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Abstract 
We consider the singularly perturbed sixth-order Boussinesq-type equation, which describes the 
bidirectional propagation of small amplitude and long capillary gravity waves on the surface of 
shallow water for bond number (surface tension parameter) less than but very close to 1/3. The 
sufficient conditions of blow-up of solution to the Cauchy problem for this equation are given. 
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1. Introduction 
In this paper, we consider the following Cauchy problem  

4 6( ) 0,tt xx xx x x
u u u u u x R tσ α β= + + + , ∈ , >                            (1.1) 

0 1( 0) ( ) ( 0) ( ) ,tu x u x u x u x x R, = , , = , ∈                              (1.2) 

where ( , )u x t  is the unknown function, ( )sσ  is the given function, 0α >  and 0β >  are real numbers, 
0 ( )u x  and 1( )u x  are given initial value functions.  
In [1], the author has proved the existence and uniqueness of the global generalized solution and the global 

classical solution for the initial boundary value problem of Equation (1.1). 
In [2], the author has discussed the nonexistence of global solution to the initial boundary value problem of 

Equation (1.1) in some condition. 
In order to prove that blow-up of Cauchy problem (1.1), (1.2), we shall consider the following auxiliary prob-

lem  

4 6( ) 0tt xx x x x x
v v v v v x R tσ α β= + + + , ∈ , > ,                              (1.3) 

0 1( 0) ( ) ( 0) ( )tv x v x v x v x x R, = , , = , ∈ .                                (1.4) 

Then, we can obtain blow-up of the Cauchy problem (1.1), (1.2) from (1.3), (1.4) by setting ( ) ( )xv x t u x t, = , , 
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0 0( ) ( )xv x u x=  and 1 1( ) ( )xv x u x= . 

2. Main Theorems 
Throughout this paper, we use the following notation: 2 (R)

|| || || ||
L

⋅ = ⋅ . Now, we give the following main lemmas 

and theorems. 
Lemma 2.1 (convex lemma [3]) Suppose that a positive twice-differential function ( )H t  satisfies on 0t ≥  

the inequality  
2 2

1 2( ) ( ) (1 ) ( ) 2 ( ) ( ) ( )H t H t H t A H t H t A H t t Rβ− + ≥ − − ,∀ ∈ ,                      (2.1) 

where 0β >  and 1 2 0A A, ≥  are constants, d
dt

⋅ = . 

(1) If 1 2 0 (0) 0A A H= = , >  and (0) 0H > , then there exist a 1 2
(0)
(0)

Ht t
Hβ

≤ =


, such that ( )H t →∞  as  

1t t→ .  

(2) If 1 2 0 (0) 0A A H+ > , >  and 1
2(0) (0)H Hγ β −> − , then ( )H t →∞  as 1 2t t t→ ≤ , where  

2
1 2 1 1 2A A Aγ β, = − ± +  

and 

1
2 2

21 2

(0) (0)1
(0) (0)2

H Ht In
H HA A

γ β
γ ββ

+
= .

++





 

Lemma 2.2 [4] Suppose that 1 (0 1)
2

s m m Zλ λ += + + , ∈ , , ∈ , then ( )sH R  may be embedded into , ( )mC Rλ , 

and for any ( )su H R∈ , we have 

( ) 0( )D u x x Z mα α α+→ | |→ ∞ ,∀ ∈ ,| |≤ ,  

where Z+  is a set of nonnegative integers.  
Lemma 2.3 Suppose that 3 2 1

0 1 0
( ) ( ) ( ) ( ) ( )

s
v H R v L R C R F s dσ σ τ τ∈ , ∈ , ∈ , = ∫  and 1

0( ) ( )xF v L R∈ , then the 

solution ( )v x t,  of the auxiliary problem (1.3), (1.4) satisfies the following energy identity 

2 3

2 22 2( ) ( ) ( ) ( ) ( ) 2 ( ) (0).t x xx x
E t v t v t v t v t F v dx Eα β

∞

−∞
= ⋅, + ⋅, − ⋅, + ⋅, + =∫               (2.2) 

Proof Multiplying both sides of (1.3) by 2 ( )tv x t, , integrating on R , integrating by parts and lemma 2.2, we 
get 

2 3

2 22 2( ) ( ) ( ) ( ) 2 ( ) 0t x xt xx x

d v t v t v t v t v v dx
dt

α β σ
∞

−∞
 ⋅, + ⋅, − ⋅, + ⋅, + = ,   ∫  

integrating the product over [0 ]t, , we get the identity (2.2). 
Theorem 2.1 Suppose that 3 2 1 1

0 1 00
( ) ( ) ( ) ( ) ( ) , ( ) ( )

s
xv H R v L R C R F s d F v L Rσ σ τ τ∈ , ∈ , ∈ , = ∈∫ , and there ex-

ists 
constant 0γ >  and 1 0C > , such that  

2
1( ) 2(1 2 ) ( ) 2 (1 )s s F s C s s Rσ γ γ α≤ + + − ,∀ ∈ .                         (2.3) 

Then, the solution ( )v x t,  of the auxiliary problem (1.3), (1.4) blows-up in finite time if one of the following 
conditions holds 

(1) (0) 0E < ;   
(2) 0 1(0) 0 ( ) ( ) 0E v x v x dx

∞

−∞
= , > ;∫    
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(3) 2
0 1 0

1(0) 0 ( ) ( ) (0)
2

E v x v x dx E v
∞

−∞
> , > .∫   

Proof Suppose that the maximal time of the solution for (1.3), (1.4) is infinite. Let 
2 2

0 0( ) ( ) ( )H t v t t tβ= ⋅, + + ,                              (2.4) 

where 0β  and 0t  are undetermined nonnegative constants. Differentiating (2.4) with respect to t , we have 

0 0( ) 2 ( ) ( ) 2 ( )tH t v x t v x t dx t tβ
∞

−∞
= , , + + .∫                           (2.5) 

By using the Hölder inequality, it follows from (2.5) that 
22

0( ) 4 ( )[ ]tH t H t v β≤ + .                               (2.6) 

Differentiating (2.5) with respect to t , making use of (1.3) and (2.2), we get 

2

3

2
0

22 2
0 0

2

( ) 2 ( ) 2 ( ) ( ) 2

4(1 )[ ( ) ] (2 4 )[ (0) ] 4 [ ( ) ( )

( ) ] 2 ( ) 4(1 2 ) ( )

t tt

t x x

x x xx

H t v t v x t v x t dx

v t E v t v t

v t v v dx F v dx

β

γ β γ β γ α

β σ γ

∞

−∞

∞ ∞

−∞ −∞

= ⋅, + , , +

= + ⋅, + − + + + ⋅, − ⋅,

+ ⋅, − + + .

∫

∫ ∫



         (2.7) 

By virtue of interpolating inequality, 

2 3

2 22
1( ) ( ) ( )

2xx x
v t C v t v tβ

α
⋅, ≤ ⋅, + ⋅, .  

Observing the identity (2.7), we get 
2 2

0 0 1( ) 4(1 )[ ( ) ] (2 4 )[ (0) ] 4 (1 ) ( )

2 ( ) 4(1 2 ) ( )

t x

x x x

H t v t E C v t

v v dx F v dx

γ β γ β γ α

σ γ
∞ ∞

−∞ −∞

≥ + ⋅, + − + + + − ⋅,

− + + .∫ ∫



             (2.8) 

Combing (2.2), (2.3), (2.4), (2.6) with (2.8), we infer 
2

0( ) ( ) (1 ) ( ) (2 4 )[ (0) ] ( )H t H t H t E H tγ γ β− + ≥ − + + .                        (2.9) 

(1) If (0) 0E < , by taking 0 (0) 0Eβ = − > , then 

2( ) ( ) (1 ) ( ) 0H t H t H tγ− + ≥ .   

When 0t  is sufficiently large, (0) 0H > . Clearly, (0) 0H > . It follows from lemma (2.1) that there exists 

1 2
(0)
(0)

Ht t
Hγ

≤ =


, such that ( )H t →∞  as 1t t−→ . 

(2) If (0) 0E = , by taking 0 0β = , we get  
2( ) ( ) (1 ) ( ) 0H t H t H tγ− + ≥ .   

By virtue of assumption (2), we see (0) 0H >  and (0) 0H > . It follows from lemma (2.1) that there exists 

1 2
(0)
(0)

Ht t
Hγ

≤ =


, such that ( )H t →∞  as 1t t−→ . 

(3) If (0) 0E > , by taking 0 0β = , (2.9) becomes 
2( ) ( ) (1 ) ( ) (2 4 ) (0) ( )H t H t H t E H tγ γ− + ≥ − + .   

Defining 

( ) ( )J t H tγ−= ,  

then  
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( 1)( ) ( ) ( )J t H t H tγγ − += − , 

 
( 2) 2 ( 1)( ) ( )[ ( ) ( ) (1 ) ( ) ] (2 4 ) (0) ( )J t H t H t H t H t E H tγ γγ γ γ γ− + − += − − + ≤ + .              (2.10) 

By virtue of assumption (3), we have ( ) 0J t < . Let  

{ ( ) 0 [0 )}t sup J tτ τ τ∗ = | < , ∈ , .  

Thanks to the continuity of ( )J t , t∗  is a positive number. Multiplying both sides of (2.10) by 2 ( )J t , we 
find  

2 2 2( 1)

2 (2 1)

( ) (2 4 ) (0) ( ) ( )

2 (0) ( ) [0 )

d J t E H t H t
dt

dE H t t t
dt

γ

γ

γ γ

γ

− +

− + ∗

≥ − +

= ,∀ ∈ , .

 

                      (2.11) 

Integrating (2.11) with respect to t  over [0 )t, , one gets  
2 2 2 (2 1) 2 (2 1)( ) (0) 2 (0) ( ) 2 (0) (0)J t J E H t E Hγ γγ γ− + − +≥ + − .   

By virtue of assumption (3), we see that  
2 2 (2 1)(0) 2 (0) (0) 0J E H γγ − +− > .  

Since ( )J t  is a continuous function, we have for 0 t t∗≤ ≤ , 
1

2 2 (2 1) 2( ) [ (0) 2 (0) (0)]J t J E H γγ − +≤ − − .                          (2.12) 

It follows from the definition of t∗  that (2.12) holds for all 0t ≥ . Integrating (2.12) with respect to t , we 
arrive at 

1
22 2 (2 1)( ) (0) [ (0) 2 (0) (0)] 0J t J J E H t tγγ − +≤ − − ,∀ > .  

Hence there is some 1t , such that 1( ) 0J t = , where 
1
22 2 (2 1)

1 20 (0)[ (0) 2 (0) (0)]t t J J E H γγ −− +< ≤ = − .  

So ( )H t  becomes infinite at 1t . 
Thus, ( )H t  always becomes infinite at 1t  under the assumption (1) or (2) or (3). This is a contradiction to 

the fact that the maximal time of existence of the solution is infinite. The theorem is proved. 
Theorem 2.2 Suppose that 2 2 2 1

0 1 00
( ) ( ) ( ) ( ) ( ) , ( ) ( )

s
u H R u L R C R F s d F u L Rσ σ τ τ∈ , ∈ , ∈ , = ∈∫ , and there ex-

ist constant 0γ >  and 1 0C > , such that 
2

1( ) 4(1 2 ) ( ) 4 (1 )s s F s C s s Rσ γ γ α≤ + + − ,∀ ∈ .  

Then, the solution ( )u x t,  of the Cauchy problem (1.1), (1.2) blows-up in finite time if one of the following 
conditions holds  

(1) 1(0) 0E < ;  
(2) 1 0 1(0) 0 [ ( ) ][ ( ) ] 0

x x
E u d u d dxξ ξ ξ ξ

∞

−∞ −∞ −∞
= , > ;∫ ∫ ∫    

(3) 2
1 0 1 1 0

1(0) 0 [ ( ) ][ ( ) ] (0) [ ( ) ]
2

x x x
E u d u d dx E u d dxξ ξ ξ ξ ξ ξ

∞ ∞

−∞ −∞ −∞ −∞ −∞
> , > ,∫ ∫ ∫ ∫ ∫  

where 

2

2222
1( ) [ ( ) ] ( ) ( ) ( ) 2 ( )

x
t x x

E t u t d dx u t u t u t F u dxξ ξ α β
∞ ∞

−∞ −∞ −∞
= , + ⋅, − ⋅, + ⋅, + .∫ ∫ ∫  

Proof Let  
2 2

1 0 0( ) [ ( ) ] ( )
x

H t u t d dx t tξ ξ β
∞

−∞ −∞
= , + + ,∫ ∫  



C. M. Song, L. Chen 
 

 
838 

where 0β  and 0t  are nonnegative constants as those in Theorem 2.1.  
By virtue of assumption Theorem 2.1, ( )u x t,  satisfies the Equation (1.1) and the initial value condition (1.2) 

in classical sense. We take the change  

0 0 1 1( ) ( ) ( ) ( ) ( ) ( )x x xu x t v x t u x v x u x v x, = , , = , = ,                         (2.13) 

Then 

0 0 1 1( ) ( ) ( ) ( ) ( ) ( )
x x x

v x t u t d v x u d v x u dξ ξ ξ ξ ξ ξ
−∞ −∞ −∞

, = , , = , = .∫ ∫ ∫  

Substituting the above change (2.13) to the Cauchy problem (1.1), (1.2), we have  

3 2 5 7( )xtt xx x x x
v v v v vσ α β= + + + ,                                (2.14) 

0 1( 0) ( ) ( 0) ( )x xtv x u x v x u x, = , , = .                                 (2.15) 

Integrating (2.14) and (2.15) over ( )x−∞, , we obtain 

4 6( )tt xx x x x x
v v v v vσ α β= + + + ,                                (2.16) 

0 1( 0) ( ) ( 0) ( )tv x v x v x v x, = , , = .                                 (2.17) 

Let 
2 2

0 0( ) || || ( )H t v t tβ= + + ,  

where 0β  and 0t  are nonnegative constants as those in Theorem 2.1. By virtue of assumption Theorem 2.1, 
the sufficient conditions of blow-up of solution to the Cauchy problem (2.16), (2.17) are fulfilled. Therefore, It 
follows from theorem 2.1 that ( )H t  becomes infinite at 1t  Since by the change (2.13), 1( ) ( )H t H t= , so 

1( )H t  becomes infinite at 1t . Theorem 2.2 is proved. 
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