Journal of Applied Mathematics and Physics, 2015, 3, 797-801 00:0 Scientific
Published Online July 2015 in SciRes. http://www.scirp.org/journal/jamp ":’0 sﬁgﬁg:ﬁ:g
http://dx.doi.org/10.4236/jamp.2015.37097 ¢

A Strong Law of Large Numbers for
Set-Valued Random Variables in G, Space

Guan Li

College of Applied Sciences, Beijing University of Technology, Beijing, China
Email: guanli@bjut.edu.cn

Received 30 March 2015; accepted 23 June 2015; published 30 June 2015

Abstract

In this paper, we shall represent a strong law of large numbers (SLLN) for weighted sums of set-
valued random variables in the sense of the Hausdorff metric dy, based on the result of single-va-
lued random variable obtained by Taylor [1].
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1. Introduction

We all know that the limit theories are important in probability and statistics. For single-valued case, many
beautiful results for limit theory have been obtained. In [1], there are many results of laws of large numbers at
different kinds of conditions and different kinds of spaces. With the development of set-valued random theory,
the theory of set-valued random variables and their applications have become one of new and active branches in
probability theory. And the theory of set-valued random variables has been developed quite extensively (cf. [2]-
[7] etc.). In [1], Artstein and Vitale used an embedding theorem to prove a strong law of large numbers for
independent and identically distributed set-valued random variables whose basic space is R?, and Hiai
extended it to separable Banach space X in [8]. Taylor and Inoue proved SLLN's for only independent case in
Banach space in [7]. Many other authors such as Giné, Hahn and Zinn [9], Puri and Ralescu [10] discussed
SLLN's under different settings for set-valued random variables where the underlying space is a separable
Banach space.

In this paper, what we concerned is the SLLN of set-valued independent random variables in G, space.
Here the geometric conditions are imposed on the Banach spaces to obtain SLLN for set-valued random varia-
bles. The results are both the extension of the single-valued’s case and the extension of the set-valued’s case.

This paper is organized as follows. In Section 2, we shall briefly introduce some definitions and basic results
of set-valued random variables. In Section 3, we shall prove a strong law of large numbers for set-valued inde-
pendent random variables in G, space.

2. Preliminaries on Set-Valued Random Variables

Throughout this paper, we assume that (Q,.A4, ) is a nonatomic complete probability space, (X,||-]) is areal
separable Banach space, N is the set of nature numbers, K(X) is the family of all nonempty closed subsets
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of X,and K, (%) isthe family of all nonempty bounded closed convex subsets of X .
Let A and B be two nonempty subsets of X andlet 1R, the set of all real numbers. We define addi-
tion and scalar multiplication as

A+B={a+b:acAbeB},
AA={la:ae A}.
The Hausdorff metricon K(X) is defined by
d,(AB)= maX{S;L:ELQg la-b ”'S;ligiag la-b]p,

for A,BeK(X).Foran A in K(X),let || Al=d, ({0}, A). The metric space (K,(X),d,) iscomplete,
and K, (X) is a closed subset of (K,(X),d,) (cf. [6], Theorems 1.1.2 and 1.1.3). For more general hyper-

spaces, more topological properties of hyperspaces, readers may refer to a good book [11].
Foreach Ae K(X), define the support function by

s(x',A)=sup<x,a> x X,

acA
where X" is the dual space of X .
Let S™ denote the unit sphere of X", C(S") the all continuous functions of S*, and the norm is defined
as ||Vl =sup, -

The following is the equivalent definition of Hausdorff metric.
Foreach ABeK, (%),

d,, (A B) =sup{|s(x’,A)-s(x,A)|: X eS}.
A set-valued mapping F:Q — K(X) is called a set-valued random variable (or a random set, or a
multifunction) if, for each open subset O of X, F'(0)={wecQ:F(w)nO=J}c A.
For each set-valued random variable F, the expectation of F, denoted by E[F], is defined as
E[F]={[ fdu: feS:},
where fgfdy is the usual Bochner integral in L'[Q, X], the family of integrable X -valued random variables,

and S; ={f e L'[Q; X]: f(®) € F(w),ae.(x)}. This integral was first introduced by Aumann [3], called
Aumann integral in literature.

3. Main Results

In this section, we will give the limit theorems for independent set-valued random variables in G, space. The
following definition and lemma are from [1], which will be used later.

Definition 3.1 A Banach space X is said to satisfy the condition G, for some «,0<a <1, if there exists
amapping G:X — X  such that

(@ NGO 1=l %1
(i) GOx =l x|f*;
(i) |G(X)-G(Y) I Allx=y]||* forall x,yeX andsome positive constant A.

Note that Hilbert spaces are G, with constant A =1 and identity mapping G.
Lemma 3.1 Let X be a separable Banach space which is G, for some 0<a <1 and let {V,,V,,---\V,}

be single-valued independent random elements in X such that E[V,]=0 and E[|V, |[[*“]< for each
k=1,2,---,n. then

n
EQIV, +--+V, 1< ASEIIV, 1]
k=1
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where A is the positive constant in (iii).
Theorem 3.1 Let X be a separable Banach space which is G, forsome 0<a <1.Let {F,:n>1} bea

sequence of independent set-valued random variables in K, (%), such that E[F ]={0} foreach n.If

ZE[” Fj ”K]lm <
i=1

where ¢, (t) =t for 0<t<1 and ¢,(t)=t for t>1, then iFj converges with probability 1 in the
j=1
sense of d,, .
Proof. Define

U. =Fl

i i IIFj ik <1}

and W; =Fl

i IRk >13
Note that F; =U;+W,; for each j and that both {U;:j>1} and {W;:j>1} are independent se-
quences of set-valued random variables. Next, foreach m and n

EDN YW, llc]< SEDIW, k1< YEM I F, Il
j=n j=n j=n

That means {E[| YW, ||]:m>1} is a Cauchy sequence and hence
=1

EQI > W, [lk] converges
i=1

as m — oo . Since convergence in the mean implied convergence in probability, Ito and Nisio’s result in [12] for
independent random elements(rf. Section 4.5) provides that

I2W; llc converges in probability 1as n— .
j=1

Then for n,m>1,m > n, by triangular inequality we have
dH(E/VJ"ENj) = dH (ENVENJ + ZWJ)
j=1 j=1 j=1 j=1 j=n+1

<d, ({0}, > W)=l > W,[lx—0,ae.asnm— .

j=n+1 j=n+1

n

By the completeness of (K, (X),d,,), we can have ENJ. converges almost everywhere in the sense of d,, .
i=1

Since by equivalent definition of Hausdorff metric, we have

EDI Y 1= Eld, (DU, (OB
]=n j=n

m
= E[iup*ls(x DU 1
X €S j=n
For any fixed n,m, there exists a sequence X: e S”, such that

lim 504, 2U;) = sup [s(<', 2U;) .
im Sup.

X €S j=n

Then by dominated convergence theorem, Minkowski inequality and Lemma 3.1, we have
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B0 20, 1= ELfim 150, 30,011 = im €S04, 20, ]

< lim E (. gnuj)— ELS(x;, gﬂujn |+ ELs(C zu I

= lim E s(x, Jinuj)— E[s(x;, jgmnuj)] 4] E[s(x:,ji:nu I

<z {A;Lngo S.EDS(G.U;) 506, EU D 1+ U Ell 0 W) m““}

g21+a{A22+“iE[§up 150, U,) T+ [ El sup IS(X*:WJ-)U]M}

j=n  x"es” i=n xes”

< gt {Azwiﬂ%m AR = IIK)H“"}

for each n and m. Thus, {E[|| ZUj llk]:m=>1} is a Cauchy sequence, and hence converges. Hence, by the
j=1

similar way as above to prove Z\NJ converges with probability one in the sense of d, . We also can prove
j=1

that
Z‘iu ,  converges
i

with probability one in the sense of d,, . The result was proved. (]

From theorem 3.1, we can easily obtain the following corollary.

Corollary 3.2 Let X be a separable Banach space which is G, for some O<a<1. Let {F,} be a
sequence of independent set-valued random variables in K, (X) such that E[F,]={0} for each n. If

l+a
6O ot

¢, :R"—>R",n=12,-., are continuous and such that X0 are non-decreasing, then for each
n
a, < R™ the convergence of
i El4.(1 F [l
n=1 ¢n (an)
implies that
yh
n=1 an
converges with probability one in the sense of d, .
Proof. Let
_F _F
U; ‘a_j'{nanKSaj} and W, ‘a_j'{qunwaj}-
- ¢ (t)
If ||F, |lc> e, , by the non-decreasing property of ”T , We have
() _ AR )
a, IR Il

That is

800



G. Li

IR lhe 20l Folhe)

< (4.1)
a, ¢ (a,)
l+a
If ||F,|lc<e,, by the non-decreasing property of ——, we have
IRl o
%R k) ()
That is
1+a
IR I AR ) 4.2)

ai“‘“ - ¢n (an)

Then as the similar proof of theorem 3.1, we can prove both U, and W, converges with probability
j=1 j=1

one, and the result was obtained. (I
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