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Abstract 
 
Considering a decomposition 2 N A B   of 2N , we prove in this work, the existence of at least 

 geometrically distinct periodic solutions for the first-order Hamiltonian system  1 dim A



     ,t x t e t  0Jx t H   when the Hamiltonian  ,H t u v  is periodic in   and its growth at 

infinity in v is at most like or faster than 
,t u

a
v , 0 a 1  , and  is a forcing term. For the proof, we use the 

Least Action Principle and a Generalized Saddle Point Theorem. 
e
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1. Introduction 

Consider the nonautonomous first-order Hamiltonian 
system 

      , 0Jx t H t x t e t     

where ,   is  a 
continuous function,  periodic   in the first 
variable and differentiable with respect to the second  

2: NH    
T 

   , , ,t x H t x
0T 

variable with continuous derivative    , ,
H

H t x t x
x

 


,  

2:e   N  is a continuous T periodic function 
with mean value zero and J is the standard symplectic 
matrix: 



0

0
N

N

I
J

I

 
  
 

 

NI  being the identity matrix of order . N
Using variational methods, there have been many pa-

pers devoted to the existence of periodic solutions for 
( ), we refer the readers to [1-5] and the references 
therein. However, there are few papers discussing the 
multiplicity of periodic solutions for ( ) (see [6-9]). 
Under the assumptions that H is periodic in 1, , px x ,  
where , 1 2p N  1  1 2, , N x x x   and there exists 

 such that  0, ;T 2f L

     2, , , . . 0NH t x f t x a e t    ,1 .     (1.1) 

    2

0
, d , 0 , 

T N pH t x t as x x          (1.2) 

the author has shown in [9] that system ( ) possesses at 
least  1p   geometrically distinct periodic solutions. 
The first goal of this note is to generalize the existence 
result of multiple periodic solutions obtained above to 
the sublinear case. Precisely, consider a decomposition 

2N A B   of 2N  with 

   1 21space , , , space , ,
p pi iA e e B e e


   Ni

1

 

where 0 2p N  
2N  

 and 
1 2i i N 

 is the standard 
basis of  and let us denote AP  esp. 

 e
(r BP ) the pro-

jection of 2N to  in A  (resp. B ). We obtain the fol-
lowing result 

Theorem 1.1 Ass e that H satisfies um
 0H H  is periodic  the variables. in

1
, ,

pi ix x ; 
 1H  There exist α  [0, 1] and two T–periodic functions 

1
(0, ; )

1
a L T





  and  such that 2 0, ;b L T   

         2, , ,N
BH t x a t P x b t x a e t

     . . 0,1 ,  

(H2) Either 

1)       2 0

1
, d ,

T
H t x t as x x B

x
    

or 

2)     2 0

1
, d ,

T
H t x t as x x B

x
     

Then the Hamiltonian system ( ) possesses at least 
 1p T   periodic solutions geometrically distinct. 
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Example 1.1 Let  be a periodic and 
continuously differentiable function. Consider the Ham-
iltonian: 

2: Na 

   
3

2
1 2π

, , sin
2

H t r p t p a r
T

      
  

    (1.3) 

Then H satisfies conditions    0 2H H  with 
 and 0NA    0 NB   . 

It is easy to see that conditions    1 2,H H  don’t 
cover some sublinear cases like 

   
  

 

2

2

2

1 2π
, , cos ,

2 ln 2

, , N

p a r
H t r p t

T p a r

t r p

     
    

   

 (1.4) 

The second goal of this paper is to study the existence 
of multiple periodic solutions for ( ) when the Hamilto-
nian H  satisfies a nonlinearity condition which covers 
the cases like (1.4). Precisely, we will require the 
nonlinearity to have a partial growth at infinity faster 
than ,0 1x

    
Our second main result is: 
Theorem 1.2 Consider a nonincreasing positive func-

tion  0, ,C     with the properties: 

 
 

liminf 0s

s

s




  , 

   0,   ,s s s as s    
 

  

and assume that H atisfies 0H  and the following as-
sumptions 

 3H  There exist a positive constant a d a function 

 such that for all  and  ;T  2 0,g L


2Nx 

. . 0a e t ,1  

        , B B ,H t x a P x P x g t   

 4H  Either 

1) 
 

 2 0
, d  as 

1
,

T
H t x t x x B

x x
   

  
 , 

2) 
 

 2 0
, d  as 

1
,

T
H t x t x x B

x x
   

  
 . 

Then the system ( ) possesses at least  1p   
geo-metrically distinct T  periodic solutions. 

Remark 1.1 The Hamiltonian H  defined in (1.4) 
satisfies the conditions  3H ,  4H  introduced above  

with    2

1
, 0

ln 2
s s

s
  


, 

2. Preliminaries 

Firstly, let us recall a critical point theorem due to G. 

Fournier, D. Lupo, M. Ramos and M. Willem [10]. 
Given a Banach space E and a complete connected 
Finsler manifold V of class , we consider the space 2C
X ExV . Let E W Z   (topological direct sum) and 

( nE Zn ) be a sequence of closed subspaces with 

nZ Z , n W imW , 1 d nW   . Define n nX E xV . 
For  ,X  , w / nn X

1Cf  e denote by f f . Then we 
have  1 ,C X   for n n

Definition 2.1 Let 
f all 1 . n 

 1 ,C X  . The function f satis-
fies the Palais-Smale condition with respect to  nX  at 
a level c  if every sequence  n X  satisfying 

   , ,n n n n nx X f x c f x  0   

has a subsequence which converges in X  to a critical 
point of f. The above property will be referred as the 

 condition with respect to  *PS
c  nX . 

Theorem 2.1 (Generalized Saddle Point Theorem). 
Assume that there exist constants  and 0r       
such that 

1) f satisfies the  c
 condition with respect to *PS

 nX  for every  ,c   , 
2)  ,f w v   for every  such that  ,w v W V 

w r , 
3)  ,f z v   for every   , ,z v Z V 
4)  ,f w v   for every  such that  ,w v W V

w r . 
Then   1 ,f    contains at least cuplength   1V   

critical points of f. 
Consider the Hilbert space 

1
1 22 , NE H S   where 

 T   and the continuous quadratic form Q efined in 
E y 

   
0

1
( ) . d

2

T
Q x Jx t x t t   

where ,x y
2
 inside the sign integral is the inner product 

of , Nx y . Let us denote by , , 0E E E  respec-
tively the subspaces of  on which Q is null, negative 
definite and positive definite. It is well known that these 
sub-spaces are mutually orthogonal in 

E

 22 1, NL S   and 
in  with respect to the bilinear form: E

0

1
( , ) ( ). ( )d

2
  , ,

T
B x y Jx t y t t x y E  

associated to Q. If x E  and y E  then 
0( , )B x y   and ( ) ) (Q x y Q y(Q x )   . 

For 0x x x x E     , the expression 

   
1

220x Q x Q x x  
   

   

is an equivalent norm in E. Moreover, the space  is 
compactly embedded in 

E
2 1 2, NL S   for all  1,s  . 

In particular for all  1,s  , there exists a constant  
0s   such that for all x E , 
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.s sL
x x               (2.1) 

3. Proof of the Theorems 

Firstly, let us remark that if  x t
t
 is a periodic solution 

of ( ), then by replacing  by  in ( ) we obtain t

      , 0Jx t H t x t e t        .  

So it is clear that the function    y t x t   is a pe-
riodc solution of the system 

      , 0Jy t H t y t e t       .



 

Moreover,  ,H t x   satisfies   2H i  (resp. 
  4H i ) whenever  , H t x  satisfies   2 H ii  (resp. 
  4 H ii ). Hence, in the following, we will assume that 
H  satisfies   2H i  in The em 1.1 and or   4H i  in 
Theorem 1.2. 

Associate to the system ( ) the functional   de-
fined on the space , by: E

            
0 0

1
d ,

2

T T
u Ju t u t t H t u e t u t t       d . 

It is well known that the functional   is continu-
ously differentiable in  and critical points of E   on 

 corres-pond to the T  periodic solutions of the 
system ( ), moreover one has 
E 

          
0

, +
T

u v Ju t H t u t e t v t t       d  

for all . Consider the subspaces ,u v E W E , 
Z E B  of  and the quotient space E

 1, , ,i pV A x x e i i i     

which is nothing but the torus pT . We regard the func-
tional   as defined on the space  X ZW V    as 
follows 

         

   

0 0

0

1
d ,

2

d

T T

T

u v Ju t u t t H t u t v t t

e t u t t

     

 

 



d
 

To find critical points of   we will apply Theorem 
2.1 to this functional with respect to the sequence of sub-
spaces n nX E V  , where for  0n 

  2π
ˆ: expn mm n

E x E x t mtJ u a e
T

      
  

  . . . 

Proof of the Theorem 1.1. Assume  0H ,  1H  
and   2H i  hold. Firstly, let us check the Palais- 
Smale condition. 

Lemma 2.1. For all level , the functional c   

satisfies the   condition with respect to the se-

quence . 

*cPS

n N nX

Proof. Let c  and let  be a sequence 
of X such that for all 

 ,n n n
u v


n ,  and  ,n nu v X n

 n nu v c    and   0n n nu v    as , (3.1) n 

where n  is the functional   restricted to nX . Set 

n
0

n n nu u u u     with nu E  , , nu E  0
nu B . We 

have the relation 

 

   
2

0
, d

n n n n

T

n n n

u v u

u H t u v e t u

 

 



      



 n t
     (3.2) 

Since   0n n nu v  
1 0c 

 as , there exists a 
constant  such that 

n 

  1, n n n n nn N u v u c u      .       (3.3) 

By assumption  1H  and Hölder’s inequality, with  
1

p


 , 
1

1
q





, we have 

 

    

 2
22 21

'

0

0

, d

( ) d

T

n n n

T

B n n

n B n LLL L

H t u v u t

a t P u t b t u t

u a P u b













 

    
    



     (3.4) 

Then by (3.2), (3.4) and (2.1), there exist two positive 
constants ,  such that 2c 3c

 2n B nu c P u c


3  .         (3.5) 

Observing that a similar result holds for  nu : 

 2n B nu c P u c


3  .         (3.6) 

We conclude from (3.5) and (3.6) that the sequence 
 nu  is bounded if and only if the sequence   B nP u  
is bounded. Assume that   B nP u  is not bounded, we 
can assume, by going to a subsequence if necessary, that 

 B nP u   as . Since n  0 1  , we con-
clude by (3.5) and (3.6) that 

   
0, 0 as n n

B n B n

u u
n

P u P u

 

   .    (3.7) 

Therefore, we have 

 
, , 1 as n

n
B n

u
y y B y B y

P u
.n        (3.8) 

It follows that 

 

0

1 as .
n

B n

u
n

P u
          (3.9) 

Consequently, by (3.5), (3.6) and (3.9), we can find a 
positive constant  such that 4c

Copyright © 2011 SciRes.                                                                                  AM 
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0
4 , ,i

n nu c u i


   .



         (3.10) 

Now, we apply the fact that  n nu v   is bounded 
to get 

 

   

2 2

2 200 0

5
2 20 0 0

,
d

.
d

Tn n n n

n n

T n n

n n

u u H t u v
t

u u

e t u u c
t

u u

 

 

 

 

 


 





     (3.11)  

where 3  is a positive constant. Using (3.10) and (3.11), 
we can find a constant  satisfying 

c

6c

   

   

   

0

2 20 00 0

0

20 0

0

6 20 0

, ,
d d

, ,
d

, ,
d

T Tn n n

n n

T n n n

n

T n n n

n

H t u H t u v
t t

u u

H t u H t u v
t

u

H t u H t u v
c t

u

 








 


 
 

 





(3.12). 

On the other hand, by the Mean Value Theorem and 
assumption  1H , we have 

   

    
      

  2

1 2

2 2

0

0

0

0

0

0

0

, d

, .

d

.

T

n n n

T

n n n n n n

T

B n n n

n n n

B n n nL
L

n n nL L

H t u H u v t

nH t u u u v u u v

a t P u u u b t

u u v t

a P u u u

b u u v











   

 

 

 

 

   

      

      

  

  


  







 (3.13) 

By considering (3.13) and Sobolev’s embedding 
E 2 20, ; NL T   we can find a constant  such 
that 

7 0c 

   0

0

0
7

, d

| |

T

n n n

n n n n n

H t u H u v t

c u u u u u
    

   
         




1

  (3.14) 

After combining (3.10), (3.12) and (3.14), we get 

 0

820 0

,
d

T n

n

H t u
t c

u
           (3.15) 

for some positive constant . However, the condition 

(3.15) contradicts 

8c

  2H i  because 0
nu   as 

. Consequently, n   nu

v

 is bounded in X. Going if 
necessary to a subsequence, we can assume that  

 and . Notice that 
,nu u

0
nu  0u nv 

      
   

 d

n n nu u v u u

H t v e t

 
 

n n

n nu v

t

0

T

n

Q u

, ,

nu v

H t u

 

u u

     

   
 

  

 

u u

 

 





 (3.16) 

which implies that n
   in E. Similarly, nu u   

in E. It follows that   , ,n nu v u v   in X and 
  0u v   . So   satisfies the   condition for 

all 
*cPS

c . The Lemma 3.1 is proved. 
Now, let us prove that the functional   satisfies the 

conditions a), b) and c) of Theorem 2.1. 
a) Let   W,u v V  . By using the Mean Value Theo-

rem, assumptions  0H ,  1H  and (2.1), we have 

     

 

 

 

     

   

     

   

 

  
2

0 0

0 0

0 0

,

d d

d d

T T

T T

T T

L

H t u

t

e t

t

u t

t

u t

t u

2

0 0

2

0

2

0

2

0

2

0

1
2 22

0

|| || d d

|| || , d

, . d d

, d

, d

, d

d

T T

T

B

T

B

T

T

T

u v u v t e t u

u H t v

H t v u u t u t

u H t v a t P u

b t u t e t

u H t v a t P u

b t u t e t

u H t v

a t u t











t      

  

  

  

 

 



 

 

  

 



 











 










 

   (3.17) 

 2

9 10

L

c 

 



 



 
0

2

11

d
T

b e t u t

u u c u c


  

   




where , 10 ,  are three positive constants. Since 9c c
1

11c
0   , then 

   as ,u v u W u       uniformly in v V . 

(3.18) 

b) Let  ,u v Z V  , with . By using the 
Mean Value Theorem, we get 

0u u u 

   
 

 
      

2 0

0

0

2 0

0

0

0 0

, d

d

|| || , d

, d

T

T

T

T T

u v u H t u u v t

e t u t

u H t u t

H t u u v u v e t u





 





 

    

 

 

     







  t

(3.19). 
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By assumption  1H  and (2.1), we can find a con-
stant  such that 12 0c 

    

      

  

 

2 2

2 2

0

0

0

0

1
2 22 0

0

0
12

, ( )d

,

d

1 1

T T

T

B

L L

L

T

L L

0
dH t u u v u v t e t u t

a t P t u u v b t

u v t e u

u v

a t u u b e

c u u u





 







 



 





 

      

      

  

 

 
       
 

     













(3.20) 

Therefore, by using (3.19) and (3.20) we obtain 

   
 

2 0

0

0
12

, d

1 1

T
u v u H t u t

c u u u
 

 

 

  

.      


  (3.21) 

Now let 
2
12

2

c
d  . By assumption   2H i , there ex-  

ists a constant  such that 13 0c 

  20 0
130

, d d
T

H t u t u c


         (3.22). 

So by (3.21) and (3.22), we have 

 

 

2 20
13

0
12

2 1

12

22 20 012
12

0
12 12 13

1 1

1

2

1

2 2

.

u v u d u c

c u u u

u c u u u

c
u c u d u

c u c c



 

 

 



 

 

   



   

      

     
          

  

  (3.23) 

Since 
2
12

2

c
d   and 0 1  , then 

   as , ,u v u Z u      uniformly in v V . 

(3.24) 

Hence by Lemma 3.1 and properties (3.18), (3.24), we 
deduce that the functional   satisfies all the assump- 
tions of Theorem 2.1. Therefore the Hamiltonian system 
( ) possesses at least  1p T   periodic solutions 
geometrically distinct. The proof of Theorem 1.1 is com-
plete. 

Proof of Theorem 1.2. Assume  0H ,  1H  and 
  4H i  hold. The following lemma will be needed for 

the study of the geometry of the functional  . 
Lemma 3.2. There exist a non-increasing positive 

function (]0, ,C      and a positive constant  
satisfying the following conditions: 

0c

i)     ( ) 0,  as ,s s s s       

ii)      2 0( , ) 1 , ,B BL
t u c P u P u u E  H       

iii)  

 
 0 0as u

2 00 0

1
, d  .

T
H t u t

u u
   

 
 

  

Proof : For u E , let 

      
1

20, : .B BA t T P u t P u
 

   
 

 

By  3H , we have 

          

      

      

       

    

 

2

2

2

2

1
2 2

0

1
2 2

0

22

1
2 22

0,

1
22 2

1

2
2

0

, d

d

d

d || ||

d

sup ( ) || || .

T

B BL

T

B B L

B BA

B B LT A

B BA

s B L

H t u a P u t P u t g t t

a P u t P u t t g

a P u t P u t t

P u t P u t t g

a P u P u t t

T s P u g

















       

   

 

 
  





 

  
   

 





















 

So, by (2.1) there exists a positive constant  such 
th

 0c
at 

     

2

1
1 222 2

0

( , )

1 .

L

B B B

H t u

c P u P u P u



 
          
 

 


Take 

 
1

1 2
2 2 1

, 0s s s
s

 
  

,        
 

  satisfies (ii) and it is clear to see that then  satis-
).

et us define 
fies (i  

Next, l

 2

1
2 2

liminf .s

s

s







 
  
 

 

  4H i , for any 0  , there exists a positive By 
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constant s14c  uch that 

    2

140
, d

T
.H t x t  x x c         (3.25) 

which im at for 


plies th 0u B , 0 0u  , 

 
 

  2
0T 0 0

14
0

2 1
0 0 22 0 0 02

, d
.

u u cH t u t

u u u u u

 

 

   
     
 


    (3.26) 

By the definition of  , there exists  such that 
fo

0R 
r all s R  

2 2

1
2 22

( )
.

2

s s

s s s

 




 
  

 

          (3.27)  

Therefore 

 
 

0

0 14
2 1

0 0 22 0 0 02

, d

2

T
H t u t c

Tu u u u u



 
 

     
 

   (3.28) 

as 0u R  and then 

 
 

0

0

0
2

0 0

, d
lim .

2

T

u

H t u t

Tu u








 
 

        (3.29) 

Since 



  is arbitrary choosen, condition (iii) holds. 
et

onal 
Now, l  us prove the Palais-Smale condition. 
Lemma 3.3. For all level c , the functi   

e-

that 

sa

be a nce in X such 
fo

.  (3.30) 

Set n  and n  By Hö
in Lemma 2

tisfies the  *PS  condition respect to the s
quence  nX

Proo  u

c

 . 
 ,v

with 

 seque
n

f. Let n n n  
,n nu vr all , nn   and 

u v 

X

   and 0 as n n n n nv c u n   
0

n n nu u u u   
lity, (2.1) and 

n nu u u   .
.2(ii), we 

lder’s 
equa get a positive 

constant 15c  such that 

      

 

    

22

0

1

22

0

15

, d

,

1 .

T
u v n n n n

T

n n n n LL

n B n B n

H t e t u u t

u u H t u v e

c u P u P u

 

 

  

 
         
 

   







   (3.31) 

Thus, for n large enough 

  
    2

152 1

n n

n n B n B n

u

u c u P u P u    



 
 (3.32) 

So there exists a positive constant  such that 

.

n n nu v u u    

16c

    16 1 .n B n Bu c P u P u n
        (3.33) 

By (3.33) and the properties (i) of  , we deduce that 
 nu  is bounded if and only   B nP u  is bounded. 

 since Now,   is nonincreasing and  B nu P u  
  0max , Bu P , we get u 

      m , Bu u P u         (3.34) 

Combining (3.32) and (3.34), yields f
en

0in

or n  large 
ough 

      

2

0 0
15

2

1

nu n

n B n B n n n

u

c u P u P u u u 



    



  
 

which implies 



    15 152 1.n B nu c P u c       (3.35) 

Assume that 

0 0
15 n nc u u  

  B nP u  is unbounded, then b
to

y going 
 a subsequence, if necessary, we can assume that 
 B nP u   as n  . Since   0s   as s  , 

w c m (3 at there ex ositiv
stant 17c  such that 

e dedu e fro .35) th ists a p e con-

 0 0
17nu n nc u u             (3.36) 

for large enough. Since the mapn    s s s  is con-
tinuo s in u  0,  and goes to   as s  , then 

0
nu   as  . 

by the M  Theorem
 n 

Now, ean Value
ity

, Hölder’s inequal-
 and Lemma 3.2(ii), we get 

    
    

  
    

2

2

0, , d
T

n n nH t u v H t u t 
0

1 0

0 0

1
21 20

0 0

1 0 0
0 0

, . d d

, d d

1 d .

T

n n n n

T

n n n n nL

n n n B n n B nL

H t u s u v u v s t

u v H t u s u v t s

c u v u sP u u sP u s

    

     
 
      

 

 



 

 

  

 

(3.37) 

Since 



 0 0
n B nu sP u u  n  for all  0,1s

there ex
, we 

de om (2.1), (3.36) and (3.37) that du-ce fr ists a 
positive constant 18c  such that 

     
     

     
 

2

0

0
, , d

T

n n nH t u v H t u t  
0 0 0

0

2 2
0 0 0 0 0

18

0 0

| | [ 1]

1 ,

n n n n n B nL

n n n n n

n n

c u v u u u P u

c u u u u u

u u
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which with (2.1) and (3.36) imply that there exists a 
positive constant  such that 
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 (3.39) 

which, with Lemma 3.2 (iii), imply that 
as . This contradicts the boundedn

 n nu v    
ess of  n 

  n nu v  . So   B nP u  is bounded

Ass  that 

. 

ume  0u , then up to a n  is unbounded sub-
sequence, if sary, we caneces n assume that 0

nu   as 
.38), n  . As in (3 and using (2.1), (3.34) and the fact 

that ( ) 0s   as s  , we can find a tant 
 such that 
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 (3.40) 

Now, since ( ) 0 as s s   , then combining (3.33) 
and (3.34) yields 
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for a positive constant . Therefore there exists
tive constant  such

1n n n B n nv u v      
 

22c
 that 

 a posi-

23c

      
 

0

0
, , . d

T

n n n n

2
0 0

23 1 .n n

H t u v H t u e t u t   

c u u   

   (3.42) 

We deduce from (3.41) and (3.42) that ther
constant  such that 
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which implies by Lemma 3.2 (iii) that 

as . This contradicts the boundedness of 



 n nu v     

n 
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 nu  is bounded. By a standard argument, we 
con-clude that  nu
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 The proo  Lemma 3.3 is complete. 
 let 

-
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Now,    0, ,u v u v Z Vu    , then as in (3.38) 
 that there exists a positive constant 25c  such
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(3.43) 

So, we have for a positive constant c  26
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 (3.45) 

By combining (3.44) and (3.45), we get 
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which implies that 
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(3.46) 

On the other hand, let b B , 0b  . By the Mean 
Value Theorem, we have for u W E   
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[2] P. L. Felmer, “Periodic Solutions of Superquadratic Ha- 
miltonian Systems,” Journal of Diff uation, 
Vol. 102, No. 1, 1993, pp. 188-207.  By a similar calculation as in the proof of Lemma 3.2, 
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Autonomous Second Order Hamiltonian Systems,” 
Mathematical and Computer Modeling, Vol. 46, No. 3-4, 
2007, pp. 550-556. doi:10.1016/j.mcm.2006.11.019 

 u v    as u W , u  , uniformly in 

v V  ( . 3.50) 

Thus, Lemma 3.3 and properties (3.46), (
that the functional 

[8] I. Ekeland and J. M. Lasry, “On the Number of Periodic 
Trajectories for a Hamiltonian Flow on a Convex Energy 
Surface,” Annals of Mathematics, Vol. 112, No. 2, 1980, 
pp. 283-319. doi:10.2307/1
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satisfies all the assum
Generalized Saddle Point Theorem. Therefore the Ham
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etrically distinct. The heo-
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