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Abstract 
 
2D J-INEPT NMR experiment is a combination of heteronusclear 2D J-Resolved and INEPT experiments. 
In this study, 2D J-INEPT experiment was analytically investigated by using product operator theory for 
weakly coupled ISn (I = 1/2, S = 1; n = 1, 2, 3) spin systems. The obtained theoretical results represent the 
FID values of CD, CD2 and CD3 groups. In order to make Fourier transform of the obtained FID values, a 
Maple program is used and then simulated spectra for of 2D J-INEPT experiment are obtained for CD, CD2 
and CD3 groups. It is found that 2D J-INEPT is a useful experiment for both polarisation transfer and 2D 
J-resolved spectral assignment for CDn groups in complex molecules. 
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1. Introduction 
 
Polarization transfer from high natural abundance nu-
cleus to low natural abundance nucleus is widely used 
for heteronuclear weakly coupled spin systems in liq-
uid–state NMR experiments [1-3]. The most common 
examples for the polarization transfer experiments are 
Distortionless Enhancement by Polarization Transfer 
(DEPT) and Insensitive Nuclei Enhanced by Polarization 
Transfer (INEPT). They both are used to increase sensi-
tive enhancement of 13C spectra from spin-1/2 or spin-1 
nucleus [4,5]. In order to resolve the chemical shift and 
spin-spin coupling parameters along the two different 
axes heteronuclear 2D J-Resolved NMR spectroscopy is 
used. Sometimes, spectral assignments of 2D J-Resolved 
NMR spectra become too difficult due to complex over-
lapping spectra. In order to overcome this problem, 2D 
J-INEPT experiment [6], which is the combination of 2D 
J-Resolved and INEPT NMR experiments, can be used.  

As NMR is a quantum mechanical phenomenon, the 
product operator theory as a quantum mechanical method 
is widely used for the analytical description of multi- 
pulse NMR experiments on weakly coupled spin systems 
in liquids having spin- 1 2  and spin-1 nuclei [7-18]. 
Analytical description of polarization transfer in INEPT 
experiment using product operator formalism has been 
presented for IS and IS2 (I = 1/2 and S = 1) spin systems 
[12]. So far, the product operator description of 2D 

J-INEPT NMR experiment is not investigated for het-
eronuclear weakly coupled ISn (I = 1/2; S = 1; n = 1, 2, 3) 
spin systems. 

In this study, by using product operator formalism, 
analytical description of 2D J-INEPT NMR experiment 
is presented for heteronuclear weakly coupled ISn (I = 
1/2; S = 1; n = 1, 2, 3) spin systems. Then, using the ob-
tained theoretical results and a Maple program, the 
simulated spectra of the experiment are obtained for CD, 
CD2 and CD3 groups. Simulated spectra of 2D J-INEPT 
NMR spectroscopy are explained in detail for CDn 
groups. It is shown that this experiment can be used for 
the polarization transfer and J-resolved spectral assign-
ment of CDn groups in complex molecules. 
 
2. Theory 
 
The product operator theory is the expansion of the den-
sity matrix operator in terms of matrix representation of 
angular momentum operators for individual spins. For IS 
(I = 1/2, S = 1) spin system, four Cartesian spin angular 
momentum operators for I = 1/2; EI, Ix, Iy, Iz and nine 
Cartesian spin angular momentum operators for S=1; ES,  

Sx, Sy, Sz, 
2
zS   ,x zS S
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 2 2
x yS S  can be easily found [19]. So, 4 9 36   

product operators are obtained with direct products of 
these angular momentum operators for IS (I = 1/2, S = 1) 
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spin system.  
Time dependency of the density matrix is given by 

[11] 
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where H is the total Hamiltonian which consists of radio 
frequency (r.f.) pulse, chemical shift and spinspin cou-
pling Hamiltonians and (0) is the density matrix at t = 0. 
After employing the Hausdorff formula [11] 
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evolutions of product operators under the r.f. pulse, 
chemical shift and spin-spin coupling Hamiltonians can 
easily be obtained [7,11,13,16]. A complete product op-
erator theory for IS (I = 1/2, S = 1) spin system and its 
application to some NMR experiments are presented 
elsewhere [16-18].  

At any time during the experiment, the ensemble av-
eraged expectation value of the spin angular momentum, 
e.g. for Iy, is  

 Try yI I t               (3) 

where  is the density matrix operator calculated 
from Eq. (6) at any time. As 

 t
yI  is proportional to the 

magnitude of the y-magnetization, it represents the signal 
detected on y-axis. So, in order to estimate the free in-
duction decay (FID) signal of a multiple-pulse NMR 
experiment, density matrix operator should be obtained 
at the end of the experiment.  
 
3. Results and Discussion 
 
In this study, the product operator formalism is used for  
the analytical description of 2D J-INEPT NMR experi- 

ment. Pulse sequence of 2D J-INEPT, shown in Figure 1, 
is used [6]. The density matrix operator at each stage of 
the experiment is labelled with numbers. 13C is treated as 
spin I and D (2H) as spin S. For the analytical descrip-
tions of the experiment, we have written a computer pro-
gram in Mathematica which is very flexible for the im-
plementation and the evolutions of the product operators 
under the Hamiltonians [20]. 
 
3.1. IS Spin System 
 

0  is the density matrix operator at thermal equilibrium 
for IS spin system. Evolutions of density matrix operator 
for each labelled point are obtained: 

0 zS                               (4) 
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At the end of the experiment we obtain  

9

2 2
2 2 22 2 2 2 2y z J I x z J I x z J I y z J II S c c I S s c I S c s I S s s

 

   
 (9) 

In Equation (9),  1sinnJs nJ t ,  1cosnJc nJ t , 
 2sinnI Is n t   and I . In density 

matrix operator theory, only the last term of Equation (9) 
contributes to the signal as acquisition is taken along 
y-axes. It is necessary to obtain the 



Tr

2n t

y

cosnIc 

I O  

Tr y

 values of 
observable product operators indicated by O. For ISn (I = 
1/2, S = 1; n = 1, 2, 3) spin systems, I O    values 
of all the observable product operators can be found 
elsewhere [16].  

Using Tr yI O   values and making trigonometric 
 

 

Figure 1. Pulse sequence of 2D J-INEPT NMR experiment. Optimum  value is   1
4J


. BB: Broad band decoupling [6]. 
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xpansions,  e
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is obtained. This equation shows that the spin–s
pling information appears on F1 axis and represents two 

pin cou-

coherences for I nucleus with phase of 1 22 IJt t  . 
Therefore, they give doublets signals with opposite di-
rection and no signal for central peak. The -
dinate are  ,

signals coor

IJ  ,  I  and  , IJ   with inten-
sity distribution of –1:0:1, respectively. 
 
3.2. IS2 Spin System 
 
For IS2 spin system, 0  is the density matrix operator at 

ermal equilibriumth : 

0 1 2z zS S                  (11) 

The density matrix operator at the
is 

 end of the experiment 
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Using Tr yI O  
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 values; 
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is obtained. This equation represents five signals at the 
coordinates of  2 , IJ  ,  , IJ  ,  I , 
 , IJ   and  2 , IJ   with the relative intensities of 
–2:–2:0:2:2, respectively. 
 
3.3. IS3 Spin System 
 
For IS3 spin system, applying the same procedure 
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is obtained. As seen in this equation, there exist seven 
signals at  3 , IJ  ,  2 , IJ  ,  , IJ  ,  I , 
 , IJ  ,  2 , IJ   and  3 , IJ   coordinates with the 
relative intensities of –3:–6:–6:0:6:6:3, respectively. 
 
3.4. Simulated Spectra 
 
A computer program was written by Kanters et. al. for 
product operator description of NMR experiments and 
for the simulations of FID signals [21,22]. This is called 
Product Operator Formalism (POF.M) using Maple. In 
this study, in order to obtain the simulated spectra of the 
FID results, POF.M program is implemented for this 
experiment. 9Tr y nI IS  

 

 values obtained for IS, 
IS2 and IS3 spin systems are given in Eqs. (10), (13) and 
(14), respectively. They represent the FID signals of 2D 
J-INEPT NMR spectroscopy for CDn groups. By using 

9Tr y nI IS    values, simulated spectra of this ex-
periment are obtained and they are given in Figures 2-4   (13) 

for CD, CD2 and CD3 groups, respectively. In simulated 

 

 
Figure 2. Simulated spectrum of 2D J-INEPT NMR experiment for CD group. 
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Figure 3. Simulated spectrum 2  

 
 

of 2D J–INEPT NMR experiment for CD  group.

 
Figure 4. Simulated spectrum of 2D J-INEPT NMR experiment for CD3 group. 

 
spectra, 13C chemical shift values of CD, CD2 and CD3 
groups were assumed to be 75 ppm, 50 ppm and 25 ppm, 
respectively. Spin-spin coupling constants between 13C 
and 2D nuclei for all CD, CD2 and CD3 groups were 
taken as 25 Hz. It can be seen from the theoretical results 
and the simulated spectra that 2D J-INEPT NMR ex-
periment can be used to identify CD, CD2 and CD3 
groups from each other and also to determine spin-spin 
coupling constant between 13C and 2D nuclei in CDn 
groups. 
 
4. Conclusions 
 
In this study, by using product operator theory, analytical 
description of 2D J-
sented for CDn group

represent the FID values of CDn groups. Then, in order 
to obtain the simulated spectra for CD, CD2 and CD3 
groups, the Fourier transforms of the FID values are 
performed in Maple. Simulated spectra of 2D J-INEPT 
NMR spectroscopy are explained in detail for CDn 
groups. It is shown that, by using 2D J-INEPT NMR 
experiment, CDn groups can be identified from each 
other and 1J(C,D) coupling constants can be determined 
in deuterated complex molecules. 
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