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Abstract: Power offset is zero-order term in the capacity versus signal-to-noise ratio curve. In this paper, ap-
proximate analysis of power offset is presented to describe MIMO system with uniform linear antenna arrays 
of fixed length. It is assumed that the number of receive antenna is larger than that of transmit antenna. Spa-
tially Correlated MIMO Channel is approximated by tri-diagonal toeplitz matrix. The determinant of tri-di-
agonal toeplitz matrix, which is fitted by elementary curve, is one of the key factors related to power offset. 
Based on the curve fitting, the determinant of tri-diagonal toeplitz matrix is mathematically tractable. Conse-
quently, the expression of local extreme points can be derived to optimize power offset. The simulation re-
sults show that approximation above is accurate in local extreme points of power offset. The proposed ex-
pression of local extreme points is helpful to approach optimal power offset. 
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1. Introduction 

Multiple-input multiple-output (MIMO) system is widely 
used in wireless communication to improve the perform-
ance. The spectral efficiency of MIMO channel is much 
higher than that over the conventional signal antenna 
channel. The research of MIMO includes two different 
perspectives: the first one concerns performance analysis 
in terms of error performance of practical systems, the 
second one concerns the study of channel capacity. 

The design of communication schemes was mainly 
considered in the former perspectives with the aid of theo-
retical analysis and simulation [1][2], and [3]. For the 
latter, important parameters such as diversity gain [4], 
multiplexing gain [5][6] (referred to degree of freedom in 
other literatures), and power offset [7-9], and [10] were 
emphatically analyzed in the high signal-to-noise ratio 
(SNR) region. Furthermore, diversity and multiplexing 
tradeoff has been proposed in [11][12], and [13], that is to 
say diversity and multiplexing tradeoff can be obtained 
for a given multiple antenna channel. It is worth pointing 
out in [11] that the diversity and multiplexing tradeoff is 
essentially the tradeoff between the error probability and 
the data rate of a given system. 

The multiplexing gain is not sufficient to accurately 
characterize the property of MIMO capacity. A more ac-
curate representation of high SNR behavior in SNR-ca-
pacity curve is provided by an affine approximation to 
capacity, which includes both the multiplexing gain (i.e. 
slope) and power offset (i.e. zero-order term) [7]. High 
SNR power offset has been analyzed in [8] over multiple 
antenna Ricean channels. It was shown in [8] that the im-

pact of the Ricean factor at high SNR region could be 
conveniently quantified through the corresponding power 
offset. In [9], high SNR power offset in multiple antenna 
communication was derived in detail. Achievable through- 
put was compared between the optimal strategy of dirty 
paper coding and suboptimal linear precoding techniques 
(zero-forcing and block diagonalization) in [10] on appli-
cation of power offset. Hence, power offset is an impor-
tant parameter in multiple antenna communication. 

In many practical environments, signal correlation 
among the antenna array exists due to the scattering. Fad-
ing correlation and its effect on the capacity of multiele-
ment antenna system has been studied in [14]. Hence, 
analysis of spatially correlated MIMO channels has been 
another topic in the past few years, which necessitates the 
model of correlated channel. A general space-time corre-
lation model for MIMO systems in mobile fading channel 
has been presented in [15]. The model in [15] was flexible 
and mathematically tractable. In [16], the correlated 
model of [15] has been used to investigate the capacity of 
spatially correlated MIMO Rayleigh-fading channels. 

Recently, application of different antenna arrays in 
MIMO system has also been exploited. With the consid-
eration of physical constraints imposed by maximum size 
of the antenna array, uniform linear array of fixed length 
has been used in [17] to analyze the asymptotic capacity 
of MIMO systems. 

The uniform linear array of fixed length is also used in 
this paper to analyze the power offset of MIMO system 
over spatially correlated channel. On application of curve 
fitting, the determinant of tri-diagonal toeplitz matrix is 
mathematically tractable. Over spatially correlated chan-
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nel, the main result of this paper is the derived expression 
of local extreme points of power offset, using the uni-
form linear array of fixed length. To the best of our 
knowledge, the main result has not been presented in 
other literatures. 

The rest parts are organized as follows. In Section 2, the 
basic definitions of multiplexing gain and power offset are 
presented. System model and correlation model are given 
in Section 3. Approximate analysis of power offset by 
fitting determinant curve of tri-diagonal toeplitz matrix is 
put forward in Section 4. Section 5 shows the simulation 
results. Finally, a brief conclusion is given in Section 6. 

Notation: In the following context, matrices and vectors 
are denoted by boldface upper case symbols and boldface 
lower case symbols, respectively. The transpose and 

Hermitian transpose are denoted by  and   T H , re-

spectively. The expected value is represented by  E  . 

  is used for the Euclidian norm. 

2. Basic Definition 

In the high SNR region, the capacity of single-user 
MIMO system of coherent reception is given by [18][19] 

2( ) min( , ) log (1T RC SNR n n SNR o  )        (1) 

where  denote the number of transmit and receive 

antenna elements , respectively.  is the signal to 
noise ratio. The MIMO capacity in high SNR region is a 
linear function of , i.e. the stationary slope in 

SNR-capacity curve. In other words, any increase in 
 is immaterial, i.e. without any impact to the 

slope. The slope is the so-called maximum multiplexing 
gain (degree of freedom). 

,T Rn n

, )T Rn n

SNR

min( , )T Rn n

max(

If  is fixed to a given value (generally speaking, 

 is less than six, expressed as 

Tn

Tn 
Tn  in the following 

context), and R Tn n , the multiplexing gain equals to a 

fixed value without consideration of correlation of chan-
nel response and the number of receive antenna elements. 
So power offset is introduced to compare the impact of 
channel property with the same value of multiplexing 
gain, and (1) is replaced by [9] 
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where  is multiplexing gain and  is power offset 

in 3-dB units. When ，the multiplexing gain 
and power offset can be computed by 
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In the high SNR region, SNR-capacity curve is ap-
proximately determined by multiplexing gain and power 
offset. Most channels, having the same multiplexing gain, 
may have very different capacities because of various 
values of the power offset. Hence, power offset is an im-
portant parameter to describe the capacity behavior in 
high SNR region. 

3. System Model and Correlation Mode 

The system model and channel correlation model are de-
fined in this section. For MIMO system, the general 
baseband model is given by 

y Hx n                      (5) 

where  is the channel response matrix, and 
 is the input complex signal vector 

whose spatial covariance matrix normalized by the energy 
per dimension can be expressed as 

H

1 2[  
T

T

n
x x xx    ]


2

( )
1 [ ]

H

T

E

E
n




xx
Φ

x
                (6) 

while  and  are the 

output vector and additive white Gaussian noise vector, 
respectively. Because of normalization and assumption of 

isotropic input, 

1 2[ ]
R

T
ny y y   y

( )tr

1 2[
R

T
nn n n    n ]


TnΦ  and , where  is 

Tn
Φ I nI

n n  identity matrix. 
Kronecker model [16] is used to describe the correla-

tion of channel response. On the assumption of rich scat-
tering environments and having no line of sight, the cor-
related channel response matrix is denoted by 

H T R Σ Σ Σ                  (7) 

where   is Kronecker product,  and TΣ RΣ  are cor-

related matrix of transmit and receive antenna, respec-
tively. So the channel response matrix  is given by H

1
2

R T H Σ HΣ
1

2                (8) 

where  is channel response matrix whose elements are H
independent and identical distribution random variables. 
Without loss of generality, we assume that the distance 
between transmit antenna elements is large enough to 
neglect the correlation at the transmit node. Consequently, 
without considering the antenna correlation at the transmit 
node, the correlation matrix  is identity matrix, and 

the receive antenna correlation model 
TΣ

RΣ  is given by 

[15][16]. 
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where RL  is the fixed length of receive antenna array 

normalized by  . In this paper, RL  is assumed to be in 

the range from 1 to 10. 

where [0, )  
[ , )

 is the so-called AOA(angle of arrival), 

  



   is average value of AOA, ijd s normalized 

distance between antenna array elements, that is to say 

 i

ij
ijd

d
  he factual distance between i and j 

antenna array element, 

, ijd

In the Figure 1 and 2, power offset approximation 
based on tri-diagonal, five-diagonal, and seven-diagonal 
toeplitz matrix is obtained versus the number of receive 
antenna with various value of RL . Furthermore, power 

offset over independent channel is also provided as lower 
bound for numerical comparison. It can be seen from 
Figure 1 and 2 that tri-diagonal toeplitz matrix can be 
used to approximate the correlation model at the receive 
node. 

is t

  s wave length, i ( )nI   is 

n-order modified Bessel function. It is obvious that 
 is real symmetric toeplitz matrix. ( , )R i jΣ

On the assumption of isotropic scattering, the correla-
tion matrix at the receive node is simplified to 

0( , ) (2 )R iji j J dΣ                 (10) 
4. Approximate Analysis of Power Offset 

where  is n order Bessel function, and  

can be simplified to 

( )nJ  ( , )R i jΣ

tri-diagonal toeplitz matrix through 
the simulation results illustrated by Figure 1 and Figure 
2. 

Depending on the discussion in Section 3, tri-diagonal 
toeplitz matrix can be used to approximate the correla-
tion model at the receive node. In this section, the deter-
minant curve of tri-diagonal toeplitz matrix is fitted by an 
elementary function, which simplifies the approximate 
analysis of power offset. 
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Expression of power offset for MIMO system over corre-
lated channel is derived in [9], and the expression is given by           (11) 
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Figure 1. Approximate analysis of power offset based on 3, 5, and 7 diagonal toeplitz matrix with , 5RL   2Tn   
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Figure 2. Approximate analysis of power offset based on 3, 5, and 7 diagonal toeplitz matrix with , 6RL   2Tn   
 

where  and TΛ RΛ  are diagonal matrix whose ele-

ments are eigenvalues of  and TΣ RΣ

Φ

)T P

, respectively.  

is also diagonal matrix whose elements are eigenvalues of 
normalized spatial covariance matrix , so  is iden-

tity matrix and  is constant zero. 
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RΛ can be derived from (11). It is obvious that RΛ  is 

full rank matrix, and then (13) is simplified to 
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Because  is wishart matrix and nonsingular 
with probability 1, 

HW W
( )Rf n  is reduced to [9] 
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where ( )   is digamma function and the definition of 

digamma function is 

1

1

1
( )

n

l

n
l

 




                   (18) 
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When it comes to function ( )Rg n , the derivation of 

( )Rg n  can be expressed as 
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It can be found from (20) that ( )Rg n  is only deter-

mined by the determinant of RΣ , and the determinant of 

Rn order tri-diagonal toeplitz matrix RΣ  can be com-

puted by [20]. 
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With the aid of numerical computation and mathemati-
cal analysis, the curve of the determinant of tri-diagonal 
toeplitz matrix can be fit by some tractable elementary 
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function. When  in (21), det21 4 0  RΣ can be ap-

proximated by the fitted curve as follow: 

2 2
0( ) 1 5 1 5 (2 )

1
R

R
R

L
h n J

n
    


        (22) 

The approximation between the fitted curves and de-
terminant curves of tri-diagonal toeplitz matrix are illus-
trated in Figure 3 and Figure 4. From Figure 3 and 4, we 
can find that the fitting curve can exactly approach the 
extreme points of the determinant of tri-diagonal toeplitz 
matrix. However, the expression is much simpler. In other 
words, the further derivation using the fitted curve is 
tractable using well-known mathematical software such 
as WOLFRAM MATHEMATICA. 

In the following context, power offset is analyzed in 
detail. The approximate analysis of power offset is based 
on the piecewise function of Rn . The condition 

 in (22) is necessary due to , so 

the number of receiver antenna 
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. Moreover, it shows from the conclusion in [21] 
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When it comes to the range of , the 

normalized length of receive antenna array 
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where 1( )   is trigamma function. Hence, it shown 

from (24) that ( )Rf n  approximately equal to the con-

stant  (approximation accuracy is related to the value 

of 

C


Tn ). The power offset is expressed as 


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Figure 3. Approximation of determinant of tri-diagonal toeplitz matrix by curve fitting and  5RL
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Figure 4. Approximation of determinant of tri-diagonal toeplitz matrix by curve fitting and  6RL 

 
Without loss of generality, the constant  can be 

neglected in the approximate computation. Hence, the 
power offset in (25) is only determined by 
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J
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
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 in (26) has two zero points, i.e. 
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
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function 1
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R

R

L
J
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
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 only has one zero point, i.e. 
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2
3.8317
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R

L
P

n




. Consequently, ( )Rh n  has three 

extreme points in the range of 
2

2 1
R

R

L

n



2

3 2 2
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1

( ) 17.48
: 0
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R
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        (30) 

2
 




3

, de-

scribed by . , 1iP i  , 2,

With the discussion above, it is obvious that point  

and  are local maximum points of 
1P

2P ( )Rh n  and point 
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3P  is local minimum point. Furthermore, it is obvious 

from (20) that the extreme points of ( )Rh n  is same as 

ones of ( )Rg n . Consequently, in the range of 1RL  

t

 

, the extreme points of power offset in (25) 

can be approximately computed by 

4 1RL 

arg mi

arg ma

R

R

n

n











P

Rn 


Rn 

 

 

n

x

, for local mini t

, for local maxi in

L

L









mal poin

mum po
   (31) 

where  is defined as follows:  

2 2
1 , 1 , 1,2,3=R R

i i

L L
i

P P

p pì üê ú é ùï ïï ïê ú ê ú+ +í ýê ú ê úï ïï ïë û ê úî þ
P =       (32) 

where xê úë û  and xé ùê ú  denote the maximum integer 

smaller than x  and minimum integer larger than x, re-
spectively.  is the extreme points com-

puted above. (31) can be used to approximately compute 
the number of receive antenna, in order to achieve the 
optimal power offset. 

, 1, 2, 3i P i

5. Simulation Results 

In the Figure 1 and 2, with the assumption of  2Tn  , 

power offset is approximately analyzed based on tri-di-
agonal, five-diagonal, and seven-diagonal toeplitz versus 
the number of receive antenna, with  in Figure 1 

and  in Figure 2. Furthermore, power offset in 

independent channel is also provided as lower bound for 
numerical comparison. The approximation trend can be 

5RL 
6RL

found from Figure 1 and 2. The tri-diagonal toeplitz ma-
trix can be assumably used to characterize the property of 
power offset over spatially correlated channel. Hence, 
tri-diagonal toeplitz matrix can be used to approximate 
the correlation model at the receive node. 

The approximation of fitting the curve of tri-diagonal 
toeplitz matrix determinant is illustrated in Figure 3 and 
Figure 4 to compare the difference between fitted curves 
and determinant curves, with  in Figure 3 and 5RL 

6RL   in Figure 4. From Figure 3 and 4, we can find 
that the fitting curve can exactly approach the extreme 
points of the determinant of tri-diagonal toeplitz matrix. 
However, the expression is mathematically tractable. 

With the same assumption of  2Tn  , approximation 

of power offset is shown in Figure 5 and 6, with 5RL   

in Figure 5 and 6RL   in Figure 6. From Figure 5 and 

6, we can find the position of two local minimal points 
and one local maximum point. With the condition of 

5RL   and Tn 2 , the local extreme points computed 

by (31) is 9Rn   for local maximum point and 

7,Rn 15 

6

 for local minimal points. With the condition 

of RL   and  2Tn  , the local extreme points com-

puted by (31) is 11Rn   for local maximum point and 

8,Rn 16   for local minimal points. The computation 

results based on (31) coincide with the illustration results 
in Figure 5 and 6. Hence, all the approximation in this 
paper is reasonable, including approximation of correla-
tion model and approximation of determinant of tri-di-
agonal toeplitz matrix. 
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Figure 5. Power offset comparation between accurate and approximate determinant of toeplitz matrix with , 5RL   2Tn   
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Figure 6. Power offset comparation between accurate and approximate determinant of toeplitz matrix with , 6RL   2Tn   

 
Similar results are presented in Figure 7 and 8, with 

the assumption of  and  in Figure 7 

while  in Figure 8. With the condition of 

 4Tn  5RL 
8RL  5RL   

and  4T 
9

n

R

, the local extreme points computed by (31) 

is  for local maximum point and  for 

local minimal points. With the condition of 

n 7,R  

RL

15
8

n

  and 

, the local extreme points computed by (31) is 

 for local maximum point and  for 

local minimal points. The computation results based on (31) 
coincide with the illustration results in Figure 7 and 8. 


Tn

n

4

14


R 10, 22Rn

Consequently, it is presented in Figure 5 and 7 that the 

effect caused by the number Tn  can be neglected. In 

other words, for small value of Tn  and in the range of 

number of receive antenna , the 

assumption of 

1 4R R RL n L   1

( )Rf n C  is tenable with neglectable 

loss of precision. The extreme points of power offset is 
only determined by ( )Rg n . 
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Figure 7. Power offset comparation between accurate and approximate determinant of toeplitz matrix with , 5RL   4Tn   
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Figure 8. Power offset comparation between accurate and approximate determinant of toeplitz matrix with , 8RL   4Tn   

 
6. Conclusions 

Approximate analysis of power offset over spatially cor-
related channel is proposed to optimize the number of 
receive antenna with antenna array of fixed length. An-
tenna correlation matrix is approximated by tri-diagonal 
toeplitz matrix. The determinant of tri-diagonal toeplitz 
matrix is reduced to simple style by curve fitting with 
neglectable loss of precision. Based on the approxima-
tion above, the expression of local extreme points of 
power offset is derived. Simulation results shows that the 
derived expression is accurate in the local extreme points 
of power offset, that is to say, all the approximation in 
this paper is reasonable. 
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