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Abstract 
 
By the two-scale homogenization approach we justify a two-scale model of ion transport through a layered 
membrane, with flows being driven by a pressure gradient and an external electrical field. By up-scaling, the 
electroosmotic flow equations in horizontal thin slits separated by thin solid layers are approximated by a 
homogenized system of macroscale equations in the form of the Poisson equation for induced vertical 
electrical field and Onsager's reciprocity relations between global fluxes (hydrodynamic and electric) and 
forces (horizontal pressure gradient and external electrical field). In addition, the two-scale approach 
provides macroscopic mobility coefficients in the Onsager relations. On this way, the cross-coupling kinetic 
coefficient is obtained in a form which does involves the  -potential among the data provided the surface 
current is negligible. 
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1. Introduction 

In numerous studies on the electrolyte flows in rocks, the 
pore pressure  and the streaming (electric) potential 

interplay through the equation 0

p
 = rL p    j , 
where  is the current density, rj   is the saturated 
rock conductivity, and 0  is the electrokinetic cross- 
coupling term. Hydrogeological applications concern the 
study of water leakage from dams [1], groundwater flows 
in geothermal fields and volcanoes [2], estimation of water 
resources [3]. In electrochemistry, the above equation 
form a basis for managing microchip separations of 
analytes in nano-channels [4]; there is also an evidence that 
this equation find applications in hydrocarbon recovery 
[5,6]. 

L

By the Helmholtz-Smoluchowski theory [7], the term 

0  is given by the formula L 0 = fL     where   
is the porosity, f  is the dielectric permittivity of the 
saturating fluid,   is the viscosity, and   is the 
so-called  -potential, the electric potential across the 
diffuse part of the interfacial double layer. In [8,9,10], 
the above formula is substituted by  0 f  0  
(or more sophisticated formulas), with

=L F
0F  being a 

dimensionless formation factor.
 The goal of the present paper is to give more 

mathematical insight into the physico-chemical nature of 
the cross coupling coefficient 0 . Restricting ourselves 
to one-dimensional flows, we derive a representation 
formula for 0  by the two-scale homogenization tech- 
nique [11,12], starting from the equations of the ions 
transport through a layered membrane with a periodical 
structure. On this way we arrive at electro-osmotic 
macro-equations, whereas electrokinetic coupling coeffi- 

L

L

cients can be determined from micro-equations defined 
on the periodicity cell. 

Homogenization is a process in which the composite 
material with microscopic structure is replaced by an 
equivalent material with macroscopic, homogeneous 
properties. There are two methods of up-scaling coupled 
equations at the microscale to equations valid at 
macroscale for fluid-saturated porous media. The first is 
the volume averaging and the second is the two-scale and 
multiscale homogenization. Volume averaging has been 
applied successfully to derive the form of Biot's equations 
of poroelasticity [13], and a wide variety of other up- 
scaling problems in double-porosity poroelasticity [14]. 
The averaging theorem used by all these authors is due to J. 
C. Slattery (1967) [15] and is based on well-known Green's 
theorem together with the idea that in relatively  
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small regions volume averages of spatial gradient in statis-
tically homogeneous media are presumably closely related 
to gradient of volume averages. 

The two-scale homogenization method requires that the 
heterogeneous microstructure of a rock sample is described 
by spatially periodic parameters and the microscale of the 
heterogeneous porous medium is much smaller than the 
macroscale of most interest. The approach involves assu- 
ming that any quantity can be treated as a function of a 
macroscale variable and a microscale variable. The 
two-scale homogenization is a well established method in 
the theory of partial differential equations with rapidly 
oscillating periodic coefficients. This method has a lot of 
important applications in various branches of physics, 
mechanics and modern technology: porous media, com- 
posite and perforated materials, thermal conduction, 
acoustics, electromagnetism. For general references on the 
homogenization theory we refer to [12,16,17,18]. 

The two-scale homogenization method can give 
formulas for coefficients in the up-scaled equations, 
whereas volume averaging methods give the form of the 
up-scaled equations but generally must be supplemented 
with physical arguments and/or data in order to determine 
the coefficients. A more detailed comparison of two 
up-scaling methods can be found in [19]. 

The present study is applicable to sandstones if surface 
conductivity can be neglected. When passing to clay- 
containing rocks one should also take into account bound 
charges concentrating on the interface surfaces. Such rocks 
are not considered here. 

 
2. Background 
 
Within the frame of the nonequilibrium thermodynamics, 
the fluxes (the Darcy's volume fluid velocity  and the 
electric current density ) are derived as a linear 
combination of thermodynamical forces (the pressure 
gradient  and the electric potential gradient 

q
j

p  ): 

  0= ,k p L   q 

,

          (1) 

0= rL    j               (2) 

where  is the permeability. Our goal is to show that 
these equations, specified for one-dimensional flows 
through a layered membrane, can be derived by the 
two-scale homogenization technique starting from the 
equations valid at microscale. While deriving the 
up-scaled Equations (1) and (2), (which can trace back to 
Helmholtz and von Smoluchowski) we obtain a formula 
for the cross-coupling coefficient . 

k

0

  In this section, we summarize equations that govern 
the flows of a binary electrolyte solution through the 
pore space of a solid dielectric. To make clear our 
hypotheses on physical parameters, we use the Gaussian 

system of units. Clearly, while comparing final calcu- 
lations with experiments, we apply the SI units. The 
electric field E obeys the charge conservation law  

L

 
=

div = 4 , = ,f i i
i

q q q n


 E          (3) 

where f  is the fluid dielectric permittivity, q   
 1  is the charge of a positive ion,  > 0q q   < 02  

is the charge of the negative ion, i  is the ion 
concentration. Viscous incompressible flows of the 
electrolyte solution is governed by the Navier-Stokes 
Equations [7]  

q
n

= , div =p q 0  v E v          (4) 
with the inertial terms being neglected in the first 
momentum equation. Here,  is the velocity of the bulk 
fluid. The motion of both the ionic species satisfies the 
transport equation 

v

div = 0,iin

t





J             (5) 

with the flux given by the Nernst-Plank relation [7]  

=
i

i i i i
i i

B

D q n
n D n

k T
  J v E  

where  is the diffusion coefficient, iD Bk is the 
Boltzmann constant,  is the absolute temperature. T

Inside the solid dielectric, the electrical field obeys the 
equation 

 div = 0,s E  

where s  is the solid dielectric permittivity. In what 
follows,   stands for the electric potential, =E  
 . 

The solid-fluid boundary conditions will be formulat- 
ed below for one-dimensional flows. 
 
3. One-Dimensional Flows 
 
To motivate our further study we keep in mind a vertical 
membrane of thickness l  (see Figure 1) when the 
inflow pressure p  (on the left) is grater than the 
outflow pressure p . It is the pressure gradient 
 p p l      which mainly controls the flow. It is 
also possible that the flow is due to the external electrical 
field  =E l       . Commonly, an inflow 
concentration in  of the -th ion is prescribed on the 
left.  

i

Now, to perform analytical study of the flow equations, 
we consider a vertical “membrane” of an infinite 
thickness. We study electrolyte steady flows through the 
horizontal layer of thickness  consisting of  
horizontal thin slits  of the same thickness 

L

mb
N

< <ma z

fh  separated by layers  of a solid  1< <mb z ma 
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Figure 1. Layered membrane of the thicknes  consisting 
of  solid/liquid layers. 

l
N

 
dielectric of the same thickness sh

< <ma z
. The central points 

 of the liquid intervals m  are the points of 
reference where the ion inflow densities  take the 
prescribed values . 

md b

in

in
Let fQ  and sQ  stand for fluid and solid domains  

= , : < < , ,fQ x z x z   f

,

,

,f

 

 = , : < < ,s sQ x z x z    

  
1 1

1
=0 =0

= < < , = < <
N N

f m m s m m
m m

a z b b z a
 

    

= , =m m ma mh b a h  

= 2, =m m f f sd a h h h h  .  

In the domain f , we look for steady solutions of the 
fluid Equations (3)-(5) in the form  

    = ,0,0 , =
T

v z p x P z v ,

,

 

   = , =i ix z n n z    

where   and   are given constants. Under these 
assumptions, Equations (3)-(5) in each fluid interval 

 become  ,ma b m

3d
= 4 , = 0, = 0,

d

i

f zz zz

J
q v q

z
            (6) 

3 = .
i

i i i i i
z z

B

D q n
J D n

k T
   

We study horizontal flows along the x -axis, hence 
. The latter equality is equivalent to  3 = 0iJ

d
= 0.

d
i

i
B

q
ln n

z k T

 
 

 
 

Integrating between m  and m m , we 
exclude the concentration functions from consideration 
by the formula 

d  ,z a b z 

     = exp i
i i m

B

q
n z n z d

k T
  .

 
    

 
 

In the solid intervals , the potential 1< <mb z a m   
satisfies the equatio 

= 0.s zz                   (7) 

In what follows we assume that the dielectric 
permittivity function and the fluid indicator function  

   
, , 1,

= =
, , 0,

,

,
f f f

f
s s s

z z
z z

z z





  

 


  
1x 


 

are extended periodically on the real line . Given a 
function 


 f z  continuous everywhere except a point 

, we introduce the jump as follows 0z

      = 0 00 0
| = limz zf f z f z


 


   .  

In some sandstones, surface conductivity can be 
neglected depending on the pore water salinity and the 
cation exchange capacity of the mineral surface. For such 
sandstones, the “electric” boundary conditions reduce to 
the conditions of continuity of the potential   and the 
normal component the electric induction vector E : 

   = , = ,| = | =z a b z z a bk l k l
  0,          (8) 

where k = 1, , n-1 and l = 0, , n-1. 
The velocity satisfies the no-slip conditions 

= ,| = 0, = 1, 1.z a bk k
v k N           (9) 

We assume that   satisfies the external boundary 
conditions 

=0 0 =| = , | = ,z z L L             (10) 

with the prescribed  -potentials 0  and L . We 
introduce a function  e , which takes the value of the 
integer part of the number . Then the functions 

z
z

   = , =
2

f
a d

e e

hz z
H z h H z h

h h
   
      

 

  =b f
e

z
H z h h

h
    

 

take constant values , ,m m ma  <m mad b  for 1<z a  . Thus 
to define   on the whole interval 0 < , one 
should solve the non-local Poisson-Boltzmann equation 

<z L

  =z z
  

      4 exp i
f i i d

i B

q
z n q z H z

k T
 

 
      

 
1  (11) 

jointly with the conditions (8) and (10). Observe that the 
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function  =d dH z z  is periodic, and = 2d fh z   
on the interval of periodicity . 0 < <z h

With the function  at hand, one can find a 
velocity  from Equation (6) and the boundary 
conditions (9). 

 z
 v z

 
4. Nondimensionalisation 
 
We look for an asymptotic solution of problem (11), (8), 
(10), (6), (9) for the functions  and '

' ' 0.z z   v z , 
assuming that the ratio 1 Nh L    is a small 
parameter for some positive entire number . We 
argue by the homogenization approach [24], so the entire 
interval  is fixed and 

N

= 0 < <z L    varies in 
. In that case  0,1 h L  and 

= , = , = , :=f f s s f s fh h h h h h L h   L  

Here,   is the porosity. 
We call  a slow variable and we introduce the 

fast variable 
z

 =y z L . With   being small, the 
periodic functions  and f1  oscillate strongly 
and they can be represented as functions of the fast 
variable:  

 z  z

   = , =f f

z z
z z

L
 

 
   
   
   

1 1 ,
L

 

where  

   
, 0 < < , 1, 0 < < ,

= =
, < < 1, 0, < < 1,

f
f

s

y y
y y

y y

  


  
 
 


1  

are periodic functions with the period equal to 1. In what 
follows the functions 

     = , = 2a dy Ly y L y      

and 

   = , 0 <b y L y y   < 1,  

are extended periodically for all . The functions y
 aH z ,  dH z ,  bH z  can be written as  

   = , =a a d d

z
H z z H z z

L L
 

 
       
   

 ,
z  

and 

  = .b b

z
H z z

L



   
 

  

In the notations used, the function  on the 
interval  is a solution of the problem  

 z
0 < <z L

 = 4 , ,f

d z d z
F z

dz L dz L
   

 
        

    
1   (12) 

=0 0 =| = , | = ,z z L L     

where  ,F z  is equal to 

 exp i
i i d

i B

q z
n q z z

k T L
  



           
     

   

It follows from Equations (6) that the bulk velocity 
satisfies the equation 

= .
4

f
zz zzv


  


           (13) 

Let us perform scaling, using the symbol a  for a 
reference value of the dimensional quantity  and the 
symbol 

a
a  for a dimensionless quantity of , i. e. a

=a aa . We use the following notations:  

= , = , = , =i i iz Lz x Lx n nn q qq i   

    == | , =z Lzz z v   vv    

' '
= , =x xppp

L L L L

   ,   
   

   = , =d d i .H z LH z D DD    

The quantity 

2
=

2
f B

d

k T
l

nq


              (14) 

is known as the Debye length. In terms of dimensionless 
variables Equations (13) and (11) in the fluid domain 

 1
=0= < <N

f m m ma z b      take the form 

' '1 2 3
4 ' ' ' ' =

2z z z z

A A A
A v


 





 

     
'

1 2 ' '

1= 2 ' 'exp ' .,

z z

i i i d
i

A A

n q q A H z z



           

Here,  
2

1 2 3 42

v
, , ,d

B

lq q n
A A A A

k T p pL

 
    .

n
 

In the solid domain Equation (7) becomes '
' ' 0.z z    

Assuming that the dimensionless quantities iA  
satisfy the equalities  

 = , = 1, 4,ni
iA O i as   0,  

we obtain a hierarchy of problems to study. In this paper 
we restrict ourselves to the case when all the powers i  
are equal to zero, i. e. . The meaning of these 
hypotheses is the following. The relation 

n
 = 1iA O

 = 11  
implies that electroosmotic force and thermal force are of 
the same order. Observe that the relation 

A O

 = 11  
holds, for example, for the symmetric electrolyte (where 

A O

| | = |q q |   and = nn  ) in water at , 
with the valency  and with the 

= 298T K
= 1z  -potential equal 

to  [4]. When 25 mV 1A  is not small, the Debye- 
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Hückel linearization of the Poisson-Boltzmann equation 
does not work. Under the condition  1 = 1A O  the 
Debye length d  can be longer compared to electrical 
double layer, moreover the double layer overlapping 
could occur. Indeed, it is a useful rule of thumb that 

 

l

=dl  9.6 z n  [4] where  is the valency. For the 
above mentioned electrolyte with the counterion molar 
concentration 

z

= 0,01 n mM  we have , 
whereas the double electric layer is normally only a few 
nanometers thick [4] and the nanocapillary membrane 
may have the pore diameter of  15  [20]. For such 
cases the hypothesis 

= 100 dl nm

nm
 12  is natural. Hypothesis 

 amounts to the effect that the horizontal 
pressure gradient and the applied horizontal electrical 
field are of the same order. The relation 

=A O
 = 13A O

 = 14A O  
means that viscous response is of the same order as the 
applied horizontal pressure gradient. 

There is one more assumption that we impose on the 
Péclet number =Pe vL D :  

 = 1 as 0Pe O   .           (15) 

The hypothesis implies that convection  and diffusion 
are of the same order. 

We close this section by reminding the Debye-Hückel 
approach to the Poisson-Boltzmann Equation (11) in the 
single layer  with the boundary conditions > 0z

0   and 0z   as  and =0 0z  | =z  . In the 
case of symmetric electrolyte, the linearized equation 
(11), in the SI system of units where  is substituted 
by 1, becomes  

4
2
d zl =z 


, since the nonlocal term 

 vanishes as . Clearly,  d d /
0= z lde    is a 

solution. This explains the notion (14). 
 

5. Asymptotic Analysis of Electric Field 
 
We proceed by returning to the dimensional variables. 
Using the method of the two-scale expansions [12], we 
look for the solution of Equation (12) in the form of an 
expansion series  

    = /( )
0

= , |k k ,y z Lz z y  


 



        (16) 

where the functions  are periodic in the 
variable , , with a period equal to 1 for each 

. We introduce the flux  

 ,k z y
y 0 < < 1y

z

   d
.

d

z
S z z

L z  

   
 
            (17) 

Clearly,  

 d
= 4 , ,

d fS F
z   1 z

,

          (18) 

We present this flux as a series 

    = /( )
0

= , |k k
y z LS z S z y 



        (19) 

where the functions  ,kS z y  are 1-periodic in  for 
all 

y
z . 

Using the formula  

d 1
, = , ,

d
k k k

z y

z z
z z z

z L L L
  

  
          
     

,
z

L
 

and substituting the series (16) and (19) into equality 
(17), we obtain an equality which looks like 

 
1

= 0.k

k





   

Thus   = 0
k

 for all . In particular, 
the three first equalities can be written as  

= 1,0,1,k  

 0 , = 0y z y  

and 

       1
0 0

,
, = , y

z

z y
S z y y z y

L


 

 
  

 
 ,  

       2
1 1

,
, = , y

z

z y
S z y y z y

L


 

 
  

 
 .  

Substituting the series (16) and (19) into equality (18) 
and paying attention to the powers 1   and 0 , we 
obtain the equations 

      0 1 1, ,z yy z y L z y
y
     
 = 0     (20) 

      0 1 1, ,z yy z y L z y
z
  

,   
  

      1 1 1 2, ,z yL y z y L z y
y
   

=  
  

 4 .f i i
i

y q n   1              (21) 

Equations (20) and (21) allow one to determine the 
functions  0 ,z y ,  1 ,z y

0
 and  uniquely. 

Indeed, with a function 
2 ,z y 

  independent of the variable 
, we look for y  ,z y1  by the method of separation of 

variables assuming that there exists a -periodic func- 
tion 

1
 1 y  such that  

     .y1 0, = z  1zz y  
Substituting this presentation into Equation (20), we 

find that the function  1 y
0 < < 1y

 solves the following 
problem on the interval : 

   
1

1
1

0

dd 1
1 = 0, d = 0.

d d

w
y w

y L y

  

  
  

 y y   (22) 

The latter integral condition serves for uniqueness. We 
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integrate and arrive at the formulas 

  1d1
1 =

d h

w
y

L y
, 

 
 

 
          (23) 

   

11

0

1
= 1 d = .

1h
f s

y y 
  


 
    
 





 

Next, we use periodicity and integrate Equation (21) 
with respect to  to obtain the following macro- 
equation for : 

y
 z0

0 = 4h zz i i
i

q n                (24) 

As for the function , we look it in the form  2 ,z y
 .y   2 0

2, = zzz y z   

Substituting this presentation into Equation (21), we 
find that   2 y is a periodic solution of the problem 

     0 0
1 2

1 d 1 d

d dh zz zz y y y
L y L y

     
      
  
 



.

 

 4 f i i
i

y q n  1             (25) 

This problem has a unique solution provided 
1

20
d = 0.y  

Thus, we have established the following asymptotic 
equality for the electric potential:  

   0 1 2 2= , ,
z z

z z z z
L L    

 
       
   

 (26) 

 
6. Asymptotic Analysis of Velocity 
 
Integrating Equation (13), we obtain the following 
formula for velocity in each fluid domain :  < <m ma z b

   1
= d d

n

n n n n

b rz
v z r s G

b a a a s
d ,  

     

where 

= .
4

f
zzG


 


 

We extent the function  by zero to the solid 
intervals and denote such an extension by . Now, 
with 

v
 v̂ z

L  standing for L , we have for all  that  z

 ˆ =v z  

 

   

 
 

/

d d

/ /

b
f

f
a a

z z L rzz L
r s G

h sz z L z z L




 


d 

  



 
  

1


 
  (27) 

With  given by the expansion series (16), we 

look for 

 z

 v̂ z

̂

 in the form 

   2

=
2

= , | /
k k

y
v z v z y z L ,





       (28) 

where the functions  ,kv z y  are 1 -periodic in  and y
 kv z y, = 0  for < <y 1  . After simple 

calculations, we find that  

   

 /

d d

/ /

b

a a

z z L rz
r s

sz z L z z L



 


d = 





 
  



 
 

3

.
2

f
a b

h z z

L L

 
 

 
   
   
   

   

Using the properties of functions ,  0 ,z y  1 ,z y , 
 2 ,z y , we obtain that     is equal to  

       0
1 2 ( ) ,z zzz z y z y      0 1 

= ,z y

2 0 

L

 

for = /    
As for  '' 

 
, we find that it is equal to 

   0
1 1 20
2 2

''



= ,z y

2 ' ''
1 ( ).z

zz

y y y

LL L

   
 

        
   



L

 

for = /    
By virtue of the multiplier  in the right side of 

Equation (11), we can assume that 
 f z1

    ,a bz H z H z  
Then, the variables  belong to the interval  ,r s

    ,a bH z H z  

also. As   is between  and r s , the inequalities 

0 < <
eL L

  
 

    
 

hold and the second derivatives of    1 2,    

0 < <y

 in 
Equation (25) are meaningful. In addition, it follows 
from Equations (23), (24) and (25) that, for  , 
the functions    1 2, y y   satisfy the equations  

 1 '' = 0y

   0 1 ' '' = 4 .,1 22

2 1
'zz f L i iy y q n

L
    



     
 

  

Thus, we obtain 

  4
= ( )i i

if

q n  
 
    .      (29) 

Substituting Equations (28) and (29) into Equation (27) 
and considering only the power 2 , one can show that 
the function  ,v z y0

 

 does not depend on the variable 
 and has the form z

   0 1
= ( )

2 f a b i i
i

v y y y y q n     
  
 

1   .   (30) 

Integrating Equation (30) over the periodicity cell, we 
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obtain the macroscopic equation 

 
1

0
11 12

0

= ,V v y dy        

where the hydrodynamic and electrochemical mobilities 
are defined by the formulas  

2 3 2 3

11 12= , =
12 12 i i

i

L L
q n

  
   .

0.

 

Thus, we have established the following asymptotic 
equality for the velocity field:  

   2 3ˆ = , asv z V o          (31) 

We introduce the total electric current 
i

 whose 
horizontal component in the fluid phase is equal to  

i
iq J

2= .i i i i i
i iB

J v q n q n D
k T


   

We extent the function J  by zero to the solid 
intervals and denote such an extension by  Ĵ z

2 D

. Due 
to hypothesis (15), we have that  i . This is 
why we look for 

=iD 
 Ĵ z  in the form of the expansion 

series  

   2
= /

=2

ˆ = , |k k
y z L

k

J z J z y .





       (32) 

It follows from (32) and (28) that 

   0 0 2, = i i i i i
i iB

.J z y v y q n q n D
k T


     

By integration, we arrive at the macroscopic equation 

 
1

0
21 22

0

d = ,J J y y        

where 12 21   and 
22 3

2
22

1
= .

12 i i i i i
i iB

L
q n q n D

k T


   
   
 
   

Thus, we have established the following asymptotic 
equality for the electric current: 

   2 3ˆ = , asJ z J o     0.      (33) 

The asymptotic equalities (26), (31) and (33) are valid 
in the sense of weak or two-scale convergences; mathe- 
matical aspects of these asymptotic expansions are 
extensively investigated in [21,22,23]. 

 
7. Electrokinetic Coupling Coefficients 
 
We introduce the Darcy volumetric flow rate 2=q V  
and the current density 2=j J . By the above 
asymptotic analysis we have derived the macroequations 

(which are valid up to terms  3o  , = h L )  

11 12 22= , = 21 ,x x j xq L p L L p L x    

=0| =z

   (34) 

0 == 4 , , | = ,h zz i i z L L
i

q n        

which describe electrolyte flow and distribution of the 
electric potential   across a layered membrane under 
the assumption that  

0,, , ,x x i Lp n  
 

are prescribed data. For such a membrane, the effective 
dielectric permittivity h  and the electrokine- 
tic coupling coefficients 2=kl klL    are given by the 
formulas 

 1 = ,h f s1          (35)     

2 2

21= =
12

h h
L11 12= , ,

12
f f

i i
i

L L q n
 
        (36) 

2
1

B

n
k T

   
 


2
2

22 = .
12

f
i i i i i

i i

h
L q q n D


       (37) 

Formula (35) stating that the effective permittivity h  
of the layered membrane is the harmonic mean of s  
and f  was first derived by Maxwell (Maxwell 1881) 
in a different way [24]. Observe, that the Onsager 
reciprocity relation 12 21  [25] is not imposed but 
derived in the above calculations as a consequence of the 
homogenization procedure. Moreover, the inequality  

=L L

11 22 0,L2
12L L              (38) 

providing nonnegativity of the entropy production rate is 
also satisfied automatically [26] due to the representation 
formulas (36) and (37). The inequality (38) becomes 
equality if both the diffusion coefficients i  are 
negligible. Observe that for some free solutions 

D

9 2 1= 2 10iD m s   [27]. 
We emphasize that the coupling coefficients kl  in 

the macro-equations (34) are given by the representation 
formulas (36) and (37) as a result of an extensive 
analysis of the micro-Equations (22) and (25) for the 
functions 

L

 1 y  and  2 y  defined on the perio- 
dicity cell. 

Clearly, the electroosmosis Equations (1) and (2) 
should coincide with the system (34) for one- dimen- 
sional flows. Whereas the formula  

0 = fL     

for the cross-coupling coefficient have a drawback of 
measuring the  -potential, the kinetic coefficients kl  
derived by homogenization for the ideal (layered) porous 
medium do not depend on 

L

 . One can exploit this 
advantage in calculation of the coupling coefficient  0L
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for general porous media. 
Applying the general Equations (1) and (2) to the ideal 

(layered) porous medium, we find that  
2 2

11 0 12= = , = =
12 12

f f
i i

i

h hk
L L L

 
    ,q n  

22
2

22

1
= =

12
f

r i i
i iB

h
L q n q

k T




  
   
 
  .i i in D  

Now, we have 
2

20 1
=r

iB

L
q n D

k k T


   i i i          (39) 

and inequality (38) gives the following estimate for the 
electrokinetic cross-coupling coefficient :  0L

0 .rL k                  (40) 

As for real rocks, formulas (39) and (40) suggest to 
take  in the form  0L

0 = rL F k ,                 (41) 

where F  is a dimensionless geometrical factor. In 
applications, the above formula can be of use if no data 
are available for the diffusion coefficients i  and the D
   potential. We emphasize that formula (41) is not a 
physical law but rather an engineering formula which 
can be of help for some sandstones when surface 
conductivity can be neglected. 

Firstly, we evaluate F  for a rock sample on the basis 
of the F. F. Reuss experiment [28]. Such an experiment 
reveals that a difference in the electric potentials   
applied to water in a U-tube results in a change of water 
levels when the low part of tube is plugged with a 
sandstone sample (Figure 2). 

We calculate the weight  of salt water which fills 
the cylinder of height  with cross section area 

P
h s  

(Figure 2). We have =P f shg , where g  is the  
 

h

 

Figure 2. F. F. Reus experiment (1808) with the U-tube 
plugged with sandstone sample: applied electric field results 
in water level change of height  .h

gravitational acceleration and f  is the water density. 
The pressure drop across the sandstone plug is equal to 

=p hg . On the other hand it follows from Equations 
(34) that at equilibrium, when , we have = 0q

12=p 11 0 =L L L k  . 
In [29,30], a mathematical model (jointly with a 

computer code) is developed for calculation of the 
electric conductivity r  of a saturated rock. The model 
allows one to find an optimal Archie-like law 

= ,
1

m

p
r f

p

 
 


 
   

 

where f  is the conductivity of the saturating fluid, 

p  is the percolation threshold porosity,  is the 
cementation factor. For sandstones, it was calculated in 
[29] that 

m

=p 0.03, 1.5. Thus, for sandstones, 
formula (41) becomes  

=m

/2 1/2

0 =
1

m

p f

p

k
L F

  
 

   
       

 

Now, the factor F  can be evaluated from the 
formula 

/2

= .
1

m

f p

f p

h F

g k

  
 

 
    

 

We perform calculation assuming that, as in [31], the 
applied potential difference  results in the 
water level difference . The rock data are taken 
from [6]:

= 100 V
cm= 20h

= 1.05 cp , , = 250k mD = 0.25f S m , 
3= 0.93 f g cm , = 0.36 . With these data at hand, we 

find that 30= 1.2F 5 1  . It is the cross-coupling coef- 
ficient 1VPa

0 r=C L      that can be measured in 
applications [32]. With the factor F  given above, we 
find that C  in agreement with the 
data in [6]. 

710 /= 0.86  V Pa

Next, we calculate the factor F  for the rock sample 
composed of Berea sandstone 500 starting from 
experimental measurements of streaming potential when 
a fluid, with a prescribed NaCl concentration (500 ppm), 
flows through the sample [5]. Given data = 1.05cp , 

4= 67.9 10r , ,S m  = 200k mD 0 =rL  0.17 V Pa , 
we find from formula (41) that . 30= 1F .02 1
 
8. Conclusions 
 
We have proposed a two-scale model for one-dimen- 
sional horizontal electroosmotic flows in a number of 
thin horizontal slits, with a horizontal pressure gradient 
and a horizontal electrical field being driving forces. The 
model is derived within the framework of homogeni- 
zation in the up-scaling of the pore-scale description 
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consisting of Stokes equation for bulk fluid flow and the 
Nernst-Plunk equation for the ion transport. The homo- 
genized model is a generalization both of the Darcy law 
and the Ohm low. According to this model, both the fluid 
flux and the electric flux depend linearly on the horizon- 
tal pressure gradient and the horizontal electrical field, 
with the coupling coefficients obeying the Onsager 
symmetry condition and not depending on the  - 
potential. 

As for three-dimensional general flows in sandstones 
in the case when surface current is negligible, the 
cross-coupling coefficient  is obtained in the 
approximate form

0L

0 = rL F k  , where r  is the 
fluid saturated rock electric conductivity,  is the rock 
permeability, 

k
  is the fluid viscosity, and F  is 

dimensionless geometrical factor which depends on the 
sample. We evaluated that  for Berea 
sandstones. 

30= 1.02 1F 
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