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Abstract 
 
Given the substantially increasing complexity of embedded systems, the use of relatively detailed clock cy-
cle-accurate simulators for the design-space exploration is impractical in the early design stages. Raising the 
abstraction level is nowadays widely seen as a solution to bridge the gap between the increasing system 
complexity and the low design productivity. For this, several system-level design tools and methodologies 
have been introduced to efficiently explore the design space of heterogeneous signal processing systems. In 
this paper, we demonstrate the effectiveness and the flexibility of the Sesame/Artemis system-level modeling 
and simulation methodology for efficient performance evaluation and rapid architectural exploration of the 
increasing complexity heterogeneous embedded media systems. For this purpose, we have selected a system 
level design of a very high complexity media application; a H.264/AVC (Advanced Video Codec) video en-
coder. The encoding performances will be evaluated using system-level simulations targeting multiple het-
erogeneous multiprocessors platforms. 
 
Keywords: System-Level Performance Evaluation, Embedded Systems Design Space Exploration Tools, the 

Sesame/Artemis Design Tool, a Parallel H.264/AVC Video Encoder 

1. Introduction 
 
The architectural complexity of System-on-Chip (SoC)- 
based embedded systems, as well as the design re- quire-
ments regarding real-time performance, high flexibility, 
low power consumption and cost greatly complicate the 
system design. Nowadays, the classical design methods, 
typically starting from a single application specification, 
become short used for designing such an embedded sys-
tem. In order to resolve the increasing design complexity, 
researchers have recently come up with a new design 
concept called system-level design [1]. For this purpose, 
a new generation of system-level tools and methodolo-
gies has been introduced to efficiently explore the design 
space of heterogeneous signal processing systems. Each 
tool/methodology directly reflects a well-defined design 
flow. 

The Y-chart layer’s based approach, considered as the 

most popular approach for designing multimedia ori-
ented systems, is already being followed in most recent 
system-level design works [1]. It tries to improve the 
shortcomings of the classical HW/SW co-design app- 
roach by abandoning the usage of low-level (instruction- 
level or cycle-accurate) simulators for the design space 
exploration at an early stage of the flow, and abandoning 
a single system specification to describe both hardware 
and software parts. Indeed, the Y-chart methodology reco- 
gnizes a clear separation between an application model, 
an architecture model and an explicit mapping step to 
relate the application model to the architecture model. 
The application model describes the functional behavior 
of an application, independent of architectural specifics 
like the HW/SW partitioning or timing characteristics. 
The architecture model defines the architecture resources, 
captures their timing characteristics, and then simulates 
the performance consequences of the application events 
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(communication and computation operations) for soft-
ware (programmable components) and hardware (recon-
figurable/dedicated) executions.  

As showed in Figure 1, the Y-chart general design 
scheme is composed of four steps [1]. The first step “Ap-
plication Modeling” aims to capture a functional specifi-
cation of the system in the form of a set of benchmark 
applications. The second step “Architecture Modeling” 
consists in modeling the target architecture by the re-
sources available in the system. In embedded systems, 
these resources typically are processors, operating sys-
tems, buses and memories. After that, the parallel appli-
cation processes are mapped onto the resources of the 
architecture. The result of the mapping step is an imple-
mentation of the system which can be used as an input 
for the performance analysis step. Typically, based on 
the Y-chart approach principle, a system designer studies 
the set of benchmark applications, makes some initial 
calculations, and proposes the architecture. The designer 
then evaluates and compares several instances of the 
platform by mapping each application onto the platform 
architecture by means of performance analysis. The re-
sulting performance numbers may inspire the designer to 
improve the architecture, restructure the application, or 
change the mapping. The possible designer actions are 
shown with the light bulbs in Figure 1. 

The outline of the paper is as follow. In Section 2, we 
first present the underlying properties of some different 
tools. Based on these most important design criterions 
considered in our comparative synthesis, the Sesame soft- 
ware framework is selected among the best system-level 
design methodologies. In Section 3, we describe the main 
features, tools, and methods provided by the Sesame/ 
Artemis simulation and modeling environment. Section 4 
presents a complexity analysis of the H.264/AVC stan-
dard and reviews a performed previous work for the de-
velopment of an optimized parallel encoder model. Se- 
same is used in Section 5 to evaluate the encoder per-
formance targeting multiprocessors architectures and will  

 

 

Figure 1. The Y-chart: a general scheme for heterogeneous 
system design. 

show up the effectiveness and the flexibility of this de-
sign methodology. 
 
2. System-Level Exploration Tools 

Comparative Synthesis 
 
In the literature, there are a number of exploration envi-
ronments that facilitate the system-level design space 
exploration by providing support for mapping a behav-
ioral application specification to an architecture platform 
model [1]. Although all the system-level design method-
ologies are created to be used in the same field: design-
ing embedded systems at high system level, there exist 
wide diversity among them. In Table 1, we summarize 
the most interesting design properties of the some repre-
sentative ones. 

The study found that selected methodologies and tools 
as shown in Table 1 differ from each other in first their 
HW/SW design approach. Some of them, like the Pto- 
lemy tool [2], don’t support a layered abstraction level 
design approach and use a single specification including 
both functional behavior and architecture models. Others 
support the platform-based design approach (like Me- 
tropolis [3]) or the top-down design methodology (like 
SpecC [4]). However, it is demonstrated that the Y-chart 
layer’s based approach, which is followed by several 
recent works, became nowadays the most popular and 
used for designing heterogeneous multiprocessors em- 
bedded systems. 

Although the differences among the seven tools are 
not absolute, the features shown in Table 1 indicate that 
the most preferable methodologies/tools are Metropolis, 
VCC [4], and Sesame-like [5,6], because they have the 
largest amount of positive marks (“+”). By elimination, 
the Metropolis environment is excluded of the most pre- 
ferable methodologies list since it does not facilitate ex-
plicitly the Y-chart approach. Between the VCC and 
Sesame tools, we observe that the mixed-level simulation 
is only supported by the Sesame tool. For this, we have 
opted for selecting the Artemis/Sesame methodology to 
implement at system-level the H.264/AVC video encod-
ing application on a multiprocessor SoC-based architec-
ture. Indeed, the system-level modeling and simulation 
framework Sesame/Artemis is developed to directly re-
flect the Y-chart design approach. It provides several me- 
thods and tools to quickly and separately build the appli-
cation process network model, the target architecture mo- 
del, and the mapping model of the application onto the 
architecture. 

Currently, Sesame has been evaluated for the design of 
two medium complexity media applications: an MPEG-2 
decoder and a variant of M-JPEG encoder [7,8]. Our 
objective in this paper is to use this methodology for the  
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Table 1. Overview of some properties of presented tools and methodologies. 

Methodology/tool Ptolemy Polis Metropolis SpecC VCC SystemC Sesame/Artemis

Y-chart supported - + - - + x + 

MoC variety supported + x + x + x - 

Dynamic performance models + + + + + + + 

Formal analysis and verification - + + + x x x 

Reusability supported + + + + + + + 

Complex applications domains supported x - + x + + + 

Target architecture variety supported x - + + + + + 

All abstraction levels supported - + + + + + + 

HW synthesis and IP Integration supported - + + + x - + 

Mixed simulation supported - x x x - + + 

Automatic HW/SW partitioning supported - - - - - - - 

Automatic mapping - - + - - - - 

Rapid prototyping x + + + + + + 

Legend: True, +; False, -; May be, x. 

 
design of very complex media systems. The H.264/AVC 
reference video encoder represents an example of a very 
complex case study typical of the multimedia domain. It 
has been designed with the goal of enabling significantly 
improved compression performance relative to all exist-
ing video coding standards [9]. Such a standard uses ad-
vanced compression techniques that in turn, require high 
computational power [10]. Implementing a H.264/AVC 
video encoder for an embedded SoC is thus a big chal-
lenge since this encoder requires very high computation 
power to achieve real-time encoding. In this study, both 
modeling and mapping stages of the Sesame design flow 
are explored for an optimal H.264/AVC encoder imple-
mentation verifying constraints. This will demonstrate 
the effectiveness and the flexibility of the methods and 
tools provided by this methodology for rapid system- 
level design space exploration of complex embedded 
systems. 
 
3. The Sesame/Artemis Simulation and 

Modeling Environment 
 
In this section, we will briefly describe the Sesame/Arte- 
mis simulation and modeling environment [11,12]. The 
required software model layers are first presented. The 
implementation of these layers is based on specific tools. 
A brief description of these tools is given along with the 
application in the literature of these tools to some me-
dium complexity multimedia systems. 
 
3.1. The Sesame Layer’s Software Model 
 
Using the Sesame system-level design software frame- 
work, three software specification model layers are re- 
quired: the application process network layer, the target 
architecture layer, and the layer for mapping the applica- 
tion onto the architecture, as showed in the Figure 2 [6]. 

3.1.1. Application Modeling Layer 
Applications in Sesame are modeled using the Kahn Pro- 
cess Network (KPN) model of computation in which pa- 
rallel processes, implemented in a high-level language, 
communicate with each other via unbounded FIFO chan- 
nels [13]. Each process is executed sequentially. Reading 
from channels is blocking; writing to channels is non- 
blocking. The execution of a Kahn Process Network is 
deterministic, meaning that for a given input always the 
same output is produced and the same workload is gen-
erated, irrespective of the execution schedule. The model 
fits nicely with signal processing applications, as it can 
model stream processing with the guarantee that no data 
is lost. The key characteristic of the KPN model is that it 
specifies an application in terms of distributed control 
and distributed memory which allows us to map the ap-
plication onto a multiprocessor platform in a systematic 
and efficient way. 
 
3.1.2. Architecture Modeling Layer 
An architecture model is constructed from generic build- 
ing blocks provided by a library containing template per- 
formance models for processors, co-processors, memo- 
ries, buffers, busses, and so on. The evaluation of archi- 
tecture is performed by simulating the performance con-
sequences of the application model events that are 
mapped onto the architecture model. This requires each 
process and channel of the Kahn process network to be 
associated with, or mapped onto, one component of the 
architecture model. When executed, each Kahn process 
generates a trace of events, and these event traces are 
routed towards a specific component of the architecture 
model through a trace event queue. A Kahn process places 
its application events into this queue while the corre-
sponding architecture component consumes them (Fig-
ure 2). 
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Figure 2. The three layers within Sesame: the application 
model layer, the architecture model layer, and the mapping 
layer. 
 
3.1.3. Mapping Layer 
The mapping layer maps the event traces generated by 
the Kahn processes of an application model onto the re- 
sources in the architecture model. In addition, it maps the 
Kahn communication channels onto communication re- 
sources at the architecture level. Each Kahn channel can 
be thus mapped onto a point-to-point FIFO channel be- 
tween two processors or onto a software buffer in shared 
memory. As showed in Figure 2, it is possible to map 
multiple Kahn processes onto a single architecture com- 
ponent (e.g., in the case of a programmable component). 
Such mappings require the events from the event traces 
that are mapped onto the same architecture resource to be 
scheduled. This scheduling is also performed by the 
mapping layer [7]. 
 
3.2. Sesame Implementation Tools 
 
In the previous section, we have seen that the Sesame 
software structure is composed of three layers: the appli- 
cation layer, the architecture layer, and the mapping layer 
which is an interface between the two previous ones. All 
three layers in Sesame are composed of components 
which should be instantiated and connected using some 
form of object creation and initialization mechanism, as 
shown in Figure 3. This allows reusing of code and 
guarantees the flexibility to easily manipulate the model 
based on performance results as dictated by the Y-Chart 
methodology (Figure 1). The three models layers are im- 
plemented by the following tools: 
 
3.2.1. YML Modeling Language 
Sesame was developed to guarantee a rapid construction  
of the simulation models thought the use of libraries of 
pre-built architecture simulation components. In order to 
enable quick modification, a flexible description format 

for the interconnection of these components is required. 
For this, the YML (Y-chart Modeling Language) is de- 
fined to create the structure of Sesame’s simulation mod- 
els. YML is an XML-based language. Using XML is 
attractive because it is simple and flexible, reinforces 
reuse of model descriptions, and comes with good pro- 
gramming language support. The core elements of YML 
are network, node, port, link, and property [6]. 
 
3.2.2. Application PNRunner Simulator 
Sesame’s application simulator is called PNRunner, or 
Process Network Runner. PNRunner implements the se- 
mantics of Kahn process networks in C++. It reads an 
YML application description file and executes the cor-
respondent application model. The PNRunner execution 
allows generating a trace of application events (trace API) 
to drive an architecture simulation (Figure 3). Using this 
API, PNRunner can send application events (communi-
cation and computation operations) to the architecture 
simulator where their performance consequences are 
simulated. Hence, application/architecture trace-events 
co-simulation is possible. 
 
3.2.3. Architecture Pearl Simulator 
The target architecture model in Sesame is implemented 
in the Pearl discrete event simulation language [14]. Pearl 
is a small but powerful object-based language which pro-
vides easy construction of abstract architecture models 
and fast performance simulation. It has a C-like syntax 
with a few additional primitives for simulation purposes. 
A Pearl program is a collection of concurrent objects 
which communicate with each other through synchronous 
or asynchronous message-passing. After sending an asyn- 
chronous message, the sending object continues execu-
tion, while waiting for a synchronous reply message from 
the receiver. 
 
3.3. Medium Complexity Media Case Studies 
 
The Sesame modeling and simulation methodology has 
been applied to two medium complexity media applica-
tions: an MPEG-2 decoder and a variant of an M-JPEG 
encoder [7,8]. These both studies have been performed at 
the black-box architecture model level and showed pro- 
mising results. These media applications have been im-
plemented on various multiprocessors architectures mo- 
dels. For these architectures, different hardware-soft- 
ware partitioning, application to architecture mappings, 
processor speeds, and interconnect structures (bus, 
Crossbar, and Omega networks) are evaluated [7]. Based 
on the obtained execution performance results, the Cross-
bar model is demonstrated better in terms of the meas-
ured number of frames per second than the Omega net- 
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Figure 3. Sesame software tools overview. 
 
work and common bus structures (about 5% faster than 
the Omega network) [7]. 

A lot of design space exploration has been so consid- 
ered for getting the optimal system design. For these 
medium complexity media applications, the performance 
evaluation is straightforward and very fast obtained. For 
all the used configurations, the obtained simulation times 
range from 5 to 10 seconds. This is many orders of mag- 
nitude faster than using classical RTL-level simulators 
and is very acceptable for design space exploration. Given 
this, the next sections aim to further demonstrate the ef-
fectiveness and the flexibility of the Sesame methods and 
tools even for the design of very complex media applica-
tions. This will be performed by using this methodology 
for the design and performance evaluation of a H.264/ 
AVC reference encoder targeting multiple heterogeneous 
multiprocessors platforms. 

 
4. The H.264/AVC Video Encoder Case 

Study 
 
The H.264/AVC has been designed with the goal of ena- 
bling significantly improved compression performance 
relative to all existing video coding standards [9]. Such a 
standard uses advanced compression techniques that in 
turn, require high computational power [10]. Implemen- 
ting a H264 video encoder for an embedded SoC requires 
very high computation power to achieve real-time en- 
coding. This section first presents a complexity analysis 
of the H.264/AVC reference encoder in comparison to 
M-JPEG application case. Then, it reviews a performed 
previous work to get an optimized parallel model of the 
encoder using an appropriate high-level independent target- 
architecture parallelization approach.  
 
4.1. Complexity Analysis of the H264/AVC 

Reference Video Encoder 
 
The complexity of the H.264/AVC encoder application 
depends on the algorithm, the encoding option tools, the 
input sequences and the architecture in which it is im- 

plemented. In a previous work [15], we performed a 
complete high level performance and complexity analy-
sis of a H.264/AVC video encoding application. The 
experiments have been performed on a General-Purpose 
Processor (GPP) 1.6 GHZ INTEL Centrino platform 
using the JM 10.2 software reference version [16] with a 
main profile @ level 4. For an optimal balance between 
the encoding efficiency and the implementation cost, a 
proper use of the H.264/AVC tools has been proposed to 
maintain an acceptable performance while considerably 
reducing complexity. Using the obtained optimal encod-
ing tools for a very low bit rate 7 frames QCIF “bridge 
far” sequence, the computing time for the encoding pro- 
cess on the GPP platform is of 15.2 seconds. The associ-
ated complexity in frames per second is of 2.16 fps. For 
this test sequence, the peak memory usage is also meas-
ured using the “memprof” GNU profiler [17]. For the 
used sequence, the obtained peak memory cost is of 5.02 
MB. This result refers to none optimized source code. 
Applying platform independent memory optimizations 
through C level code transformations may be used to get 
an optimized memory and algorithmic version of the 
reference code. 

In comparison to the Motion JPEG application pre- 
sented in Section 2, the non optimized H.264/AVC ref-
erence encoder is about two to three orders of magnitude 
more complex in terms of computing time and memory 
usage. To illustrate this, the dynamic instruction distribu-
tion by operation types have been obtained for both ap-
plications using an “objdump” utility and are reported in 
Figure 4. For the H.264/AVC, the dominated instruc-
tions types are the “arithmetic” and the “Memory” (Load/ 
Store) operations. Actually, these results confirm the 
very high complexity of this new standard, the potential 
memory allocation needed and the high volume of com-
putation required. The SoC implementation of such a 
complex application will point out the outcome of the 
Sesame methodology for the design of such complex 
systems. 
 
4.2. High Level Parallel Specification of a 

H.264/AVC Video Encoder 
 
To speedup the computing of this encoder, a multiproce- 
ssor implementation is probably needed. Prior to this im- 
plementation, the sequential encoding reference C source 
code [16] should be transformed into concurrent KPN 
tasks communicating via dedicated FIFO channels. The 
goal of this step is to extract the available task-paralle- 
lism from the application by splitting compute nodes as 
far as possible to get a valid parallel KPN model of the 
encoder. For an optimal design flow, it is our aim to pro- 
vide a parallel specification of the application which 
forms a good starting point for mapping onto different 
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Figure 4. The dynamic instruction distribution by operation types for both the H.264/AVC and M-JPEG applications. 
 
systems-on-chip platforms. To do so, we proposed in a 
previous work a high-level independent target-archite- 
cture parallelization approach [18,19] to get an optimized 
parallel model of the encoder with the best computation 
and communication workload balance. 

The proposed parallelization approach is based on the 
use of the KPN/YAPI [20] parallel programming models 
of computation, and the selection of a fine-grain Macro- 
Block communication granularity level. The key charac- 
teristic of the approach is the simultaneous exploration of 
the two predominant concepts of parallelism; the data- 
level partitioning and the task-level splitting and merging. 
This means that communication and computation work- 
load analysis are needed to provide a global guidance 
when optimizing concurrency between processes. In ge- 
neral, when the concurrency bottlenecks are identified, 
task and data levels splitting and/or merging are per- 
formed for better distributing the computing workload 
over the processes. For the most computational-expen- 
sive tasks, data splitting is proposed for a better concur- 
rency optimization [18]. 

Given the proposed parallelization approach, the Task 
Level Parallelism (TLP) is first considered. The goal of 
this step is to extract the available task-parallelism by 
splitting compute nodes as far as possible to get a first 
starting valid parallel KPN model of the encoder. For 
this case, the encoder block diagram [21] has served as a 
starting point for extracting the task-level parallelism. 
Then to get a parallel implementation of the encoder with 
the best computation and communication workload bala- 
nce, different steps of task level splitting or merging and 
data level splitting are used to derive in a structured way 
a final optimized model. Further details on the different 
steps used are given in [19]. Finally, the optimal model 
obtained is given in Figure 5. This figure shows that the 
low-complexity DCT, Quantification, Decoder, and Fil- 
ter modules have been merged into only one “Dct_Dec_ 
Filter” process. For the most computational-expensive 
Motion estimation and compensation “Mec” task, a data 

partitioning strategy has been considered to distribute the 
computing of this process into three “Mec1”, “Mec2”, 
and “Mec3” processes with tripling of the associated 
Input/Output FIFO channels.  

Given the “Gprof” [22] computation profiling results 
of the obtained parallel model reported in Figure 6, it is 
clear that the final proposed model has good concurrency 
properties with an acceptable computation and commu- 
nication workload balance. 

 
5. System Level Performance Evaluation of 

the H.264/AVC Video Encoder 
 
This section will show up the effectiveness and the flexi- 
bility of the Sesame system level design methodology for 
efficient and rapid design space exploration of such com- 
plex systems. For this, the base target architecture and 
the mapping strategy are first presented. The sesame sys- 
tem level design is then used for performance evaluation 
and design space exploration of the encoder targeting 
multiple multiprocessors architectures. Finally, the effi- 
cacy of the methodology is evaluated for the design of 
very complex systems. 
 
5.1. The Base Target Architecture and Mapping 
 
Starting with the Sesame system-level design methodo- 
logy presented in Section 2, three software model speci- 
fications are required: the application process network 
model, the target architecture model, and the mapping 
model of the application onto the architecture. For this, 
the optimized parallel model of the H.264/AVC encoder 
of Figure 5 is first ported to the Sesame framework. This 
has been performed by transforming the previously vali- 
dated YAPI model into a C++ PNRunner network model. 
The obtained network model is then simulated with the 
PNRunner simulator to generate a computational and 
communication event traces of the application execution, 
called trace-event queues [6]. 
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Figure 5. Proposed optimized parallel KPN model of the H.264 encoder. 
 

 

Figure 6. Computation workload profiling of the final parallel model. 
 

Parallel to the application model specification, the tar- 
get architecture is modeled with the Pearl object-based 
simulation language. The Sesame environment provides 
a small library of architecture black-box base models: 
processing cores, a generic bus, a generic memory, and 
several interfaces for connecting these base model buil- 
ding blocks. Once a target architecture model is validated, 
a trace-driven co-simulation of the application events 
traces queues mapped to the architectural components is 
carried out. Such a co-simulation requires an explicit 
mapping of the KPN processes and channels to the par- 
ticular components of the target architecture. More than 
one KPN process can be mapped to a same processor as 

the system simulator automatically schedules the events 
from the different queues. 

In our case, the base target architecture is given in Fig- 
ure 7 that represents a multiprocessor platform commu- 
nicating with a shared DRAM memory through a com- 
mon bus. For this platform, we have used general pur- 
pose processors (assumed to be MIPS R3000), and as- 
sumed a conservative timing of 100 ns to read/write a 
64-bit word from/to DRAM. The instruction latencies for 
the MIPS R3000 microprocessors components were esti- 
mated using technical documentation. Communication 
between components is performed through buffers in 
shared memory. 
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Figure 7. H.264 encoder’s application to architecture mapping. 
 

For sufficient design space exploration, several plat- 
form models are used. The platforms differ by the num- 
ber of used processors. One platform is used with two pro- 
cessors; a second is with four and a third is tested with 
six processors. Given the optimized parallel model of the 
H.264/AVC encoder, the Sesame design space explora-
tion consisted in changing the mapping combination or 
adding another architectural component without touching 
the H.264 encoding parallel specification since this ap-
plication presents already good concurrency properties 
with an acceptable computation and communication 
workload balance [19]. When such a system modifica-
tion is performed, we have to recompile first the hard-
ware architecture, and then the entire system to regener-
ate the new YML files of the target architecture and map-
ping layers. Adding a new architectural component con-
sist in acceding through an “YMLEditor” YML graphical 
editor to the Sesame library of black-box components 
models and after that making by simple clicks its addition 
to the architecture model and its connection to the bus. 
The “YMLEditor” editor is also used to project quickly 
the application tasks and Kahn communications channels 
on the different architecture resources.  

Mapping application processes to this platform has 
been decided explicitly given the obtained computation 
and communication load distribution results of Figure 6. 
For the bi-processor platform example, the total compu- 
tation load has been distributed between the two proces- 
sors. The “Mec1”, “Mec2”, and “Dct_Dec_Filter” proc- 
esses are mapped to one, and all the others to the second 

processor. The mapping strategy used with the four pro- 
cessors platform is showed in Figure 7. In this case, first, 
the most complex “Mec1”, “Mec2”, “Mec3”, and “Intra- 
Pred” tasks are mapped separately to each used core to 
guarantee a competitive execution between them. Then, 
the “Dct_Dec_Filter” process is added to run with the 
“Mec2” process on the same core. The “Vlc” is also ad- 
ded to the “Intra-Pred” process and is mapped to the 
fourth processor. 
 
5.2. System Level Performance Evaluation and 

Design Space Exploration  
 
After having mapped the PNRunner optimized H264/ 
AVC network model to the different used platforms with 
two four and six microprocessors, the performance ana- 
lysis step is performed by system-level simulations. In all 
the experiments, the input test video sequence consists of 
YUV frames captured in a QCIF resolution of 176 * 144 
pixels. The simulation results of the QCIF “Bridge-close” 
sequence H.264/AVC encoding process are obtained for 
the different used platforms and are presented in the fol- 
lowing Figure 8. It is clear from this figure, that the en- 
coding performances obtained in frames per second are 
getting better linearly when the number of simulated 
microprocessors is increased. For each case, as the ap- 
plication model is considered to be optimal, the execu- 
tion/communication performances gain may be improved 
by changing the mapping policy or/and the platform ar-
chitecture. 
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Figure 8. H.264/AVC encoding performances vs. simulated 
processors with the common bus structure. 

 
To modify the architecture, a designer can also explore 

the use of other communication models or enhance the 
architecture with hardware components using appropriate 
HW/SW partitioning. For example, for the four-proce- 
ssor platform with the common bus structure, perfor- 
mance numbers for the execution/communication work- 
load is obtained for each used architecture component. 
The obtained results are shown in Figure 9. For each 
component, a bar shows the breakdown of the time spent 
on reading/writing, being busy and being idle. Given this 
figure, it is obvious that the computation cost is much 
more important than the time spent in reading/writing 
from/to the shared memory. The communication and 
computation loads are nearly balanced for all the used 
components. Such a result confirms the good concur- 
rency properties of the proposed optimized parallel ap- 
plication model and the appropriate used mapping policy. 
However, the times being idle are too much important in 
comparison with the times being busy for all the archi- 
tecture components. This has caused probably a substan- 
tial degradation of the final encoding performances. 
Given the important amount of data communicated be- 
tween processes for this encoding process, it is clear that 
the common memory bus structure constitutes a serious 
communication bottleneck. Indeed, the very important 
data dependency between processors requires a potential 
memory access and allocation for the read/write opera- 
tions. For a common-bus-based multiprocessor architec- 
ture, this causes a saturation of bus and thus a lot of time 
spent in waiting to read/write data from/to other compo- 
nent. 

For further design space exploration and in order to 
reduce the communication bottleneck observed for the 
common-bus-based architecture, others inter processors 
communication structures and topologies should be 
tested. In the Sesame framework, a Crossbar and an 
Omega network Pearl model structures are implemented 
[7]. Given this, we selected in our experiments the cross-

bar switch structure in replacement of the common bus 
model. A Pearl simulation model of a 4 × 4 crossbar 
switch is implemented, as shown in Figure 10. For the 
obtained architecture of Figure 10, the processors com- 
municate with each other over the crossbar. The memory 
is distributed per processor and resides in the Virtual 
Buffers (VBs). Data is written to the virtual buffer asso- 
ciated with the writing processor. Only reads are for- 
warded over the crossbar, and, it is possible to use it for 
write calls also. The performance results are obtained for 
the different used platforms and are presented in the fol- 
lowing Figure 11. As shown in Figure 11, the use of the 
Crossbar structure come up with a substantial perform- 
ance encoding gain in frames per second (fps) in com- 
parison with the common bus architecture. In effect, we 
achieved the 9.6 fps with six processors (MIPS R3000) 
connected via a 4 × 4 crossbar communication model. In 
addition, for the four-processor platform, the execution/ 
communication workload is obtained for each used com- 
ponent. The obtained results are reported in Figure 12. 
The performance numbers statistics of Figure 12 clearly 
show that the components spend much more time being 
busy doing work and more less time waiting for reading 
and writing. This confirms the performance gain ob-
tained. 

 
5.3. Evaluation of the Methodology for Rapid 

Design Space Exploration  
 
The Sesame framework has been used for the design of a 
very complex media application verifying constraints. 
Given the complexity of case studied, the previous sec- 
tion outlined the difficulty to evaluate one design using 
detailed clock cycle-accurate simulators. For the system 
level design case, the simulation times did not take more 
then 5 minutes for all the used configurations. Measure- 
ments have been done on a General-Purpose Processor 
(GPP) platform based on an INTEL Centrino 1.6 GHZ 
with 512 MB RAM memory running a Linux operating 
system. In comparison to classical RTL-level simulators, 
this is many orders of magnitude faster and is acceptable 
for design space exploration. 
 

 

Figure 9. Reading-Writing/Execution/Idle statistics for the 
common-bus-based architecture. 
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Figure 10. Used Crossbar-structure-based four processors 
architecture model. 
 

 

Figure 11. H.264 encoding performances vs. simulated 
processors with the Crossbar model. 
 

 

Figure 12. Reading-Writing/Execution/Idle statistics for the 
crossbar-model-based architecture. 
 

Due to the simplicity and expressive power of Ses-
ame’s Pearl simulation language, modeling all the plat-
form architectures has been rapidly performed. Indeed, 
the system-level modeling relieves the designer from low 
level implementation details. Performance evaluation at 
high abstraction levels makes it possible to control the 
speed, required modeling effort, and attainable accuracy 
of the simulations. This enables to efficiently explore the 
large design space in the early design stages. Applying 
more detailed models at a later stage allows focused ar-
chitectural exploration. 

Finally, we find that the Sesame methodology facili-
tates the performance analysis of embedded systems ar-
chitectures in a way that directly reflects the Y-chart de-
sign approach. Essential in this modeling methodology is 
that an application model is independent from architec-

tural specifics, assumptions on hardware/software parti-
tioning, and timing characteristics. Thus, the application 
is studied in isolation by means of a functional (behav-
ioral) software model written in a high level language. 
Given the complexity of the case studied, an appropriate 
parallelization methodology has been separately and un-
dependably proposed to get the optimal application 
model with the best computation and communication 
workload balance [19]. This results in a good starting 
model with primary estimations of its performance re-
quirements. As a result, a single optimally and separately 
designed application model has been used to exercise 
different mappings onto a range of architecture models. 
This clearly demonstrates the strength of decoupling ap-
plication models and architecture models and it enables 
the reuse of both types of models. 
 
6. Conclusions 
 
In this paper, we motivated the use of the Sesame/Arte- 
mis system-level design methodology for efficient archi- 
tectural exploration of the increasing complexity hetero-
geneous embedded media systems. The case studied is 
concerned with an optimal H.264/AVC encoder SoC 
design verifying constraints. The complexity analysis of 
the H.264/AVC reference encoder confirmed the very 
high complexity of this new standard, the potential 
memory allocation needed and the high volume of com-
putation required. For the design of this complex media 
system, the outcome, the effectiveness and the flexibility 
of the methods and tools provided by the Sesame meth-
odology have been clearly illustrated. Both modeling and 
mapping stages of the Sesame design flow are explored. 
A lot of design space exploration has been considered for 
getting an optimal design. For all the used configurations, 
the simulation times did not take more then 5 minutes for 
all the used configurations. In addition, due to the sim-
plicity and expressive power of the architecture specifi-
cation language, modeling all the proposed platform ar-
chitectures has been rapidly performed. This enables to 
efficiently explore the large design space in the early 
design stages. 
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