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Abstract 
It is shown that a single-particle wave function Ψ, obtained (Landau, 1930) as a solution of the 
Schrödinger equation (for a charged particle in a homogeneous magnetic field), and an operator 

relation of ˆ ˆp mv=  (or equation 
ˆˆΨ Ψ

d
d
xp m
t

= ) lead to the dynamic description of one-dimen- 

sional many-particle quantum filamentary states. Thus, one can overcome the problem, connected 
with the finding of many-body wave function as solution of the Schrödinger equation with a very 
tangled Hamiltonian for multi-body system. An effect of nonlocality appears. The dependence of 
the linear density of particles on the magnetic field and on the number of particles in the one-  
dimension filamentary multiparticle quantum structure is calculated. 
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1. Introduction 
There is a set of interesting questions which have no clear answers. Why is our world not the continuous 
medium of particles? Why are there infinitely great variety of structures? The micro structures are the corner- 
stones of all macro structures. At the same time, the micro structures are described by quantum theory. There- 
fore, it would be interesting to find the answer to a question: what is the cause for arising of the quantum struc- 
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tures? Why are ones of them stable, whereas others exist during only very short time interval? Here, we try to 
find the beginning of the answer to these questions. 

Our attempt will be done for a particular case. The subject of our investigation is the motion of charged 
particles in a spatially homogeneous magnetic field. In the non-relativistic quantum mechanics, the Schrödinger 
equation for a particle in the homogeneous magnetic field was decided long ago (Landau, 1930), and the wave 
function and the energy spectrum were obtained [1]. In [1], it is shown also that an energy of the particle is 
quantized only in the ( ),x y  plane transverse to the B vector ( 0xB = , 0yB = , zB = B ) of the external 
homogeneous magnetic field (whereas along the magnetic field (z axis) and along the x axis, the momentum 

,z xp p  projections of particle can be varied continuously). In [1], the wave function ( )n yΨ  for description of 
the motion along the line (axis y) in this ( ),x y  plane coincides with the wave function of a linear oscillator 
with quantum number of n. We use these theoretical results [1]. For our investigation, it is also extremely 
important to interpret the wave function strictly within the theory of statistical quantum ensembles [2]. Below, in 
Section 2, it is discussed in detail and allows us to consider the concept of motion of statistical quantum 
ensemble. In Sections 3-4, for dynamical description of its motion in the plane transverse to the vector of the 
external homogeneous magnetic field we propose to use the well-known relation between the operators of the  

momentum, velocity, coordinate, mass, and time 
ˆdˆ ˆ

d
yp mv m
t

= =  [2]. This operator relation leads to an equ- 

ation 
ˆdˆ

dn n
yp m
t

Ψ = Ψ . The solutions of this equation present the greatest interest. These solutions are obtained 

and discussed in Sections 4-5. 
Obtained trajectories (dependence of coordinates on time) have a probabilistic nature (because of the pro- 

babilistic nature of the wave function). However, namely theirs geometry is most informative and important for 
applications. In Section 4, it is shown that every trajectory is one-dimensional trajectory which represents a 
sequence of segments at the ends of which there are quantum turning points [3] arising in the solution of the  

proposed equation, 
ˆdˆ

dn n
yp m
t

Ψ = Ψ . Number of segments coincides with the quantum number n of the wave  

function nΨ  (see Figure 1). 

In the classical turning point, the velocity of electron is equal to zero 
d 0
dy
yv
t

 = = 
 

, that is, in the turning  

point the sign of velocity is changed on the opposite one [4]. Thus, the quantum turning points at the ends of 
every segment create the conditions for confinement of charged particle, oscillating within the segment between 
these two turning points. Electrons obey the Fermi-Dirac statistics. All this creates conditions for mutual 
isolation of segments and the possibility of filling them with particles according to the principle: one segment 
contains one particle or contains no particles. Each wave function nΨ  corresponds to the fixed energy nE  [1] 
and to the number of n of segments, isolated from one another (Section 4). Each isolated segment can be filled 
with one fermion (electron), that is, the number of electrons filling these segments varies from 1 to n. The 
collection of all these segments corresponds to a single trajectory, described by a wave function nΨ , corre- 
sponding to the fixed energy nE , which thus is shared between the indistinguishable electrons. Therefore the 
energy per electron decreases with increasing of the number of electrons (from 1 to n). Thus for each electron, in 
terms of energy it is most favourable to be in one segment and to oscillate between two quantum turning points, 
if all other segments already have been filled with electrons. 

So in our scheme, in the ( ),x y  plane transverse to the external homogeneous magnetic field B  ( 0xB = , 
0yB = , zB = B ) one can look for the linear quantum structures, the appearance of which in terms of energy is 

favourable for the charged fermions (electrons). 
The conditions for the motion of the center (the point 0y =  or 0ξ =  in Figure 1) of linear quantum 

structure in the ( ),x y  plane transverse to homogeneous magnetic field are the conditions for the motion of the 
center of linear quantum oscillator in ( ),x y  plane transverse to homogeneous magnetic field. These conditions 
have been obtained by Landau in 1930 [1] and discussed here in Section 5. 

It would be incorrect to apply the concept of a quantum ensemble for a group of interacting theoretical 
electrons, where each electron would have its own individual wave function. In order to avoid this mis- 
understanding, in Section 2 (according to [2]), we recall the notion of quantum statistical ensemble and discuss 
an application to our quantum systems. In our approach, the electrons are indistinguishable. Their trajectories are  
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Figure 1. Segments (endpoints of theirs are connected by 
red arc) of a trajectory of linear quantum oscillator for the 
magnitudes of a quantum number of 1,2,3,4n =  (Sect.4). 
Numerical values for ξ  coordinates of the ends of seg- 
ments are determined by an equation of motion along a 
trajectory. nξ∆  is average length of a segment. y is coor- 
dinate in metrical space. For the movement in transverse 
magnetic field B ( 0xB = , 0yB = , zB = B ) the y0 para- 

meter becomes [1]: 0
cy

eB
=

 .                             

 

given by the wave function nΨ  of harmonic oscillator, which is used in the equation 
ˆdˆ

dn n
yp m
t

Ψ = Ψ , the  

solution of which is a trajectory consisting of the n isolated segments (see Figure 1). These trajectories are 
obtained from the wave function nΨ  and therefore have a probabilistic nature. We follow M. Born and A. 
Einstein [5], who believe that we are hardly ever able to describe the motion of a single real physical electron, 
but we are able to describe the motion of a quantum statistical ensemble [5]. That is what we are trying to do in 
our investigation. 

2. Wave Function 
In the experiment, we have a real particle, however in the quantum theory we can deal only with the statistical 
quantum ensemble. The quantum mechanics, formulated on the principles of the quantum ensembles, is des- 
cribed in [2], where the theoretical quantum ensemble is created by repetition of one process: one micro system 
(from an infinite set of absolutely indistinguishable micro systems) is put into one macro system (from an in- 
finite set of absolutely indistinguishable macro systems), which dictates condition for micro system in a quan- 
tum mechanical sense. All of these quantum states, obtained by this method, are named as quantum (statistical) 
ensemble which is described by one wave function ( )yΨ , which, thereby, has a profound statistical nature. 
This determination corresponds to M.Born’s and A.Einstein’s point of view, who interpret the wave function 
within the statistical theory: “In any sense, the wave function does not describe the state of one separated system. 
The wave function describes several systems, i.e. an ensemble of the systems” [5]. Thus, if we use the wave 
function to obtain the trajectory, this trajectory can have only a statistical nature and, in any case, can not 
describe the motion of one physical particle. This is trajectory of a statistical quantum ensemble. 

3. Trajectories of Statistical Quantum Ensemble 
To obtain the trajectory of a quantum ensemble, we use [6] well known relation between the standard quantum 
operators [2] 

ˆdˆ ˆ ˆ, .
d
yp v p
t

µ µ= =                                     (1) 

Here, p̂ , v̂ , ŷ  are operators of momentum, velocity, coordinates; µ  and t are the particle mass and time. 
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The wave function ( )yΨ  describes ensemble of statistical systems [2], for which by following (1) we can 
write an equation  

( ) ( )ˆdˆ .
d
yp y y
t

µΨ = Ψ                                    (2) 

For carrying out the mathematical calculations, we can choose the operator of coordinate ŷ  in a complex 
form ˆ eiy y δ= ⋅  where y is real coordinate, δ  is a complex phase [7], and, after completion of the calcul- 
ations, to return to area of real numbers, we put 0δ =  [7]. Therefore, we choose the operator of coordinate 
ˆ eiy y δ= ⋅ .  

This operator ŷ  and the operator of momentum dˆ
d

p i
y

= −   should be inserted into (2) 

( ) ( )
d d e

d d
iy yi y

y t
δµ

Ψ
− = Ψ                               (3) 

or 

( )
( )

d d e .
d

d

iy
i t y

y
y

δ

µ
Ψ

− =
Ψ 

 
 

                                 (4) 

In [6], for calculation of a trajectory, the other equation is used, namely it is ( )ˆd dt Reµ = Ψ Ψr p . There- 
fore, our trajectories and physical results do not appear in [6]; but, it is necessary to emphasize, that, in [6], the 
base principles for an idea for movement of a quantum statistical ensemble on a quantum trajectory are for- 
mulated. Unlike [8], our number of trajectories is limited by the quantum numbers. 

For calculation of a trajectory for movement of the linear quantum oscillator, it is necessary to insert its wave 
function ( )n yΨ  into Equation (4); here n is a number of quantum level. 

4. Application of the Method. The Linear Quantum Oscillator 
4.1. The Linear Quantum Oscillator with n = 0 
For arbitrary value of n, the wave function of linear oscillator is [1] [2] 

( ) ( ) ( ) ( )
2

2 22

0

1 d ee , 1 e ,
d2 ! π

n
n

n n n nn
H H

n y

ξ
ξ ξξ ξ ξ

ξ

−
−Ψ = = −

⋅ ⋅
               (5) 

where 
0

y
y

ξ = , 0y
µω

=
 . 

For 0n =  the function is ( )
21 4

2
0 e

π
y

y
µωµω Ψ =  

 




 [1] [2]. Therefore for ( )0 yΨ  the differential equation 

(4) becomes 
dd e ,iyi t
y

δω =                                        (6) 

where ω  is eigenfrequency of oscillator. To determine the integral dependence of y coordinate on time t we 
should take a definite integral between two points ( ( )1 1,y t  and ( )2 2,y t ) of quantum trajectory [6]: 

2 2

1 1

dd e .
t yi
t y

yi t
y

δω =∫ ∫                                    (7) 

According to [9], the integrable function should has finite value in any point lying between the points ( )1 1,y t  
and ( )2 2,y t . Therefore, the point 0y =  should not be within the interval [ ]1 2,y y  of integration. Otherwise, 
the infinity arises in the equation. Therefore, if the point 0y =  lies outside the interval [ ]1 2,y y  of integration, 
we obtain 
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( ) ( )
e

2 2
2 1 2 1

1 1

e ln or ln .

i

i y yi t t i t t
y y

δ

δω ω− = − =                    (8) 

Let us determine the complex variables ( )2 1z i t tω= −  and 
e

2

1

i

yy
y

δ

= . According to the rules of complex  

variables [7], an Equation (8) can be rewritten as lnz y=  or ezy = , that is  

( )2 1

e
2

1

e .

i

i t ty
y

δ

ω −=                                     (9) 

An equality of real parts of Equation (9) gives equation1 

( )2
2 1

1

cos .
y t t
y

ω= −                                  (10) 

Thus, the movement of a quantum oscillator with a quantum number of 0n =  between the points ( )1 1,y t  
and ( )2 2,y t  occurs under the harmonic law (10). Let us emphasize, that the point 0y =  is a turning point [3] 
[4], where the velocity equals d d 0y t = , that is, in this point the velocity changes its direction on the opposite 
one. Therefore, a quantum statistical ensemble can be only in one of two areas, that is, in the area of 0y >  or 
in the area of 0y < , which have infinite lengths. Therefore for realisation of this quantum state 0n =  it is 
necessary to have unlimited area of space. This condition, seems, can put some restriction on realisation of states 
with 0n =  in the real physical sample2 with its finite size on the ( ),x y  plane, and so, they will not be con- 
sidered here. 

The result (10) can also be expressed in the variables which are used by authors [1] [2] 

0
0

, .y y
y

ξ
µω

= =
                                  (11) 

For example, for these variables 0, yξ  and 0n = , the wave function takes more convenient form  

( )
2

2
0

0

1 e
πy

ξ

ξ
−

Ψ = . 

4.2. The Linear Quantum Oscillator with n = 1 
At the trajectory calculation, we will follow an algorithm described in Section 3, use the substitution (11) which 
facilitates the mathematical calculations. In this case, according to (11), we should name ξ  as a coordinate 
along a trajectory. 

For n = 1 the function (5) is ( )
2

2
1

0

1 e 2
2 πy

ξ

ξ ξ
−

Ψ = ⋅ ⋅ . Therefore, for ( )1 ξΨ  the differential Equation 

(4) is  
2 2

2 2 2
0 2

d de e e or e d d .
dd 1

i iy i i t
t

ξ ξ
δ δξ ξµ ξ ξ ξ ω

ξ ξ
− −    

    = − ⋅ ⋅ = −
    −     


           (12) 

After integration of (12) between the points ( )1 1, tξ  and ( )2 2, tξ  of the trajectory we obtain [10]  

( ) ( )2 1

e
2 2
2 2

2 12 2
1 1

1 11e ln or e .
2 1 1

i

i t ti i t t

δ

ωδ
ξ ξ

ω
ξ ξ

−
  − −    − = − − =    − −      

             (13) 

 

 

1The module in the right-hand part of (9) is a result of the existence of module in the left-hand part. 
2However, in our approach we do not impose any boundary condition. 
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The real part of secondary equation in (13) is3 

( )( )
2
2

2 12
1

1
cos .

1
t t

ξ
ω

ξ

−
= −

−
                                (14) 

From (12)-(14), we should see that ξ = ±1 are coordinates of two turning points (where the velocity d 0
dt
ξ
= ), 

which form the segment where a quantum statistical ensemble can be trapped (see Figure 1). Therefore, for the 

linear quantum oscillator with a quantum number of 1n =  (see Figure 1), the function ( )
2

2
1

1

1
f

ξ
ξ

ξ

−
=

−
 on  

the coordinate ξ  oscillates (see (14)) within the interval ( )1; 1− + . 

4.3. The Linear Quantum Oscillator with n = 2 

For 2n =  the function (5) is ( ) ( )
2

22
2 2

0

1 e 4 2
2 2 πy

ξ

ξ ξ
−

Ψ = ⋅ ⋅ −
⋅

. Therefore, for ( )2 ξΨ , the differential 

Equation (4) is 

( ) ( )
2 2

2 2 22 2
0

d de e 4 2 e 4 2
dd

i y i
t

ξ ξ
δ ξµ ξ ξ

ξ
− −    

    = − ⋅ ⋅ − ⋅ ⋅ −
        

             (15) 

or 
2

3

2 1e d d .
5 2

i i tδ ξξ ω
ξ ξ
⋅ −

= −
⋅ − ⋅

                                 (16) 

After integration of (16) between the points ( )1 1, tξ  and ( )2 2, tξ  of the trajectory we obtain [10]  

( )
( ) ( ) ( )

2 5
1 52 2 2

2 1 2
2 1

5e ln , .
2

i F
i t t F

F
δ ξ

ω ξ ξ ξ
ξ

 
= − = − ⋅  

 
               (17) 

From the left-hand equality in (17), we obtain 

( )
( )

( )2 1

e
2 2

2 1

e .

i

i t tF
F

δ

ωξ
ξ

− 
=  

 
                                   (18) 

The real part of (18) is4 

( )
( ) ( )( )2 2

2 1
2 1

cos .
F

t t
F

ξ
ω

ξ
= −                                 (19) 

From (16)-(19), we should see that the points 5
2

ξ = ±  and 0ξ =  are three turning points (where the 

velocity d 0
dt
ξ
= ), which form two segments, isolated from one another. In each of them a quantum statistical 

ensemble can be trapped (see Figure 1). 

There is approximation 5 1.6
2

± ≈ ± . Therefore, for the linear quantum oscillator with a quantum number 

 

 

3The module in a right-hand part of (14) is a result of existence of module in the left-hand part of (14). 
4The module in a right-hand part of (19) is a result of existence of module in the left-hand part of (19), see right-hand equality in (17). 
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2n =  (see Figure 1), the function ( ) ( )
( )

2

2 1

F
f

F
ξ

ξ
ξ

=  on the coordinate ξ  oscillates (see (19)), if the ξ  vari-  

able is changing within only one of two intervals: ( )1.6;0−  or ( )0;1.6 . 

4.4. The Linear Quantum Oscillator with n = 3 
For 3n = , the differential Equation (4) is  

( ) ( )
2 2

2 3 32 2
0

d de e 8 12 e 8 12
dd

i y i
t

ξ ξ
δ ξµ ξ ξ ξ ξ

ξ
− −    

    = − ⋅ ⋅ − ⋅ ⋅ ⋅ − ⋅
        


                 (20) 

or 
3

4 2

2 3e d d .
2 9 3

i i tδ ξ ξξ ω
ξ ξ

−
= −

− + −
                                 (21) 

After integration of (21) between the points ( )1 1, tξ  and ( )2 2, tξ  of trajectory we obtain [10]  

( )
( ) ( )3 2

2 1
3 1

e ln ,i F
i t t

F
δ ξ

ω
ξ

 
= −  

 
                                  (22) 

where 

( ) 2 2
3

9 57 9 57 57 3, .
4 4 4 57

K K

F Kξ ξ ξ
− +

±
+ − ±

= − ⋅ − =                      (23) 

From (22), we have 

( )
( )

( )2 1

e
3 2

3 1

e .

i

i t tF
F

δ

ωξ
ξ

− 
=  

 
                                       (24) 

The real part of (24) is5 

( )
( ) ( )( )3 2

2 1
3 1

cos .
F

t t
F

ξ
ω

ξ
= −                                     (25) 

From (21)-(23), we should see that the points 9 57
4

ξ ±
= ±  are four turning points (where the velocity 

d 0
dt
ξ
= ), and so trajectory has three segments, isolated from one another. In each of them, a quantum statistical 

ensemble can be trapped (see Figure 1). 

There are approximations 9 57 9 570.60, 2.03
4 4

− +
± ≈ ± ± ≈ ± . Therefore, for the linear quantum 

oscillator with a quantum number of 3n =  (see Figure 1), the function ( ) ( )
( )

3

3 1

F
f

F
ξ

ξ
ξ

=  on the coordinate ξ   

oscillates (see (25)), if the ξ  variable is changing within only one of three intervals: ( )2.03; 0.60− −  or 
( )0.60; 0.60− + , or ( )0.60; 2.03+ + . 

4.5. The Linear Quantum Oscillator with n = 4 
According to (5), for 4n =  the differential Equation (4) is  

 

 

5The module in a right-hand part of (25) is a result of existence of module in the left-hand part of (25) (see (23)). 
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( ) ( )
2 2

2 4 2 4 22 2
0

d de e 16 48 12 e 16 48 12 ,
dd

i y i
t

ξ ξ
δ ξµ ξ ξ ξ ξ

ξ
− −    

    = − ⋅ ⋅ − ⋅ + ⋅ ⋅ − ⋅ +
        


         (26) 

or 
4 2

5 3

4 12 3e d d .
4 28 27

i i tδ ξ ξξ ω
ξ ξ ξ

− +
= −

− + −
                              (27) 

After integration of (27) between the points ( )1 1, tξ  and ( )2 2, tξ  of the trajectory, we obtain  

( )
( ) ( )4 2

2 1
4 1

e ln ,i F
i t t

F
δ ξ

ω
ξ

 
= −  

 
                                  (28) 

where 

( )
2

2 91 9 4 2
4

2

7 22
424 28 27 , .

7 22 9 22
2

K

F K
ξ

ξ ξ ξ ξ
ξ

−
−

= − + =
+

−
                 (29) 

From (28), we obtain 

( )
( )

( )2 1

e
4 2

4 1

e .

i

i t tF
F

δ

ωξ
ξ

− 
=  

 
                                      (30) 

The real part of (30) is  

( )
( ) ( )( )4 2

2 1
4 1

cos .
F

t t
F

ξ
ω

ξ
= −                                    (31) 

From (27)-(29), we should see that the points 0ξ =  and 7 22
2

ξ ±
= ±  are five turning points (where the 

velocity d 0
dt
ξ
= ), and so trajectory has four segments, isolated from one another. In each of them, a quantum 

statistical ensemble can be trapped (see Figure 1). 

There are approximations 7 22 7 221.07, 2.41
2 2

− +
± ≈ ± ± ≈ ± . Therefore, for the linear quantum 

oscillator with a quantum number of 4n =  (see Figure 1), the function ( ) ( )
( )

4

4 1

F
f

F
ξ

ξ
ξ

=  on the coordinate ξ   

oscillates (see (31)), if the ξ  variable is changing within only one of four intervals: ( )2.41; 1.07− −  or 
( )1.07;0.0− , or ( )0.0; 1.07+ , or ( )1.07; 2.41+ + . 

5. Multiparticle Oscillator 
5.1. Is Filamentary Structure the “Condensate”? 
In Section 4, it is shown that a trajectory of one-dimensional quantum oscillator, described by wave function 

nΨ  [1] with a quantum number of n, is a set of n segments which are isolated one from another (Figure 1), that 
is, a quantum turning points at the ends of each segment create an isolation of segments one from another. In 
that case, two fermions (electrons) can be in these two isolated segments. 

Therefore, for any constant quantum number of n, the isolated segments can be filled with electrons like it is 
shown in the Figure 2. 

Thus, a linear quantum oscillator with quantum number of n is described by the wave function nΨ  which 
corresponds to the energy nE  [1] and, simultaneously, corresponds to the number of n of segments, isolated  
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Figure 2. The possible schemes of filling with electrons (red circles) of isolated seg- 
ments (see Figure 1) of trajectory for a linear quantum oscillator with a quantum number 

of 1,2,3,4n = . 1
2e

E n mω−

 = + 
 

  is the energy per one electron in given scheme of 

filling with the number of m of electrons. Here eB
c

ω
µ

=  is cyclic frequency of electron 

in external transverse magnetic field B ( 0xB = , 0yB = , zB = B ) [1].                      

 
one from another and filled with electrons. Therefore, for simplicity, we can suppose that the energy nE  of 
oscillator with quantum number of n can be shared between the electrons, which fill the segments of the 
oscillator (see 

e
E −  in Figure 2). 

For simplicity, we have neglected the spin term in the formula for energy nE  of linear oscillator [1]. There-  

fore in Figure 2, the energy per one electron is 
1
2e

E n mω−
 = + 
 

 , where m is the total number of the 

indistinguishable electrons, occupying segments of n-th level (in Figure 2 the value of m is changed from 1 to n) 

and 
eB

c
ω

µ
=  is cyclic frequency of electron at its movement in external transverse magnetic field B  [1]. If  

m n=  (all segments are filled), the energy per one electron is minimal, at fixed n (see 
e

E −  in Figure 2(c), 
Figure 2(g), Figure 2(o)). Therefore, more n means more favourable state for electron, if all segments are filled 
by other electrons (see 

e
E −  in Figure 2(c), Figure 2(g), Figure 2(o)). In that case, a trajectory of oscillator 

with quantum number of n begins being as some “condensate” states of n number of electrons which are isolated 
one from another, but being in one quantum filamentary structure, which has tendency to grow, whereas the  
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linear density of electrons in filamentary structure grows with growing n because of reduce of nξ∆  with 
growing n (see Figure 1, Figure 3 and Section 5.2). 

5.2. The Density of Filamentary Structure 
In Section 4, it is shown the number of segments, their average length6 

( )max min ,n n n nξ ξ ξ∆ = −                                       (32) 

and coordinates of their endpoints are strongly correlated with a quantum number of n (see Figure 1). Moreover, 
in Section 4 it was obtained, the value of nξ∆  decreases with growing n, that is, the density of filamentary 
structure grows with growing n. However, this result was calculated up to 4n =  only. 

To determine the value of nξ∆  for any fixed large quantum number of n, we need to solve complicated 
integrals (see Section 4). However, integration does not shift the points of divergence in (4). In order not to 
calculate these complicated integrals, we use recurrent relation for the ( )n ξΨ  function (5) (see [1])  

( ) ( ) ( ) ( )1

d
2 1 .

d
n

n nn
ξ

ξ ξ ξ
ξ +

Ψ
= Ψ − + Ψ                           (33) 

So, to find the points of divergence7 (the turning points) iξ  in equation (4) and then intervals iξ∆ , we 
should just find the values of ξ , in which there is correct equality  

( ) ( ) ( )12 1 0.n nnξ ξ ξ+Ψ − + Ψ =                                 (34) 

In (5), the functions of ( )nH ξ  are the Hermite polynomials. Their magnitudes and properties are well 
studied in mathematics [1]. However, any mathematical calculations of ( )nH ξ  for very large n represent a 
great technical difficulties (see Appendix A), to overcome that (hopefully) will be possible on a supercomputer. 
In Figure 3, there are results obtained on a personal computer using a conventional plotter. From Figure 3, one 
can see that the value of nξ∆  decreases rapidly with increasing quantum number of n. 

Now we should find linear density ( )1 ny∆  of filamentary structure in the metric space. In external tran- 

 

 

Figure 3. The points are the nξ∆  values calculated (32) for the fixed 
quantum numbers of n.                                               

 

 

6For example, min
4 2.41nξ = = −  and max

4 2.41nξ = =  (see Section 4.5 and Figure 1). 

7That is, the values of iξ  in which there is equality ( )d
0

d
n ξ
ξ

Ψ
= . 
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sverse magnetic field B , the electron moves with the frequency of 
eB

c
ω

µ
=  [1]. Therefore from (11) we can  

get 0y  and the average width of segment ny∆  already in metric space for the fixed quantum number of n  

0 0, ,n n n
c cy y y

eB eB
ξ ξ= ∆ = ⋅∆ = ⋅∆

                         (35) 

where nξ∆  are from Figure 1, (32), (34) or Section 4. 
The value of ny∆  (35) gives information concerning the average distance between two adjacent electrons 

(charged fermions) in filamentary structure (under the condition that every segment was already filled by 
electron, Figure 2(c), Figure 2(g), Figure 2(o), etc.). From (35), one can see that properties of ny∆  conform 
to properties of nξ∆  (Figure 3) but strongly depend on magnetic field B . In Figure 4, this dependence is  
demonstrated for different n. Thus, in one-dimensional filamentary structure, the linear density 1 ny∆  grows  
with growing B  and n (Figure 4). 

5.3. The Movement of Filamentary Structure 
The motion inside the one-dimensional filamentary structures has been calculated in Section 4. To describe the  

motion of filamentary structure as a whole, we will follow [1] and use the coordinate of its center as 0
xcp

Y
eB

= −   

(see coordinate 0y =  or 0ξ =  in Figure 1, Figure 2), which simultaneously is coordinate of the centre of 
linear quantum oscillator (see [1]). The 0Y  coordinate is constanta, if xp  does not change, that is, there is not 
any accelerating field along the x-axis. However, if constant electric field is present along the x-axis, the values 
of xp  and 0Y  will be changing. That is the motion in so-called crossed fields (electric and magnetic). 
However, electrons of filamentary structure are indistinguishable, that is, their quantum motion can not be cal- 
culated as it was done for classical electrons [11]. 
 

 

Figure 4. The dependence of the averaged length ny∆  (35) for n segments of the one- 
dimension filamentary structure (as a linear quantum oscillator with a quantum number of n) 
on the transverse magnetic field of B  ( 0xB = , 0yB = , zB = B ) at different n.                
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6. Conclusions 
To obtain more information concerning the quantum objects, we offer to use well-known relation between the  

operators of the momentum, velocity, coordinate, mass and time 
ˆdˆ ˆ

d
yp mv m
t

= =  [2], which leads to an equ- 

ation 
ˆdˆ

dn n
yp m
t

Ψ = Ψ , where nΨ  is wave function of a quantum system which we attempt to investigate. A  

wave function has to be treated only within the theory of quantum statistical ensembles (see [2] and Section 2). 
Therefore, solutions of this equation are the one-dimension trajectories of a quantum ensemble, described by the 

( )n yΨ  function in the metric space. These trajectories have a probabilistic character because they are obtained 
from the ( )n yΨ  function (Sections 1, 2). 

If a wave function has an oscillating form (as it is for the wave function of a harmonic oscillator at 1n ≥ ), 
the coordinates of its minimal and maximal values are the quantum turning points8 [3] which divide the particle 
trajectory into the number of n segments (Figure 1), isolated from each other. Therefore, Fermi-Dirac statistics 
allows to occupy these isolate segments by electrons on the principle: every segment has one or zero number of 
electrons. A quantum structure arises. 

In [1], it is shown that in the ( ),x y  plane transverse to the B  ( )0, 0,x y zB B B= = = B  external magnetic 
field, only along the y axis, there is quantization, that is, the linear quantum oscillator states occur. In our 
approach, this leads to formation of one-dimensional filamentary quantum structure, which can be created by 
any fermions. 

The movement of one-dimensional filamentary quantum structure (in the crossed electric and magnetic fields) 
is discussed in Section 5. 

The energy of oscillator is shared between electrons which form one-dimensional filamentary quantum struc- 
ture. Therefore, it seems interesting to investigate the possible correlations between the oscillations of energy 
per one electron (

e
E −  in Figure 2) and the number (or density) of particles and the external magnetic field B  

(Equation (35) and Figures 2-4). 
The dependence of average distance between the particles (of one-dimensional filamentary quantum structure) 

on the external transverse magnetic field B  and on the number of particles (provided that all segments are 
occupied by electrons) is calculated. It is given in Figure 4. 

The dependence, presented in Figure 4, is connected with the one, given in Figure 3 (see Equation (35)). The 
properties of nξ∆ , presented in Figure 3, are determined only by the properties of the ( )n ξΨ  wave function 
(see Appendix A), that is, the dependence (of ny∆  and nξ∆  on n), shown in Figure 3, Figure 4, is a 
quantum effect. 

Figure 2 shows that the quantum states, obtained in Section 4, can be filled by indistinguishable electrons. 
Thus, if two electrons within two segments of one incipient filamentary structure (Figure 5) are separated by big 
distance in metric space and oscillate (see Sections 4.1-4.5), they “know” (Section 5.1) concerning existance 
each other without visible interaction between them. It is like an effect of non-locality. 

In Section 5.1, it is discussed that an energy per one electron of filamentary structure is reduced with growing 
quantum number of n (Figure 2(c), Figure 2(g), Figure 2(o), etc.), that is, filamentary structure has tendency to 
grow. In Section 5.2, it is shown that the density of electrons grows with growing quantum number of n, that is, 
with number of electrons in filamentary structure (Figure 4). These properties of filamentary structure look like 
a gravitational attraction. 

Figure 4 gives information concerning the density of electrons in the one-dimension filamentary structure as 
a function of external transverse magnetic field B and of a quantum number of n (or of number of particles 
 

 
Figure 5. An incipient filamentary structure with big n as a sample of non-local behaviour 
of two electrons, far separated in metrical space, which “know” (Section 5.1) each con- 
cerning existence of other one without visible interaction between them.                              

 

 

8where the velocity takes the value d 0
dy

yv
t

= =  
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m n=  in filamentary structure). However, instead of electrons, the protons or nuclei could be considered (or 
any composite or elementary fermions). Thus, the dependence, presented in Figure 4, can open the way to 
nucleosynthesis. 

In Equation (35), there is no dependence of ny∆  on the particle mass µ . This dependence occurs only for a  

frequency 
eB

c
ω

µ
=  [1]. Therefore, Figure 2 and Figure 4 could open the way to trapping of any charged  

particles to manipulate with them. 
Offered approximation could be applied to investigate of two-dimensional structures in magnetic field. How- 

ever, these structures could be formed instantly and locally in any place where there is two-dimensional move-
ment of charged fermions in transverse homogeneous magnetic field. Change in the direction of the magnetic 
field leads to the collapse of one-dimensional quantum filamentary structures and to their instant formation in a 
new plane transverse to the new direction of the magnetic field. To the casual observer it looks like chaos (or 
“crazy” dance of particles) whereas, in fact, it is continuous transformation from one quantum structure to 
another. 

Therefore, investigation of local magnetic fields in different structures could be useful for understanding the 
nature of appearance of structures. 

The possible applications of offered approach could be found in [12], where one-dimensional filamentary 
multiparticle quantum structure was named as United Quantum Oscillator (UQO). 
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Appendix 
From Equation (4), one can see that the y (or ξ , see (11)) coordinates of turning points are determined by an  

equation d 0
dy
yv
t

= =  which means ( ) ( )d
0

d
n

n
ξ

ξ
ξ

Ψ
Ψ = . Therefore, the turning points are the points where  

there is an extremum of the ( )n ξΨ  function (that is, its minimal and maximal values). 
An Equation (5) shows identity of points of extremum for the ( )n ξΨ  and ( )nH ξ  functions. One of the 

properties of the ( )nH ξ  function is that, along the ξ -axis, the “density” of these points of extremum grows 
with growing n, and we obtain the Figure 3. Thus the dependence shown in Figure 3 reflects the properties of 
wave function. 

Equation (33) opens the way to calculate these points of extremum by an Equation (34), and then to obtain the 
dependence of nξ∆  on n for very large values of n. 

The computational problem is that the numerical coefficients of ( )nH ξ  function is ~1020 for 20n ≈ ,  
whereas it would be interesting to know the linear density of particles ( )nξ∆  for the value of 1510n ∼ . It  

could be useful information, related to the two-dimension electron density on the graphene surface, or connected 
with density of a two-dimensional plasma instability in the process of nucleosynthesis, or related with other 
collective phenomena. 
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