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Abstract 
In this paper, we are concerned with the existence and multiplicity of no-node solutions of the 
Lazer-McKenna suspension bridge models by using the fixed point theorem in a cone. 
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1. Introduction 
In [1], the Lazer-McKenna suspension bridge models are proposed as following 

 
If we look for no-node solutions of the form ( , ) ( )sin( / ),u x t y t x Lλ π=  ( , ) ( )sin( / )v x t z t x Lλ π=  and im-

pose a forcing term of the form ( , , , ) sin( / ) ( , )i if x t v u x L h u vπ= , then via some computation, we can obtain the 
following system:  

1 11 12 1

2 21 22 2

'' ' ( ) ( ) ( , ),
'' ' ( ) ( ) ( , ),
( ) ( ), '( ) '( ), ( ) ( ), '( ) '( ).

y y a t y a t z h y z
z z a t y a t z h y z
y t y t T y t y t T z t z t T z t z t T

δ λ
δ λ
+ + + =

 + + + =
 = + = + = + = +

                     (1) 

In this paper, by combining the analysis of the sign of Green's functions for the linear damped equation, to-
gether with a famous fixed point theorem, we will obtain some existence results for (1) if the nonlinearities sa-
tisfy the following semipositone condition 

(H) The function ( , )ih y z  is bounded below, and maybe change sign, namely, there exists a sufficiently large 
constant M > 0 such that ( , ) 0.ih y z M+ >  

1 2 1

2 1 1

( ) ( , ),
( ) ( ),

(0, ) ( . ) (0, ) ( , ) 0,
(0, ) ( , )
( , ) ( , ) 2 in t .

tt xx t

tt xxxx t

xx xx

m v Tv v k u v f t x
m u EIu u k u v W x

u T u l t u t u L t
v t v L T
u x v x are periodic

δ ε
δ

π

+

+

 − + − − =
 + + + − =

= = = =
 =
 • = • −
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Such case is called as semipositone problems, see [2]. And one of the common techniques is the Krasnoselskii 
fixed point theorem on compression and expansion of cones. 

Lemma 1.1 [3]. Let E  be a Banach space，and K  be a cone in E . Assume 1Ω ， 2Ω  are open subsets 
of E  with 10∈Ω , 1 2Ω ⊂ Ω , Let 2 1: ( \ )A K K∩ Ω Ω →  be a completely continuous operator such that ei-
ther 

(i) 1 2, ; ,Ax x x K Ax x x K≤ ∀ ∈ ∩∂Ω ≥ ∀ ∈ ∩∂Ω ; or 

(ii) 2 1, ; ,Ax x x K Ax x x K≤ ∀ ∈ ∩∂Ω ≥ ∀ ∈ ∩∂Ω ; 
Then, A  has a fixed point in 2 1( \ )K ∩ Ω Ω  

2. Preliminaries 
If the linear damped equation 

'' ( ) ' ( ) 0,x h t x a t x+ + =                                      (2) 

is nonresonant, namely, its unique T-periodic solution is the trivial one, then as a consequence of Fredholm’s al-
ternative in [4], the nonhomogeneous equation '' ( ) ' ( ) ( ),x h t x a t x e t+ + =  admits a unique T-periodic solution  
which can be written as 

0
( ) ( , ) ( ) ,

T
x t G t s e s ds= ∫  where G(t; s) is the Green’s function of (2). For convenience,  

we will assume that the following standing hypothesis is satisfied throughout this paper: 
(H1) ( ), ( )i ijt a tδ  are T-periodic functions such that the Green’s function ( , )iG t s , associated with the linear 

damped equation 
'' ( ) ' ( ) 0,i iix t x a t xδ+ + =  

is positive for all ( , ) [0, ] [0, ]t s T T∈ × , and 
, [0, ] , [0, ]

0 min ( , ), max ( , ).i i i it s T t s T
m G t s M G t s

∈ ∈
< = =  

(H2) 12 121( ), ( )a t a t  are negative T-periodic functions, and satisfy: 

1 111 12 21 22 1 12 2 21
1 1( ) ( ) 0, ( ) ( ) 0, ( ) , ( ) .
4 4L La t a t a t a t M a t M a t+ > + > ≤ ≤  

Let E denote the Banach space [0, ] [0, ]C T C T×  with the norm 
[0, ] [0, ]

( , ) max ( ) max ( ) .
t T t T

y z y t z t
∈ ∈

= +  for 

( , )y z E∈ . Define K to a cone in E by {( , ) : 0, 0, ( , ) },K y z E y z y z y zθ= ∈ ≥ ≥ + ≥  where 
1,2

min i
i

i

m
M

θ
=

= . 

Also, for r > 0 a positive number, let {( , ) : ( , ) },rK y z K y z r= ∈ <  {( , ) : ( , ) }.rK y z K y z r∂ = ∈ =  
If (H), (H1) and (H2) hold, let ,y y z zξ ξ= + = +  , (1) is transformed into 

1 11 12 11 12 1

2 21 22 21 22 2

'' ' ( ) ( ) ( ) ( ) ( , ),
'' ' ( ) ( ) ( ) ( ) ( , ),

y y a t y a t z a t a t h y z
z z a t y a t z a t a t h y z

δ ξ ξ ξ ξ
δ ξ ξ ξ ξ
+ + + = + + − −

 + + + = + + − −

    

    

                  (3) 

where ξ  is chosen such that 

11 12 1

21 22 2

( ) ( ) ( , ) 1,
( ) ( ) ( , ) 1.

a t a t h y z
a t a t h y z

ξ ξ λ ξ ξ
ξ ξ λ ξ ξ
+ + − − >
+ + − − >

 

 

 

Let :B K E→  be a map, which defined by 1 2( , )( ) ( ( , )( ), ( , )( ))B y z t B y z t B y z t=     , where 

1 1 12 10

2 2 21 20

( , )( ) ( , )[ ( ) ( ) ( ( ), ( ))] ,

( , )( ) ( , )[ ( ) ( ) ( ( ), ( ))] ,

T

T

B y z t G t s a s z s F y s z s ds

B y z t G t s a s y s F y s z s ds

= − +

= − +

∫

∫

  

  

 

1 11 12 1

2 21 22 2

( ( ), ( )) ( ) ( ) ( , ),
( ( ), ( )) ( ) ( ) ( , ).

F y s z s a t a t h y z
F y s z s a t a t h y z

ξ ξ λ ξ ξ
ξ ξ λ ξ ξ

= + + − −
= + + − −

  

  

 

t is straightforward to verify that the solution of (1) is equivalent to the fixed point Equation ( , )( ) ( ( ), ( )).B y z t y t z t=    
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Lemma 2.1 Assume that (H), (H1) and (H2) hold. Then :B K K→  is compact and continuous. 

For convenience, define ,
( , )lim i

i y z

h y zh
y z∞ + →+∞

=
+

, for any , 0y z > . 

Lemma 2.2 [2] Assume that (H), (H1) and (H2) hold. If , 0ih ∞ = , then, for i = 1, 2, the functions iF  are 

continuous on R R+ +× , ( ( ), ( )) 1iF y s z s >   for ( ( ), ( ))y s z s R R+ +∈ ×  , and ( , )lim 0.i
y z

F y z
y z+ →+∞

=
+ 

 

 

 

Lemma 2.3 [2] Assume that (H), (H1) and (H2) hold. If ,ih ∞ = +∞ , then, for i = 1, 2, the functions iF  are 

continuous on R R+ +× , ( ( ), ( )) 1iF y s z s >   for ( ( ), ( ))y s z s R R+ +∈ ×  , and ( , )lim .i
y z

F y z
y z+ →+∞

= +∞
+ 

 

 

 

3. Main Results 
Theorem 3.1 Assume that (H), (H1) and (H2) hold. 

(I) Then there exists a * 0λ >  such that (1) has a positive periodic solution for *0 ;λ λ< <  
(II) If , 0ih ∞ = , then for an 0λ > , (1) has a positive periodic solution; 
(III) If ,ih ∞ = +∞ , then (1) has two positive periodic solutions for all sufficiently small λ . 
Proof. (I) On one hand, take R > 0 such that 

1 1 1 11 2 11 12 21 22max{ , } max{ , } .
8L L L L

RM M a a a aξ ⋅ ⋅ + + <  

Set ( ) max{ ( , ) : ( , ) }.i iR h y z R y z Rξ ξ θΨ = − − ≤ ≤    Then, for each ( , ) Ry z K∈∂  , we have 

1 1 1

1 1 12 10[0, ] [0, ]

1 12 1 1 1 11 1 12

1 1

max ( , )( ) max ( , )[ ( ) ( ) ( ( ), ( ))] ,

( , ) ( )

( ).
4 8

T

t T t T

L L L

B y z t G t s a s z s F y s z s ds

M a y z M R M a M a

R R M R

λ ξ ξ

λ

∈ ∈
= − +

≤ ⋅ + Ψ + +

≤ + + Ψ

∫  

   

Then from the above inequalities, it follows that there exists a *
1 0λ >  such that 

*
1 1 1( ) , 0 .

8
RM R forλ λ λΨ ≤ < <  

Furthermore, for any ( , ) Ry z K∈∂  , we obtain 1[0, ]

( , )
max ( , )( ) .

2 2t T

y zRB y z t
∈

≤ =
 

   

In the similar way, there exists a *
2 0λ > , such that *

2 2 2( ) , 0 .
8
RM R forλ λ λΨ ≤ < <  and we also have  

2[0, ]

( , )
max ( , )( ) , ( , ) .

2 2 Rt T

y zRB y z t for y z K
∈

≤ = ∈∂
 

    

So let us choose * *
1 2min{ , },λ λ λ= and we can obtain 

*( , ) ( , ) , ( , ) ,0 .
2 2 R
R RB y z y z for any y z K λ λ< + = ∈∂ < <      

On the other hand, from the condition ( ( ), ( )) 1iF y s z s >   for all ( ( ), ( ))y s z s R R+ +∈ ×  , it follows that there is 

a sufficient small r > 0 such that ( , ) ( )iF y z y zη≥ +    for ( ( ), ( )) ,y s z s R R+ +∈ ×   and ( ) ( ) ,y s z s r+ ≤   where 

η  is chosen such that 1 2
1min{ , } .
2

m mη ⋅ >  

Then, for any ( , ) ry z K∈∂  , we obtain 

1 1 12 1 10

( , )
( , )( ) ( , )[ ( ) ( ) ( ( ), ( ))] ( , )

2
T y z

B y z t G t s a s z s F y s z s ds m y zθη= − + ≥ >∫
 

      
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2 2 21 2 20

( , )
( , )( ) ( , )[ ( ) ( ) ( ( ), ( ))] ( , ) .

2
T y z

B y z t G t s a s y s F y s z s ds m y zθη= − + ≥ >∫
 

      

So we have ( , ) ( , ) , ( , ) .rB y z y z for any y z K> ∈∂      
Therefore, from Lemma 1.1, it follows that the operator B has at least one fixed point ( , )y z   in \R rK K , for 

*0 .λ λ< <  

(II) Since , 0ih ∞ = , then from Lemma 2.1, it follows that ( , )lim 0.i
y z

F y z
y z+ →+∞

=
+ 

 

 

 Define a function :iF R Rλ
+ +→  

as ( ) max ( , ).i iy z s
F s F y zλ + <

=
 



   By Lemma 2.5 in [2], it is easy to see that 
( )lim 0.i

s

F s
s
λ

→+∞
=



 Thus by the definition, 

there is an 2R r>  such that ( ) ,iF R Rλ ε≤  where ε  satisfying 1 2
1max{ , } .
4

T M Mε ≤  

Then, for each ( , ) Ry z K∈∂  , we have 

1

1 1 12 10[0, ] [0, ]

1 12 1

max ( , )( ) max ( , )[ ( ) ( ) ( ( ), ( ))] ,

( , )
( , ) ( , ) .

2

T

t T t T

L

B y z t G t s a s z s F y s z s ds

y z
M a y z M T y zε

∈ ∈
= − +

≤ ⋅ + <

∫  

 

  

 

In the similar way, for any ( , ) Ry z K∈∂  , we also have 2[0, ]

( , )
max ( , )( ) .

2t T

y z
B y z t

∈
<

 

   Furthermore, from The 

above inequalities, we get ( , ) ( , ) , ( , ) .RB y z y z for any y z K< ∈∂      
Therefore, from Lemma 1.1, it follows that B has one fixed point ( , )y z   in \ rRK K  for any 0.λ >  

(III) Since ,ih ∞ = +∞ , then from Lemma 2.2, it follows that ( , )lim .i
y z

F y z
y z+ →+∞

= +∞
+ 

 

 

 By the definition, there 

exists ' 0,R >  such that ( , ) ( ),iF y z y zϑ≥ +    where ϑ  is chosen such that 1 2
1min{ , } .
2

T m mϑθ >  

Choosing 'max{ 1, },RR R
θ

= +


 and for any ( , ) Ry z K∈∂ 

  , we have ( , ) 'y z y z Rθ+ ≥ >    and 

1 1 12 1 10

( , )
( , )( ) ( , )[ ( ) ( ) ( ( ), ( ))] ( , ) ,

2
T y z

B y z t G t s a s z s F y s z s ds m T y zθϑ= − + ≥ >∫
 

      

2 2 21 2 20

( , )
( , )( ) ( , )[ ( ) ( ) ( ( ), ( ))] ( , ) .

2
T y z

B y z t G t s a s z s F y s z s ds m T y zθϑ= − + ≥ >∫
 

      

Thus from the above inequalities, we can get ( , ) ( , ) , ( , ) .RB y z y z for any y z K> ∈∂ 

      

Therefore, from Lemma 1.1, it follows that the operator B has at least two fixed points 1 1( , )y z   in \ rRK K  

and 2 2( , )y z   in \ RRK K . Namely, system (1) has two solutions for sufficiently small 0.λ >  
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