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Abstract 
The purpose of this paper is to derive or determine the Credit Derivative, especially, the Credit 
Default Swap which is under the hazard rate (or default intensity) distributed as a multi-factor of 
the Cox, Ingersoll and Ross (CIR, 1985) models. It is crucial to know how default should be mod-
elled for the valuation of credit derivatives. We are motivated by the idea that CIR term structure 
model, for example, must be effective for modelling hazard rate, and has some significant proper-
ties: mean-reversion and affine. We use South Africa (SA) credit spread market data on Defaultable 
bonds to estimate parameters associated with the stochastic single-factor hazard rate type CIR. 
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1. Introduction 
The major credit problems and significant failures faced by banks during Global Financial Crises, for example 
the recent financial crisis or credit crisis of 2007-2008 [1], and the failures of large prestigious institutions such 
as Lehman Brothers, Bear Sterns, Fannie Mae and Freddie Mac [2] [3], have highlighted the importance of 
modeling and providing for a credit risk quantifier. Credit Risk is the risk that a borrower (company, individual, 
sovereign government) will default on any type of debt by failing to meet its financial obligation. It emerges to 
be not just the traditional risk that lenders or ownership of the bonds or loans (example financial institutions) 
spare when lending out money, but also a financial contract traded (or exchanged) around the world. 

The designation or development of new products, such as Credit Derivatives (CDs), by all investors and fi-
nancial institutions to reduce or remove any Credit Risk arises from lenders or bondholders (example banks), 
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and to allow banks to deliver more loans seemed to want a share in it. The most widely used product of CDs is 
the Credit Default Swap (CDS). The Credit Default Swap is a contract entered between two parties that provide 
a protection against losses occurring due to a default event of a certain entity. Since its introduction in the 
mid-1990s, the growth of the global market has been overwhelming: for example, the market size for CDS al-
most doubled biannually from 1996 to 2004, and even quadrupled to over a peak notional outstanding amount of 
US $20 trillion during 2004-2006 [4].  

The measurement or modeling of credit risk, however, provides its own set of challenges. There exist many 
ways of modeling credit risk [5]-[7] with the implication that banks can face a quandary of choosing the models. 

The main point of this paper is to consider how the default is modeled for estimating the value of Credit De-
fault Swaps. There are different ways for modeling the Credit Derivatives, typically characterized by how they 
characterize the default event. Duffie and Signeton [8] suggest that the approach in which the default is indi-
cated or characterized by a hazard rate is largely related to the distribution of default time. Their approach sug-
gests that the defaultable claims can be priced the same way as the non-default claims. Using the Duffie and 
Signeton’s framework, David and Mavroidis [9] suppose that the hazard rate is a Gaussian model with 
time-dependent deterministic drift to revise the valuation of the Credit Default Swap. Aonuma and Nakagawa 
[10] extend David and Mavroid’s work to model the hazard rate in form of affine type or quadratic Gaussian 
type term structure model, such as Vasick model, and give the valuation formula for the Credit Default Swap 
that contains basket type or counter party risk [11] [12]. In this paper, we consider the default intensity model 
which takes the hazard rate as principal factor and distributed as the multi-factor Cox, Ingersoll and Ross (CIR) 
model. It is widely agreed that a single factor model is unable to capture the yield curve precisely and more 
economic factors should be included in defaultable bond pricing (e.g. Chen and Scott, 1993). Adding more fac-
tors into the latent model yields smaller computation error than those in single-factor processes. This alteration 
is prompted by empirical evidence which proposes that single factor Affine Term Structures are unable to de-
scribe or explain the dynamics of the US term structure.  

The paper is organized as follows. In Section 2, we discuss how to estimate hazard rate which follows the 
dynamic of the multi-factor CIR-type model using the relationship between credit spread and hazard rate, that, is 
necessary for switching the market credit spread data (collecting directly from the market data) into the multi- 
factor CIR-type Hazard rate data. We analyze the hazard rate function of single-factor and two-factor CIR-type 
models and give some results. In Section 3, we follow the framework proposed by David and Mavroidis [9], 
Aonuma and Nakagawa [10], and Richard White [13] to give the main techniques used to value credit default 
swap under the multi-factor CIR type hazard rate. These are done for the only one defaultable bond issued by 
the company. Here the explicit value of the credit default swap for both the fixed side, and the recovery side, are 
established in a quite general form. Section 4 treats the parameter estimation associated with the single factor 
hazard rate type CIR model using the Generalized Moment Method. And we shall investigate 20 South African 
firm’s debt terms, with different rating from AAA to BBB and different market credit spread for maturity one 
year, three years and five years to analyze and estimate parameters associated with the stochastic single-factor 
hazard rate CIR-type model. 

2. Multifactor Affine Type Hazard Rate Models  
In this section, we discuss how to estimate hazard rate type Multi-factor CIR model. Using the relationship be-
tween credit spread and hazard rate, it is possible to convert the market credit spread data (collected directly 
from the market data) into CIR (or Vasicek) multi-factor type Hazard rate data. Our first analysis, thus, assumes 
the risk-free interest rate r to be independent of all the hazard rates. Therefore the occurrence of default is not 
correlated with bond prices. This assumption implies that the level of default is cause by some factors affecting 
the issuer, not the level of risk-free interest rate. 

Multi-factor affine models of the term structure represent the yield of securities as affine function of a vector 
of n unobservable state variable ( ) ( ) ( )( )1 , , nX t X t X t=  , which is given by the multidimensional diffusion 
process follows: 

( ) ( ) ( ) ( )1 11 1
.d d dn nn n

X t X t t X t W tµ σ
× ×× ×
= +                               (1) 

CIR Affine Models 
A model is CIR affine if all state variables ( ) ( ) ( )( )1 , , nX t X t X t=   are independent process of the single 
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factor CIR-type.  
Therefore, for 1, , ,i n=   

( ) ( )( ) ( ) ( ) 0d d d , 0 0t
i i i i i i iX t a b X t t X t W X Xσ= − + = > ,                     (2) 

where the parameters ɑi, bi and σi are viewed as the speed of mean reversion, the long-term mean or the mean 
reversion level and the volatility respectively, and , ,t t

i nW W  are independent Wiener process (or standard 
Brownian motions). As the model is affine in every factor, the defaulatable zero coupon bond prices ( ),iD t T  
for the thi  one-factor CIR-process can be written in affine form ( ) ( ) ( )( )exp , ,i i it T t T X tΦ −Ψ . 

Due to the independence of factors it is subsequently to derive the below formula. The price ( ),iD t T  of 
a zero-coupon defaultable bond with notional value 1 is given by 

( ) ( ) ( ) ( )( )
( ) ( )( ) ( )

( ) ( ) ( ) ( )( )
1 1

1

, , exp 1 d

( , ) exp 1 d ,

exp 1 , , .

T

t

n nT
i it

i i

n

i i i
i

D t T B t T E s s

B t T E X t s D t T

t T t T X t

δ γ

δ

δ

= =

=

 = − −  

 = − − =  

 = − Φ −Ψ 
 

∫

∏ ∏∫

∑

                     (3) 

where [ ]0,t T∈ , and δ is the recovery rate, and the instantaneous hazard rate γ follows multi factor CIR and 
assume to be defined as  

( ) ( )
1

n

i
i

t X tγ
=

= ∑ .                                       (4) 

( ),B t T  is a price at time t of a zero free coupon bond with maturity T and 

( )
( )( )

( ) ( )( )
2

2

2 2 e
, ln ,

2 e 1

i i

i

a h T t
i i i

i h T t
i i i i

a b h
t T

h a hσ

+ −

−

 
 Φ =
  + + − 

                           (5) 

( )
( )( )

( ) ( )( )
2 e 1

, ,
2 e 1

i

i

h T t

i h T t
i i i

t T
h a h

−

−

−
Ψ =

+ + −
                               (6) 

2 22 .i i ih a σ= +                                         (7) 

At time t the credit spread, viewed as the difference between the default adjusted interest rate and the risk- 
free interest rate is given by ( ) ( )1 tδ γ−  [10]. 

We are now in a position to define the relationship between the credit spread and hazard rate process. This is 
useful in converting the credit spread data given from market data into the hazard rate. 

Lemma 2.1. Let ( ),D t T  and ( ),B t T  be as in (3), for t T< , the credit spread process ( ),S t T  for the 
bond with maturity T satisfies the relationship: 

( )( )( ) ( )
( )

,
exp ,

,
D t T

S t T T t
B t T

− − =                                 (8) 

( ) ( ) ( ) ( )( )
1

exp 1 , , .
n

i i i
i

t T t T X tδ
=

  = − Φ −Ψ  
  
∑                           (9) 

Proof 2.2. Note that it is impossible to estimate the recovery rate δ and the hazard rate γ separately from the 
credit spread: knowing δ (given by another technique), we may determine the parameters of the hazard rate γ.  

We therefore need to determine the distribution of the random variable ( ) ( )1 d
T

t
s sδ γ− −∫ . To manage this, we 

assume the hazard rate process is distributed as CIR multi-factor model as defined in (4). The quick way to deter-

mine ( ) ( )( )exp 1 d
T

t
E s sδ γ − −  ∫  is to suitably transform it as 
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( ) ( )( ) ( ) ( )( )1exp 1 d e exp d
T T

t t
E s s E s sδδ γ γ−   − − = −      ∫ ∫ . 

This is contained in the formula of the bond price (for δ = 0), which is the expectation of the exponential 
of minus the integral of the short term process. Analogously to the work of the CIR model and Bond price under 
CIR, the CIR formula for the price of a zero-coupon bond is 

( )( ) ( ) ( ) ( )( )
1

exp d exp , ,
nT

i i it
i

E s s t T t T X tγ
=

  − = Φ −Ψ     
∑∫ . 

where 

( )
( )( )

( ) ( )( )
2

2

2 2 e
, ln ,

2 e 1

i i

i

a h T t
i i i

i h T t
i i i i

a b h
t T

h a hσ

+ −

−

 
 Φ =
  + + − 

 

( )
( )

( )( )
( )

( )

2 e 1
, ,

2 e 1

i

i

h T t

i h T t
i i i

t T
h a h

−

−

−
Ψ =

+ + −
 

2 22 .i i ih a σ= +  

This new process immediately yields 

( ) ( )( ) ( ) ( ) ( ) ( )( )
1

exp 1 d exp 1 , , .
nT

i i it
i

E s s t T t T X tδ γ δ
=

   − − = − Φ −Ψ       
∑∫  

Given the relation of credit spread (8), we obtain 

( )( )( ) ( ) ( )( )exp , exp 1 d
T

t
S t T T t E s sδ γ − − = − −  ∫                         (10) 

( ) ( ) ( ) ( )( )
1

exp 1 , , .
n

i i i
i

t T t T X tδ
=

  = − Φ −Ψ  
  
∑                          (11) 

Equivalently, the hazard rate in a CIR-type model is given by 

( ) ( ) ( ) ( )( )
1 1

1, , ,
1

n n

i i i
i i

t T X t t T S t T T t
δ= =

Ψ = Φ + −
−∑ ∑                        (12) 
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( )
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2 e 1
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2 e 1
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h T t

i h T t
i i i

t T
h a h

−

−

−
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2 22 .i i ih a σ= +  

Example 
For the Single-factor model, the hazard rate CIR-type model is given by 

( ) ( ) ( ) ( ) ( ) ( ) ( )( )1 1
1

1 1 , , ,
1 ,

t X t t T S t T T t
t T

γ δ
δ

= = − Φ + −  − Ψ
                (13) 

where 

( )
( )( )

( ) ( )( )
2

1 2

2 2 e, ln ,
2 e 1

a h T t

h T t

ab ht T
h a hσ

+ −

−

 
 Φ =
  + + − 
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( )
( )( )

( ) ( )( )1

2 e 1
, ,

2 e 1

h T t

h T t
t T

h a h

−

−

−
Ψ =

+ + −
 

2 22 .h a σ= +   
Figure 1 illustrates the hazard rate function of time of twenty years from now on, and distributed as the single 

factor CIR-type model; given the market price of credit spread. We took the volatility to be σ = 0.9. The figure 
shows that the hazard rate function, is increasing from time t = 0 to t = 10 years, 14 to 16 and 18 to 20. Intui-
tively, this means that the probability of defaulting in any of these periods between 0 and 10, 14 and 16, and 18 
and 20 years (conditional on not having defaulted until then) increases as time goes on. Upward sloping function 
in these periods mean that the market is implying not only that the firms are more likely to default with every 
year that goes by, but also that likelihoods in each year from 0 to 10, 14 to 16 and 18 to 20 years, are ever in-
creasing. Credit risk is therefore getting increasingly worse for every year into the future. From the period of 10 
to 14 years and 16 to 18 years, the hazard rate function is decreasing as can be see when looking at Figure 1. 
This does not mean that the cumulative probability of default decreases; rather it implies a higher conditional 
probability of default (hazard rate) in earlier years with a lower conditional probability of default in later period. 

For the two-factor model, the hazard rate CIR-type model is given by 

( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )
2

1 2 1
12 1 2

1 1 1 1 1, , , , ,
1 1i

i
t X t X t t T S t T T t t T S t T T tγ

δ δ=

   = + = Φ + − + − Φ + −   Ψ − Ψ Ψ −      
∑   (14) 

where ( )1   ,i t TΨ = Ψ  and ( )1 ,i t TΦ = Φ  for i = 1, and ( )2   ,i t TΨ = Ψ  and ( )2 ,i t TΦ = Φ  for i = 2. 
Figure 2 illustrates the hazard rate function of time of twenty years from now on, and distributed as the  
 

 
Figure 1. Single factor hazard rate function ( )tγ  with σ = 0.9.                                                           
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Figure 2. Two factor hazard rate function ( )tγ  with σ = 0.9.                                                                 

 
two factors CIR-type model; given the market price of credit spread. We took the volatility to be σ = σ1 = σ2 = 
0.9. The figure shows that the hazard rate function, is slightly variant (slightly increasing and decreasing from 
time t = 0 to t = 18) and increasing from t = 18 to t = 20. This two factors CIR-type mode (Figure 2) gives a 
better result compared to the single factor model (Figure 1). 

3. Framework  

Given the filtered space ( ), , ,Ω F   and a standard Brownian motion W on space, we let [ ]{ }: 0,t t T= ∈    

be a two dimensional Brownian filtration and denote by τ a non-negative random default time. We assume the 
2-dimensional ( ), ,tΩ  -Brownian motion ( )*,W W , that means t  satisfies the regular conditions of com- 
pleteness and right-continue. Also t  is the smallest filtration which made W and *W  adapted. If we sup-  
pose that we are given an auxiliary reference filtration { }tσ τ ∧  such that { }( )t s

t s
sσ τ

<

= ∨ ∧


  , then all 

the possible information available at time t is captured by the filtration t , it is a right continuous τ and also 

is an t -stopping time. In the above sτ ∧  is an abbreviation for { }min ,t s . 
The following important lemmas are introduced for further evaluation of credit default swaps 
Lemma 3.1. Assume that the hazard rate process γt is a non-negative t  progressively measurable. Then 

the process 

{ }0
1 d

t
t t s sM H sτγ >= − ∫                                    (15) 

is a Martingale on ( ), , ,Ω F  . 
Lemma 3.2. Assume that, for 0 t T≤ < , X  be a T -measurable and  -integrable random variable, then 

we have  
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{ } { } ( )( )1 1 exp d .
T

t tt t t
E X E X u uτ τ γ> >

   = −    ∫ 

                        (16) 

Corollary 3.3. For any bounded [ ]0,T  predictable process Z 

{ } ( ) ( )( )0 0
1 exp d d

T t
tTE Z E Z t u u tτ τ γ γ≤

   = −    ∫ ∫                        (17) 

Proof [14]. 

4. Definition of CDS and Pricing CDS 
We follow the framework of David and Mavroidis [10], Richard White [13], and Hidetoshi et al. [15] to value 
the CDS, starting first, by defining the credit default swaps, specifying the rule of the default swap and pricing 
CDS. 

4.1. Definition of CDS 
A credit default swap is an agreement designed between two parties that provide a protection or assurance 
against losses occurring due to a default event of a certain entity (Figure 3). 

One party agreed to buy protection called protection buyer B (e.g., a firm) and provides a regular payment
( )1,2, ,ic i n=   until the credit event occurs or at maturity of the contract (at expected time ,i nt t T< < ), 

the other is the seller of the protection S. Typically banks or insurance companies will assume the credit risk and 
deliver the difference between the notional value and some recovered value δ from the bond issuer for the owner 
of the bond B, if the credit event of the bond issuer happens before the maturity date T2. 

The risky bond that the buyer B holds permits a fixed coupon ( )1,2,jw j =   at each adopted time
( )1 21, 2, ,0j js j s s s= ≤ < <  except when the default even occurs. 
A credit default swap agreement includes a fixed premium leg or fixed side and a recovery side (or contingent 

default leg). 
• The fixed side corresponds to the series of payments made by the buyer B of the CDS-contract to the 

protection seller S of the contract up to the maturity time, unless a bankruptcy event or other credit 
event perturbs the contingent payment on a CDS. 

• The recovery side corresponds to the net payment delivered by the counter party protection seller S to 
the protection buyer in case of such default event happens. 

The main goal of valuation of CDS is to obtain equilibrium premium (or regular payment) ci’s paid periodi-
cally by the reference holder, which is followed from the equality of the value between fixed premium leg and 
contingent default leg. Consider the risk-free interest rate r be independent of all factors related to credit risk, 
alike default time and the hazard rates. This assumption implies that we can value default swap in term of the 
default-free zero coupon bond’s prices as follows. 

4.2. The Price of the Fixed Side 
Since all payments are evaluated at t = 0 and no payment is made after any default event occurs, the actual value 
of the fixed side pD  is basically defined by: 

( ) { }0
1

exp d 1 ,i

i

n t
p i u t

i
D E c r u τ >

=

 = −  
∑ ∫                                 (18) 

where r is the short rate interest and ( )·E  is the expectation value under the risk neutral measure  . It fol-
lows that 
 

 
Figure 3. Credit default swap.                                                                             
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  = −    

 = −  

  = −  
  

 = Φ −Ψ 
 

∑ ∫

∑ ∫

∑ ∫

∑ ∑∫

∑ ∑



 

is an explicit value of the fixed side, when the hazard rate function γ(t) is distributed as a multi-factor CIR 
model.  
where 

( )
( )( )

( ) ( )( )
2

2

2 2 e
,0 ln ,

2 e 1

i i i

i i

a h t
i i i

i i h t
i i i i

a b h
t

h a hσ

+ 
 Φ =   + + −   

( )
( )( )
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2 e 1

,0 ,
2 e 1
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h t
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t
h a h

−
Ψ =

+ + −
 

2 22 .i i ih a σ= +  

The Price of the Contingent Default Leg (Recovery Side) 
Let ( )CC t  be the cum-coupon amount of the underlying defaultable bond and its value is given by 

( ) ( )( )( )exp 1 d .i

i

s
i u u tt

s t
CC t E w r uδ γ

≥

 
= − + − 

 
∑ ∫   

where iw  is a fixed coupon, ur  the short rate interest and γu the hazard rate process. It is supposed that the 
fixed premium leg to the contract can recover the specific amount ( )CCδ τ , when the default event occurs to 
the issuer of the bond, at default time τ . Then, the price of the recovery side has been defined by Hidetoshi 
Nakagawa [14] as 

( ) ( )( ) { }

( ) { } ( ) ( ) { }

0

0 0

exp d 1 1

exp d 1 exp d 1 . 

R u T

u uT T

D E r u CC

E r u E r u CC

τ

τ

τ τ

τ τ

δ τ

δ τ

 = − −  
   = − − −      

∫

∫ ∫



 

                  (19) 

This equation can be evaluated separately as 
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By Corollary 3.3, Lemma 3.2 and using hazard rate mean reversion. And for second term in (19) with appli-
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cation of Corollary 3.3 
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This is the price of the recovery side or contingent default leg for the hazard rate multi-factor CIR type. Given 
the value of the default free zero coupons bond ( )0,B t  its explicit value can be derived. 

5. Analysis and Numerical Results 
We shall estimate parameters associated with hazard rate models using the Moment Method. We investigate 20 
South African firm’s debt terms, with different rating from AAA to BBB and different market credit spread for 
maturity one year, three years and five years as shown in Table 1. The results in the rest of this paper are based 
on the South Africa credit spread data in Table 1 given in [16]. Those credit spreads were calculated using the 
one year, three year and five year debt terms of 20 South Africa companies, rated AAA to BBB. For a debt term 
of 5 years the spread varies from 6 bp to 297 bp in the banking sector and from 3 bp to 85 bp in other sectors.  
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Table 1. Hazard rate parameters (σ and ɑ) for CIR-type model.                                                              

Company Rating 1 Year Credit 
Spread (bp) 

3 Year Credit 
Spread (bp) 

5 Year Credit 
Spread (bp) Volatility of σ (%) Mean Rever-

sion ɑ (%) 

1 AAA 0 7 28 32.1 3.29 

2* AA+ 0 1 6 19.03 1.09 

3 AA 0 2 11 26.98 0.1018 

4* AA 0.2 7 18 5.31 10.3 

5* AA 0.2 7 18 4.212 4.48 

6* AA 0.4 12 29 7.153 0.0349 

7* AA 0.2 6 15 3.31 1.2945 

8 AA− 0 0 3 17.39 10.24 

9 AA− 0 5 19 20.15 4.25 

10 A+ 0 2 10 21.18 5.85 

11 A+ 0.6 33 85 29.02 0.0205 

12* A+ 0.4 7 17 3.13 4.61 

13* A+ 0.7 15 36 7.33 1.5287 

14* A− 0 8 21 4.13 0.0412 

15 A− 0 6 24 23.6 3.77 

16 A− 16 3 18 41.37 4.97 

17* BBB+ 1.6 160 297 30.02 1.11 

18* BBB 1.6 34 77 15.07 2.18 

19* BBB 7.4 84 169 18 1.49 

20* BBB 9.8 108 211 22.02 1.33 

An asterisk * indicates that the firm is in the banking sector. 
 
More specifically, using a debt term of 3 years, the credit spreads of AA-rated companies vary between 2 and 12 
bps whereas observed spreads in the South African market at the time of writing and in general, vary between 30 
and 60 bps [16]. We analyze and estimate the parameters for a single or one factor CIR model described pre-
viously. 

5.1. Parameter Estimation with CIR Model 
We recall that the parameter of hazard rate process can be estimated from historical market data of credit spread. 
In the special cases, such as: -Vasicek model, and CIR model, (except for the recovery rate δ), we have to secure 
the parameters estimator for hazard rate ɑ, b and σ. Meaning that we need to have at least four different credit 
spread ( ),S t T  from market data of the firm. Nevertheless, it is not easy to g et al. those data since only a li-
mited number of bonds are issued by each company and the amount traded in the marketplace is not enough to 
evaluate all the parameters. Thus, we cannot simplify the task by supposing some exogenous parameters and 
finding the remaining ones implicitly. Hence, we consider the procedure of estimating parameters when only 
one defaultable bond issued by the company. As before we shall treat the CIR type model below (the same work 
can be done with the Vasicek model). 

Parameter Estimation 
There exist different methods of estimating the parameters, including the implied volatility which is used in op-
tion valuation. Typically they are characterized or evaluated from the historical data. Though we consider the 
CIR processes in particular, we note that a similar procedure is possible for other models (Vasicek, et). We fol-
low [10] to estimate the parameters, such as recovery rate δ and the long-term mean b using the South Africa 
data: 
• Characteristic of the long-term mean hazard rate type CIR process b. 
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Following the assumption that the long-term mean hazard rate process is similar for the same category of in-
dustry and the rating of the same class, we consider the estimation of b as the mean value of the probability of 
default on every category of industry and rating collected from rating agencies such as Standard & Poor, Moo-
dy’s and Fitch. We assume the long-term mean b is 10%. 
• Rule of estimating recovery rate δ. 

Moody Agency’s database includes detailed bond prices information after default, the historical market price 
of the bond for 30 days (one month) after the firm experienced the default event. This is viewed as the recovery 
rate from the default bond. Basically, the average of debt differs from issuers to issuers (or from firm to firm), in 
this discussion we assume that the recovery rate of the same class of financial rating and the same class of in-
dustry are shared and regard as the recovery rate δ of the firm. That is the mean value computed from Moody’s 
data of recovery rates every class of industry and rating [10]. We assume that the recovery rate δ on all bonds is 
30%. Furthermore, the recovery rate can also be determined by different methods such as Ordinary Least 
Squares (OLS) [17], Multiple Additive Regression Trees (MART) [17], Classification And Regression Trees 
(CART) [17] and Waterfall model [17]. These listed methods estimate the recovery rate in default by using their 
capital structure and some econometric factors at the time of default. Moody’s examined the determinants of re-
covery rates of defaulted corporate bonds and loans and proved that the recovery rates are strongly affected by 
many factors such as type of default event (e.g. Bankruptcy, failure to pay and restructuring), the tangibility of 
its assets, the amount of the debt and macroeconomic factors [18]. 

Due to the difficulty of estimating the volatility σ and mean-reverting speed ɑ separately from market data of 
credit spread using only one bond issuer (or reference bond), we restrict ourselves to the limit distribution of the 
single factor CIR hazard rate-type model, and attempt to use the moment method to find those parameters. The 
moment method is a generic method or the most preferred numerical technique of estimating parameters in sta-
tistical model due to its less requirements of information. 

5.2. Moment Method 
Consider a set of observations of hazard rate ( )tγ , which is obtained from historical market data calculated 
from the formula (13) (for a hazard rate of CIR type models) for a certain period of time. The market data can be 
collected daily or at the end of the month. 

From the discussion about hazard rate models above, we recall that the elements of γ are the speed of mean 
reversion ɑ, the long mean rate b and the volatility σ. 

In the case of the CIR model, CIR hazard rate ( )tγ  has the following limits when t →∞ , 
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2
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⇒                             (20) 

where ( )·  is a normal distribution. We assume that the relation (20) is satisfied in general for any value of t. 
In order to use the moment method technique, we consider as data the value of hazard rates ( )tγ  at n points 

1 2, , , nt t t  analogue as a vector  

( )1 2, , , ,nt t t t=   

Obtained by historical market data calculated from the formula (13). Using the limit of expectation value of 
the hazard and substituting Equation (13) for the CIR model, we have 

( )( ) ( )
1

1lim .
n

kt k
b E t t

n
γ γ

→∞ =

= = ∑                                 (21) 

Using the limit of variance and the definition formula of variance, and substituting Equation (13) for the CIR 
model, we have 
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We have, therefore, 
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Having the estimator parameters δ and b, we have only to obtain the parameters values σ and ɑ which obey 
Equations (21) and (22) simultaneously. This may be done by solving, for example, the following system of two 
equations with two unknowns, ɑ and σ: 
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Note that this system of equations in (23) is nonlinear equation. The solution of this system with ɑ and σ un-
knowns can be obtained by solving the systems of nonlinear simultaneous equations. (Typically, this is very dif-
ficult). Assume that 
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This system of two nonlinear simultaneous equations can be solved on Matlab. This problem can also be for-
mulated as the optimization problem i.e. we will seek to minimize 2

1χ  and 2
2χ  subject to 0σ ≥ , 0a > .  

This optimization problem is the problem of making the best possible choice of σ and ɑ that can minimize the 
objective function 2

1χ  and 2
2χ  simultaneously. 

Because of the rarity of data, we use 20 South Africa firm debts for maturity one year, three years and five 
years [16]. We use Matlab to find the solution to the system of non-linear Equations (24), with different initial 
guess values of ɑ and σ. These solutions are given in Table 1 for CIR hazard rate-type. 

The results shown in Table 1 are the estimation of volatility σ and mean reversion ɑ, when hazard rates are 
distributed using a CIR model. Those are estimated by using various debt terms for 20 South African firms, with 
different rating from AAA to BBB and different market credit spreads for maturity in one year, three years, and 
five years. The result show that the mean reversion ɑ increases when volatility decreases, and decreases when 
volatility increases for firms from banking sector and non-banking sector. We notice that, the results are similar 
to those for the Vasicek-type model, and that the volatilities found are generally similar to volatilities of South 
African firm’s market data given in [16]. 

6. Conclusions  
In this paper, we have been concerned how the default is modeled for estimating the value of credit default 
swaps. We have considered the default model which takes the hazard rate as principal factor and distributed as 
the multi-factor Cox, Ingersoll and Ross (CIR) model, since it has some significant properties: mean reversion 
and affine. The explicit value of fixed side and recovery side of credit default swaps was determined in quite 
general form that contained counter party risk, under the multi-factor affine hazard rate. We suggested one im-
plementation procedure when the available market data were not sufficiently rich and provided some simulation 
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results. However, the work done in this paper has mainly been on the study of credit default swap under multi- 
factor hazard rate model, and the estimation of parameters associated with the single factor hazard rate model. 
These are done under the martingale measure or the original risk neutral measures. Moreover, as in real world 
the market is often incomplete, that is the existence of many martingale measures (or the risk neutral probability 
is not unique, refers to asset pricing theorem). 

A natural extension of our estimation approach is to consider the calculation under the objective probability 
(or real world probability), investigate a case of correlation between a defaultable bond and the risk free interest 
rate (or correlation between the risk-free interest rate and all the hazard rates), and consider when defaultable 
bonds are issued by different firms. 
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