=—|lu|’ +_[0T (t,u+v) dt+j )-udt
== [[ulP +[] H(tv)dt

+j()T H ’(t,v+49u).udt+j(:e(t)-udt

S—||U||2+jTH tv dt+jT[a(t)|pB ()
b(t) Jjlat-+ [ e(t)-uet
<ol + [} H (et [T a()]R )] (.17)
b(t) Jluldt+ [} e(t)-udt
< [uff + [ H (tv)dt ]l

fgen

<ol ol e Jul +e |+,

uf* gt +||b||L2]+ [ e(t)-udt

where C,, C,,C, are three positive constants. Since
0<a<l1,then

p(u+Vv)—> - asueW,|u| > uniformlyin veV .
(3.13)

b) Let (u,v)eZxV , with u=u*+u’. By using the

Mean Value Theorem, we get
p(u+v)={u* ’

+j0Te(t) u*dt

=ut P +f) H (tu’)dt

+L)T H '(t,uo +0(u+ +v))-(u+ +v)+j0T e(t)-u'dt

+.[0T H (t,u+ +u° +v)dt

(3.19).

AM



850 M. TIMOUMI

By assumption (Hl) and (2.1), we can find a con-
stant C,, >0 such that

.[OT H '(t,u0 +6(u* Jrv))-(u+ +v)dt+J'0Te(t)-u*dt

< '[OT [a(t) P, (t,u0 +¢9(u* +v))r +b(t)}

u* +v| dt+|e] .

X u*

2

< (3.20)

u” +v||L+

1
x[[JJ 2 (0|0 [+l +||e||LzJ
< clz( +1)Uu° - +1J

Therefore, by using (3.19) and (3.20) we obtain
2 T 0
+ fo H (t, u )dt
—Ci» (

+1)[|u°

Now let d >%. By assumption (H,)(i), there ex-

a

+

+

u+

u

u+

p(u+v)=

o
u* +(u*

“+1}. (3.21)

ists a constant C; >0 such that

[TH(Lu)dt=dfu'[* -, (3.22).
So by (3.21) and (3.22), we have
p(u+v)=fu’ "4 d |u° za -C
—clz( ut +1)Uu°|a+ ut[” +1}
1 + 2 + a+l1 + e
ZEU —clz[u —{u™f—{u } (3.23)
2 2
+l[ ut —c|2|u0 a] {d _Ci}|u° *
2 2

0 a
—Cy, |u | —C;, —Cp;.

2
Since d>% and 0<a<l1,then

p(u+v) > o asueZ,[u| >, uniformlyin veV .
(3.24)

Hence by Lemma 3.1 and properties (3.18), (3.24), we
deduce that the functional ¢ satisfies all the assump-
tions of Theorem 2.1. Therefore the Hamiltonian system
(FH) possesses at least (p+1)T — periodic solutions
geometrically distinct. The proof of Theorem 1.1 is com-
plete.

Proof of Theorem 1.2. Assume (H,),(H,) and
(H,)(i) hold. The following lemma will be needed for

Copyright © 2011 SciRes.

the study of the geometry of the functional ¢ .

Lemma 3.2. There exist a non-increasing positive
function HeC(]O,oo[,R*) and a positive constant C,
satisfying the following conditions:

i) 6(s)—>0,0(s)s -+ as s — +o,

i) [H'¢w). <c [6’(||PB (u)")"PB (u)||+1],Vu cE,

iii) ;ﬂ H (t.u")dt — +o0 as |u°| —5 oo,

[ofjo | ]
Proof : For uekE, let

Az{t c[0.TT[R (W) 2]y (u)||§}.

By (H;),we have

[ (tu)]. g[ [T ao (P, (@)O)]R: (W) + 0 () dt}

<\ [ [ao(lP @) O] O] @] +]ol,
<a[ [, (R (W)(O)R (V) dt

o 2@ (B @O)R @O dt [ g1,
<l o[ Jr 0 o))

1
2
+T sup,., @ ()| Py (u) } +1gs -
So, by (2.1) there exists a positive constant C, such
that
[H W,

sco[[af[nps<u>||ij||PB<u>|r+||Pa<u>||f+IJ-

Take

ool

then @ satisfies (ii) and it is clear to see that € satis-
fies (i).
Next, let us define

o(s)

o]

By (H,)(i), for any y >0, there exists a positive

p =liminf_
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constant C,, such that

[THEx)d = [o(X)] e (329
which implies that for u, € B, u’=0,
2

J.ZH (t,u")dt . 7[w(|u0|)|uo|:| —Cy (3.26)

oo o

By the definition of p, there exists R>0 such that
forall s>R

&z% (3.27)
a){sst%s
Therefore

.[ H<t u )dt S P Ciy (3.28)
2

AT oot

as |u°|2R and then
[TH(tu®)at » 529

lim, , > 2=
> o] 7

Since y is arbitrary choosen, condition (iii) holds.

Now, let us prove the Palais-Smale condition.

Lemma 3.3. For all level ceR, the functional ¢
satisfies the (PS) condition with respect to the se-
quence(X,) ..

Proof. Let (u,,v,) . be a sequence in X such that

neN

forall neN,(u,,v,)e X, and
@(u, +v,) > cand ¢, (U, +v,) >0asn—>c. (3.30)
Set u,=u’+u;+u’ and G, =u’+u; . By Holder’s

inequality, (2.1) and Lemma 2.2(ii), we get a positive
constant C,; such that

fOT(H’(t,un +Vn)+e(t))~(u;—u;)dt‘

UI I }l+neug} 630

<oclai[o(lp, )P (w1

Thus, for n large enough
la,]= ¢’ (u, +vn)(u§ —u,j)
T (3.32)
> 2||a, | _CIS||un|||:6(||PB(un) )P (u,) +1]

So there exists a positive constant C,, such that

Copyright © 2011 SciRes.

o)< e (1P (0 P (w0 )]+

By (3.33) and the properties (i) of &, we deduce that
(Jlus]}) is bounded if and only (" » (u,) ) is bounded

Now, since 6 is nonincreasing and |Ju]|> ||P
>max(| | ||P ||) we get

o(Ju) <min(o(w]).o(P, @) 634

Combining (3.32) and (3.34), yields for n large
enough

Ja.1> [,

E ||l]n|||:0(||PB (ﬁ

which implies
.0 (jus)Jus] = ol 2= cs0(|Ps (4, )]) |- e 1. 339)

Assume that (" PB n ) is unbounded, then by going
to a subsequence, if necessary, we can assume that
||P as N—oo. Since #(s) >0 as s—>o,
we deduce from (3.35) that there exists a positive con-
stant €, such that

ul ) u

.| < c”e(
for n large enough. Since the map s —6(s)s is con-
tinuous in [0,00] and goes to +o as S—>oo, then
|u,? —o as N—>wo.
Now, by the Mean Value Theorem, Holder’s inequal-
ity and Lemma 3.2(ii), we get

U (tu,+v,) H(t,ur?))dt‘

(t Uy +S(0, +V, )) (G:+vn)dsdt‘

] (3.33)

IR (a,)

(

u;’)u;’

]

0
n

(3.36)

T

<l vl 1§
S A N

'(t,u,?+s(a +V ))

 (0,)

1
’ dt)z ds

(3 37)

Since ||u,?+SP G ﬂz ul| for all s e[0,1] , we

dedu-ce from (2.1), (3.36) and (3.37) that there exists a
positive constant C such that

([ (H (b, +v)-H(tu))a)
) +¢9(
[ ol

0
n

0
n

Lo

u.|)u

0
LIn

<Gy [, + v, 1. L6

SCIXHH( )u
+9(u,? ) ul J

which with (2.1) and (3.36) imply that there exists a
positive constant C,, such that

)
)

PB ~n 1
o

0
n

0
n

0
n

0
n

u u.|Jju

AM
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n

o(u, +v,)

+
n

o H ()t

H (tsun))dt+.[0 t).0,dt
Z+.[0 H(t,un)dt—Clg[[‘g( T
wl)e(uplesl ]+

zcw[e( ) T[‘l‘g( )_6(0—

un)uﬁ,’|
) 1 . jZH(t,uﬁ)dtzJ
Lofalenl] ool oenle]

which, with Lemma 3.2 (iii), imply that ¢(u, +V,)—> o
as n— oo. This contradicts the boundedness of

(#(u,+v,)) - So (|Ps(a,)[) is bounded.

Assume that (ur? ) is unbounded, then up to a sub-

sequence, if necessary, we can assume that |ur?| —> o as
n— . Asin (3.38), and using (2.1), (3.34) and the fact
that 6(s) >0 as S—>o,
C,, >0 such that

J'OT(H (tu,+v,)—H (t,ug))dt‘
<, [, v, [e( )Jus|+6(
<c, |a, +vn||[¢9( u’ ) ul J

Now, since €(S) — 0 as S — oo, then combining (3.33)
and (3.34) yields
sl (e P @)1+

g, + o[ < &(Jua)fus] +
SCZZ[H( )un J

for a positive constant C,,. Therefore there exists a posi-
tive constant C,; such that

I (00 () ()3,

2
soz{ﬁ( n)u,? J :
We deduce from (3.41) and (3.42) that there exists a
constant C,, >0 such that
2
} +TH(Lud)dt

@(U, +V,)=—Cyy [6’( N ) Uy

2| 0(|u u+12—c24+'[T"|-|(t—’ur('))dt2
e }[ BRI }]

which implies by Lemma 3.2 (iii) that ¢ (u, +V, ) =+

+I( tU+V

0

il
ur‘f)u;’

uy

0

Un

0
n

0
n

+49(

u

} (3.39)

1

0

ull)jud

n

u

0
n

0
n

0
n

0
n

u

u

u

u

we can find a constant

0
un

u,?)

s (0,)]+

1] (3.40)

(3.41)

u

(3.42)

0
n

0
n

Copyright © 2011 SciRes.

as n—oo . This contradicts the boundedness of

(U, +Vv, )) Then |u,? ) is also bounded and therefore

||u ||) is bounded. By a standard argument, we

con-clude that (un) possesses a convergent subse-
quence. The proof of Lemma 3.3 is complete.

Now, let (u,v)= (u° + u*,v) €ZxV , then as in (3.38)
there exists a positive constant C,; such that

[ (H (tu, +v,)-H (t,u,?)+e(t).t]n)dt‘
SCZS[ ut +1J[¢9(|u°|)|u° (|u°|) P, (u*)
So, we have for a positive constant C,

+ 9 0 0

Aol

J—c% +J'OT H (t,up )dt.

(3.43)

+1].

LR

u

(0(” +V) 2 26
+49(|u°|) ut

Let 0<e<1, we have
ool <% )
By combining (3.44) and (3.45), we get

p(u +v)2[1—52 —c269(|u°|)] u
2 [TH(Lu)dt

+| 6([u,||u N —"

. ]{5 [e<us)us+1ﬂ

which implies that
p(u+V)—>+wo as ueZ, |u|— oo, uniformlyin veV .
(3.46)

On the other hand, let beB, |b| >0. By the Mean
Value Theorem, we have for ueW =E~

H (t,b))dt

= jo jo t,b+s(u+v—b)).(u+v—b)dsdt‘

0
n

0
n

u-|u

T v cas)

+|P +

—Cy

0
n

0
n

U (tu+v)-

L
S"u +V—b|||_2 J.;UOT H'(t,b+s(u +v_b)) P dt}zds

<Ju+v-b]. J';U()T(aw(|b+s(PB(u)—b)|) (3.47)
x|b+s(PB(u)—b)|+g(t))2dt}5ds
<Ju+v- b||L2[aJ' [ ( (|b+s (u)—b)M
x|b+s(PB(u)—b)|)2dt}2ds+||g||L2J
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Take for se[0,1],
A(s)={te[0,1]:[b+s(Ps (u)~b)|> |}

By a similar calculation as in the proof of Lemma 3.2,
we get for some positive constants ¢,, and c(b)

UOT(H (tu+v)-H (t,b)+e(t)-u)dt‘

(3.48)
2
< ¢y ([ol)Jul| +c(b) (Jufl+1)
which implies that
o (u+v)<=|ul +c,0(]b|)Jul’ (3.49)

+e(b)(Ju+1)+ [T H (t.b)dt.
Since 6(s)—> Oass — oo, there exists |b|>0 such that

C,o0(|b]) < % , which implies that

p(u+v) = Juff +o(b)(Jul+1)+ [ H (tb)at.

So we have
@(u+v) > - as ueW, [u|— o, uniformly in
veV.(3.50)
Thus, Lemma 3.3 and properties (3.46), (3.50) imply
that the functional ¢ satisfies all the assumptions of the
Generalized Saddle Point Theorem. Therefore the Ham-
iltonian system () possesses at least (p+1)T — peri-

odic solutions geometrically distinct. The proof of Theo-
rem 1.2 is complete.
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