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Abstract 
 
The thermal conduction in a thin laminated plate is considered here. The lateral surface of the plate is not 
regular. Consequently, the boundary of the middle plane admits a geometrical singularity. Close to the origin, 
the lateral edge forms an angle. We shall prove that the classical bidimensional problem associated with the 
thin plate problem is not valid. In this paper, using the boundary layer theory, we describe the local behavior 
of the plate, close to the perturbation. 
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1. Introduction 

A thin plate is a three dimensional body, a dimension of 
which (the thickness) is smaller than the other dimen-
sions. Usually, under the assumption of small thickness 
with respect to the characteristic length of the middle 
plane, instead of a three-dimensional description, a 
bi-dimensional one is used. The problem is then posed 
over the middle plane of the plate. In this way, the nu-
merical methods are less expensive in time and in mem-
ory. 

In this paper, we deal with the modelling of the ther-
mal behavior of a thin laminated plate. The thermal con-
ductivity can be considered as an exemplary problem 
similar to the elasticity problem. Instead of displacement, 
the unknown is the temperature, but the equations are 
similar.  

The temperature and thermal flux established by the 
asymptotic expansion are good approximations. But 
close to the lateral surface, the bi-dimensional behavior 
is not suited: for a laminated body, boundary conditions 
are only satisfied on average. However, on the edge 
damage phenomena can appear, like delamination, 
crack... A bi-dimensional description of the behavior of 
the plate is not enough. In order to predict these phe-
nomena, we need a good, local description of the behav-
ior of the plate, in these areas. In this case, the bi-dimen- 
sional expansion is no more sufficient, we need a local 
three-dimensional description, which is valid only close 
to the lateral surface. Moreover, the distance to the edge 
and the position in the thickness have the same range of 

magnitude; the assumption of small thickness with re-
spect to the other directions is no more valid. Close to 
the edge, the body must be considered like a three- 
dimensional domain, with thickness and distance to the 
edge of the same order. 

In previous works, the cases of a classical regular edge 
[1] and edge with a local perturbation [2] were consid-
ered. Recently, Saidi et al. [3,4] studied singularities in 
the edge of moderately thick plates. They studied the 
effect of the boundary layer term added to the Mindlin’s 
plate theory. In this paper, the case of thin laminated 
plate with an angle in the lateral edge is considered. We 
lose the symmetry of the local perturbation [2] and new 
arguments must be used. Because of this angle, the 
boundary of the plate cannot be considered as a smooth 
surface. The boundary layer theory must be adapted to 
take into account the new geometry of the perturbed edge. 
Therefore, we obtain a new local description which is 
posed on an unbounded domain. The existence and uni-
queness of the solution must be proved in order to im-
plement a numerical method of resolution. 

 
2. Generalities and Description of a Thin 

Laminated Plate 
 

2.1. Classical Problem for a Thin Plate 
 
Insert Figure 1: The plate P

 
Let us consider a thin plate  ,P     

2 
 charac-

terized by its middle plane   and its thickness 



 
110 I. TITEUX 

 

Figure 1. The plate P . 
 
2  (cf. Figure 1). In fact,  denotes the ratio between 
the characteristic length of the middle plane of the plate 
and the thickness. Let         and         
denote the upper and lower faces respectively and 

 ,         denotes the lateral edge. 
Coordinates in the middle plane are  1 2,X X  and 

position in the thickness is 3X . Symbols in boldface de-
note vectors. We use the summation convention on re-
peated indices. Lati  n indices take their values in the set 
 1,2,3


 while Greek ones take their values in the set 
1, 2 . 

For given external sources of heat, we have to deter-
mine the temperature field . The 
thermal flux vector is related to 

 1 2 3, ,u u X X X 
u  by the constitutive 

law  

    , 1, 2,3i i ij
j

u
u k i

X


  

 
     

 

The coefficients ij  are the conductivity coefficients. 
They satisfy symmetry and coerciveness properties: 

k

, , 1,2,3,ij jik k i j    

3, 0,ij i j i ik C C        .  

The equilibrium equation is 

 1 2 3, , in .i

i

f X X X P
X


 

 


       (2.1) 

The order of magnitude of f   is it  1O means that   
f   h the same order than the characteristic length of 

the middle plane. The upper and lower faces of the plate 
are free of heat source  

as 

0 on andi in  
               (2.2) 

On the lateral edge of the plate, there are Neumann's 
boundary conditions: 

   1 2 3, , on ,i iu n X X X         (2.3) 

where   is  and n is the outer normal.  1O
The external sources of heat satisfy the compatibility 

condition 

d d
P

f X S 
 


  

The plate is laminated, i.e. composed of several mate-
rials. We assume that the interfaces between two materi-
als are parallel to the middle plane of the plate. In this 
way, the conductivity coefficients depend on the position  

in the thickness 3X


, we assume that they do not depend  

on the other variables: 

3 , , 1,2,3.ij ij

X
k k i j


   
 

 

At the interface between two different materials, the 
temperature and the normal thermal flux are continuous: 

0 across the interfaces,u           (2.4) 

0 across the interfaces,i in          (2.5) 

where the brackets denote the jump across the interfaces. 
Problem (2.1)-(2.5) is the plate problem. 
Remark 1. In (2.1) and (2.3), external sources of heat 

are taken with an order of magnitude of 1 in order to get 
an asymptotic expansion of the solution with the leading 
term  1O  (see (2.7) thereafter). But, because of the 
linearity of the problem, if the external sources of heat 
are multiplied by a constant (even depending on  ), the 
solution is also multiplied by the same constant. 

Using the change of variables 

 

 
1 2

3
3 3

, ,0 ;

0,0, ;

x x x x X

X
y y y

 



 






           (2.6) 

the asymptotic expansion theory [5,6] involves tem-
perature of the form 

     
0

0 1
3 ˆ

u
u u x w y u x

x
 




 

    
   (2.7) 

The functions w  only depend on the conductivity 
coefficients; they are solutions of the variational prob-
lems 

   1 1Find 1,1 such that 1,1w H v H        

1 1

3 31 1
d dij j

j i j

w v v
k y k

y y y
y



 

  
 

     

where       11 1
3 31

1,1 1,1 : d 0H v H v y y


     . 

The change of variables (2.6) is equivalent to dilate 
the thickness of the plate. In this way, we obtain a new 
plate  which does not depend on P   (cf. Figure 2). 
All the directions of the plate have now the same range 
of magnitude. The thickness of  is no more small 
with respect to the other directions. We shall denote by  

P

{1}    and { 1}   

P , and by  

 the upper and lower 

faces of the pla0  te  the lateral  1,1  
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Figure 2. The plate 

 
edge. 

Insert Figure 2 
us remind certain features of the asymptotic struc-

6]. The asymptotic structure 
of

P . 

The plate P .  
Let 

ture of the plate problem [5,
 the mean value of the thermal flux is of the form: 

0
0 on ,h
i i

u
k

x


 



  

where the tilde denotes the average on hickness and  the t
0  is the leading term of the therm l flux. The ho-a

mogenized conductivity coefficients are given by 

1

31
d , , 1,2h

j j
j

w
k k y

y



    


 
     
 , 

3 0, 1, 2,3.ik i  The problem for 0
i  is po d over 

So that it is a bi-dimensional problem 
se

the middle plane. 
0

– ini f
x


 




                 (2.8) 

0 onii n                   (2.9) 

where  and f   are the leading terms of f   and 
  respectively. 
If the minated, it means that the plate is not 

homogeneous. Equations (2.3) and (2.9) are not uiva-
 plate is la

eq
le

n of the 
oun f for instance the damage is stud-

nt: the mean value is different from the value on each 
point of the lateral surface. Consequently, the asymptotic 
solution is not valid everywhere on the plate. Close to the 
edge, a corrective term must be added. 
 
2.2. Behavior of the Thin Plate Close to a 

Classical edge  
 
It ca ave a good approximation be important to h

dary of the plate, ib
ied. As a matter of fact the cracks appear on the edge, 
like delamination. In this case, a local three-dimensional 
description of the behavior of the plate is necessary. 

On the lateral edge the assumption of very small   
with respect to the other variables is not justified. Dis-
tance to the edge is of the same range of magnitude tha  
the thickness of the plate. 

Insert Figure 3 The specific directions. 

In order to study the temperature close to the edge, let 
us define local axes Oy

n

 (cf. Figure 3):  is the 
ta le e 

1Oy
 planngent direction of the edge of the midd  , 

2  is normal to Oy   in the middle plane, pointing 
inside  , 3Oy  is norm toal  . 

A corrective term is added to the asymptotic expan-
 of the temperature [1] to improve it. In order to act 

on the di erm of the the a
sion

lea ng t rm l flux, we have to cor-
re

o 

ct the second term of the temperature. As a matter of 
fact, if we act on the first term 0u , we shall change the 
order of the thermal flux. 

Let 1cu  be the corrective term of the temperature, the 
new asymptotic expansion close t the edge is 

 

    

1 2

0
1 1

,

ˆ , ; ,c

u u x x

u
w y u x u x x y y



 

0

3 1 2 2 3x


     


 

 (2.10) 

The corrective term must depend on the position in the 
thickness and on the distance to the lateral edge
The position on the edge 

3y  2y . 
 1 2,x x  is a parameter.

it 
 So that, 

is defined in a semi infinite strip, 

      2 3 2 3, : 0, , 1,1S y y y y       (2.11) 

It can be proved [6] that 1cu  is the unique solution of 
the variational problem 

1 scFind uch thatu W  

   / : with bounded supportv  v W v S    

 
   

21 2

1

3 2

1 0
301 ,

d d

d Φ

c

ijS
j i

i i yx x

u v
k y y

y y

n v y


 
 

 


 

   



 v

 (2.1 ) 

where is the completed space of for th
associated with 

2

W  W  e norm 

 , dv w v w y y    2 3W S

 

d         (2.13) 

 
Figure 3. The specific directions. 
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The separation of variables method [6,7], allows to 
assume that the corrective term decreases exponentially. 
 
3. Boundary Layer Close to an Angle 

 
As it was seen in subsection 2.2, the corrective term al-
lows to improve the description of the thermal flux close 
to a regular edge of the plate. In the same way, the be-
havior of the plate close to an angle, can be given by an 
asymptotic expansion with a new corrective term, a new 
boundary layer term. 

Now, the ar, it admits 
a 

boundary of the plate is not regul
perturbation. Close to the origin, the edge forms an 

angle of magnitude 2 .  (cf. Figure 4). The middle 
lane of the plate is no m re regular. The lateral edge p o Γ  

can be split into two parts:  1
1 1,    1  and 

 2
2 1,1    .  

Figure 4 The perturbation of the edge 
In order to lighten the notations, we shall assume that 

  vanishes in the vicinity of the origin. 
The edge is assumed to be regular everywhere but not 

in the vicinity of the origin.  
Far from the origin, but on the lateral edge, the boun-

da

e c
c-

n. Th  func
olutions of problem 

ry layer problems are similar to those described in sec-
tion 2, corresponding to a classical, regular surface. 

Let 1 1cu  denotes th orrective term on 1  far from 
the origin. In the same way, let 1 2cu  denotes the corre
tive term on 2  far from the ori tions 

e s
gi

 the va
ese

riational 1clu , 
(2

1, 2l  , ar
.12) with unknown 1clu  instead of 1cu . 
We can also prove that they are solutions of 

1clu  
0 inij

i j

k S
y y

     
             (3.1) 

1

3 30 for 1
cl

j
j

u
k y

y


  


            (3.2) 

1 0 1

, on
cl

ij i ij i
j j j

u u u
k n k n

y x x

  
        

     (3.3) 

 
2

1
2 3lim , 0cl

y
u y y


                (3.4) 

 

l

 

 

Figure 4. The perturbation of the edge. 

        (3.5) 1 0 across the interfacesclu      

1

0 across the interfaces
cl

ij i
j

u
k n

y






     
    (3.6)  

where is defined in (2.11). 
Close to the origin, a corrective term, is added to 

in the asymptotic expansion (2.7). nds on the 
space components. It is defined in  unbounded 

ain which is the dilatation of gin. As a 
matter of fact, close to the origin, all directions (the posi-
tion in th in) have 
the same range of order. Because of the geometry of the
domain, it will be useful to introduce th
dinates to describe the domain: 

S  
*v  

It depe
 an

the ori

1u  
three 
dom D  

e thickness and the distance to the orig
 

e cylindric coor-

      0, , , , 1,1D r z          . 

The asymptotic expansion of the temperature is now 

         0 1 *ˆ0 0 0 , ,u w z u v z
x

 



      
  

where the unknown is *v . 
When

0u 
,u r



    , the boundary condition (2.3) must be 
exactly satisfied at the corresponding order. When r  
becomes great, the corrective term must tend to the clas-
sical boundary layer term. We shall gather 1 1cu  and 

1 2cu  into a unique function 1cu  defined by  

1 1c
1

1 2

if 0,

if 0.
c

c

u
u

u




 
 


 

Remark 2. For small values of   and great values of 
, it means far from the lateral edge, the influence of 

each corrective term is very s all because of the 
exponentially decreasi n be neglected. 

t, cause is unbounded, and 
because the corre

r
1clu  

ng. So 
m

that they ca
We can then see tha be D  

ctive term must tend to 1cu  when r  
becomes great, it cannot belong to  2L D We sha  
transform the corrective term in order to obtain an un-
known which belongs to 

ll

 2L D . Let us define: 

     * 1, , , ,BL cv r z u r z r u     

BLu . where the new unknown is now 
The function  , which is  is a cut off func-

tio
( )  ,

n such that for little ,r   is eq l to 0 and for great 
alue of ,r

ua
  is equal to 1 (cf. Figure 5). 

Insert figure 5 The c  function 
v

utoff   
The problem for BLu  is now: 

 1 in
BL

c
ij ij

i j i j

u
k k u

y y y y


      
             

    (3.7) D
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Figure 5. The cutoff function  . 

 

 1
3 3 3k for

BL
c

j j
j j

u
k u

y y
 

   
 

 1y     (3.8) 

 
0 1

1 1on and
BL

c
ij i ij i

j j j j

u u u
k n k u n

y x y y


    
           

2

(3.9) 

 lim lim , , 0,BL

r r
u r z

 


 
              (3.10) 

        (3.11) 0 across the interfaces,BLu   

 1 across the i erfacesc
ij ik u n nt .

BL

ij i
j j

u
k n

y y

 


 
(3.12) 

Equation (3.7) is the equilibrium equation, (3.8) is the
boundary condition on  and  (3.11)
are the continuity conditions nterfaces, (3.9)
is the boundary condition on the lateral edge, and (3.10) 
means that the corrective term is inefficient far from the 
origin. 

Remark 3. When  is sufficiently great, 

 
 and (3.12) 

 
  ,

 across the i

 r  r  is 
equal to 1 and the ri hand side
and (3.12) vanish. 

Problem (3.7)-(3.12) is equivalent 
variational problem: 

ght- s of (3.7), (3.8), (3.9) 

to the following 

  Find such that \u V w V v D        

( )ij
j iD

u w
k L w

y y

 


               (3.13) 

with 

 2

0 1
1d d

j j

c
ij

x y

u u
k n w s k u w y

x y




  
      

       
 

1

0 1

dij

u u
k n w s



  
  i

i ijD

  

  
j j i jy y    

 1

0 1u u  

 

   

 

2

0 1
1

1 1

1

interfaces

din w s

d  d

d

c
ij

j j j

c c
ij i ij i

j j

c
ij i

j

u u
k u

x y y

k u n w s k u n w s
y y

k u n w s
y



 



 



 

   
       

 


 








 



 

where is the completed space of for the norm 

Lemma 1. The right-hand side of (3.13) is a functional 
over 

  is defined over a space of equivalent 
classes. Two e ements of a same class differ by a con-

is a functional over  
two elements of a sam  class take the same value by 

 or  any co t . Using the 
pr  



V  
associated with 

V  

 , d
V D

v w v w    y

V . 
Proof. (.)L

l
stant. It follows that 

 if, for
ession of

(.)L  
e
nstan
 in (3

V  if

(.)L ,
first ex

 C , 
.14)

( ) 0L C 
, we get (.)L

  1 2

0 1 0 1

d dij i ij i
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By virtue of remark 3 each integral can be applied on a 
bounded domain which does not depend on . As a 
consequence, can be read 
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where the upper-script means that the domain is 
bounded. Using the Cauchy-Schwarz inequality, 
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Using the trace theorem and because  is 
bounded domain, we get 
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Because of the density of  into , Equation (3.13
is valid in the whole . It follows from the Lax-Mil-
gram theorem, lemma 2 that 
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V

Theorem. The corrective term BLu  is uni  de-
fined over V . 
 

quely

4.

iption of the behavior of the 
pl dar

 is solution of (3.7)-(2.12). It has no 
fluence far from the edge but it is defined over an un-

alent variational problem was found. 
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 Conclusions 
 
In order to improve the descr

ate close to the singularity, a boun y layer term was 
added. This term
in
bounded domain.  

At first, the equiv
Then, the previous theorem allows us to prove the exis-
tence and the uniqueness of the solution. In this way the 
numerical resolution can be implement. 
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