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Abstract

In this paper, we are concerned with the existence and multiplicity of no-node solutions of the
Lazer-McKenna suspension bridge models by using the fixed point theorem in a cone.
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1. Introduction
In [1], the Lazer-McKenna suspension bridge models are proposed as following
myV, —Tv,, +3,V, —k(u—v)" =& f,(t,X),
m,u, + Elu,, +ou, +Kk(u—-v)" =W, (x),
u(@0,T)=u(lt)=u,(0,t)=u,(L,t)=0,
v(0,t) =v(L,T)
u(e,x) =v(e,x) are 2z — periodic in t.

If we look for no-node solutions of the form u(x,t) = Ay(t)sin(zx/L), v(xt)=Az(t)sin(zx/L) and im-
pose a forcing term of the form f,(x,t,v,u) =sin(zx/L)h (u,v) , then via some computation, we can obtain the
following system:

y'+ay+a,(t)y+a,(t)z = ih(y,2),
2"+ 0,2+ a, (t)y+ay,(t)z = Ah,(y,2), )

yA)=yt+T),y'®)=y't+T),z(t) =z(t+T),z'(t) =2't+T).

In this paper, by combining the analysis of the sign of Green's functions for the linear damped equation, to-
gether with a famous fixed point theorem, we will obtain some existence results for (1) if the nonlinearities sa-
tisfy the following semipositone condition

(H) The function h,(y,z) is bounded below, and maybe change sign, namely, there exists a sufficiently large
constant M > 0 such that h(y,z)+M >0.
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Such case is called as semipositone problems, see [2]. And one of the common techniques is the Krasnoselskii
fixed point theorem on compression and expansion of cones.

Lemma 1.1 [3]. Let E be a Banach space, and K beaconein E.Assume Q,, €, are open subsets
of E with 0eQ,, Q, cQ,, Let A:Kn(Q,\Q;) > K be a completely continuous operator such that ei-

ther
@) |Ax| <|x]. vx € K moQy; [ AX] =[x, vx € K noQ, ; or
(i) |AX|<|x]|. vxeKnaq,;  |AX|=]x]|.vxeKnoQ;

Then, A hasa fixed pointin KN (Q,\Q,)

2. Preliminaries
If the linear damped equation

x"+h{)x'+a(t)x=0, (2)
is nonresonant, namely, its unique T-periodic solution is the trivial one, then as a consequence of Fredholm’s al-
ternative in [4], the nonhomogeneous equation x"+h(t)x'+a(t)x =e(t), admits a unique T-periodic solution
which can be written as  x(t) = _[OTG(t,s)e(s)ds, where G(t; s) is the Green’s function of (2). For convenience,

we will assume that the following standing hypothesis is satisfied throughout this paper:
(H1) &(t),a;(t) are T-periodic functions such that the Green’s function G(t,s), associated with the linear

damped equation
X"+, (t)x'+a; (t)x =0,
is positive for all (t,s) €[0,T]x[0,T],and 0<m, :tm[ionT]Gi (t,s),M, :[m[e})x”Gi(t,s).

(H2) a,(t),a,,(t) are negative T-periodic functions, and satisfy:

1 1
ay, () +ay, (1) > 0,8, (t) +a, (t) > 0, M, la, (t)] . < 7 M, [y, (@®)]],2 < 7

Let E denote the Banach space C[0,T]xC[0,T] with the norm |(y,z)|= max|y(t)|+ max|z(t)|. for

te[0,T] te[0,T]

(y,z) e E. Define K to a cone in E by K={(y,z)eE:y>0,2>0,y+z>0|(y,2)[}, where Hznjlirzl%.

Also, for r > 0 a positive number, let K, ={(y,z) e K:|(y,2)| <1}, K, ={(y.2) e K:||(y,2)|=r}.
If (H), (H1) and (H2) hold, let §=y+&,Z=2+¢&, (1) is transformed into
y*+o,¥'+a,(t)y+a,(t)Z=a,{t)S+a,t)S+h(V-£,7-7),
1"+ 6,7 2y ()Y +a, ()2 =2y (t)s +a,(t)S+h,(Y-&,2-8),

where & is chosen such that

©)

a, (S +a, () +Ah(Y-¢,72-8) >1,
A, (1S +a, (S +Ah(¥-£,7-8) > 1.
Let B:K — E be amap, which defined by B(¥,Z)(t) = (B,(¥,2)(t), B,(¥,Z)(t)) , where
B,(¥,2)(t) = IOT Gy (t,s)[-ay,(s)z(s) + F(¥(s), 2(s))]ds,
B,(7,2)(1) = |, G,(t, S)[-25:(5)y(5) + F,(¥(5), Z($))]ds,

Fi((5), 2(5)) = 2, ()¢ + &, ()g + A (Y -¢,2-2),
Fo(§(5), 2(5)) = 8, (1) + 85, (1) + AN, (Y =&, 2= 2).
tis straightforward to verify that the solution of (1) is equivalent to the fixed point Equation B(¥, Z)(t) = (¥(t), Z(t)).
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Lemma 2.1 Assume that (H), (H1) and (H2) hold. Then B:K — K is compact and continuous.

For convenience, define h, = lim M,fcrany y,2>0.
! y+Z—+0 y+Z
Lemma 2.2 [2] Assume that (H), (H1) and (H2) hold. If h =0, then, for i = 1, 2, the functions F, are

continuouson R*xR™, F.(¥(s),Z(s))>1 for (¥(s),Z(s))eR*xR",and lim FLLf) =0.
J+ZIo+o y+Z

Lemma 2.3 [2] Assume that (H), (H1) and (H2) hold. If h, , =+, then, fori =1, 2, the functions F, are

continuouson R*xR"™, F.(¥(s),Z(s))>1 for (¥(s).Z(s))eR"xR",and Izim M:
Y+Z—>+0 y+z

~+00.

3. Main Results

Theorem 3.1 Assume that (H), (H1) and (H2) hold.
(I) Then there existsa A" >0 such that (1) has a positive periodic solution for 0< 1< A”;
(I 1f h_=0,thenforan A>0, (1) has a positive periodic solution;
() If h, =+o0, then (1) has two positive periodic solutions for all sufficiently small 1.
Proof. (I) On one hand, take R > 0 such that

R
&-maxqMy, Mo} maxqlay . + a2z +[az 3 < ry

Set W;(R) =max{h (y-¢,2-&):6R<||(¥,2)|<R}. Then, foreach (,2)e oKy, we have
max B,(3,2)(t) = max [ Gy (t,5)[-a,(5)2(5) + Fu(9(s), 2()]es,

<My a5, 2]+ AM P, (R) + My jay |« & + M, [a, | &

R R

£Z+§+/1M1‘I‘1(R).

Then from the above inequalities, it follows that there existsa 4 >0 such that

AM,¥,(R) sg, for 0<A<4 .

Furthermore, for any (¥,2) € 0K, we obtain mg%‘]Bl(V:Z)(t)Sg: ||(y,22)||.

In the similar way, there existsa 1, >0, such that AM,¥,(R) < g for 0<A<24,". and we also have

max B,(7,2)() < X =102

max 5= , for (¥,2) e oK.

So let us choose A =min{4 ", 4, }, and we can obtain
IB(9.2)] < §+§ =((9,2)|, for any (y,2) € 0K;,0< 1 < A",

On the other hand, from the condition F,(¥(s),Z(s)) >1 forall (¥(s),Z(s)) € R" xR", it follows that there is
a sufficient small r > 0 such that F(¥,2)>n(y+2) for (y(s),Z(s))e R"xR", and §(s)+Z(s)<r, where
n is chosen such that ry-min{ml,mz}>%.

Then, for any (¥,2) € oK, , we obtain

|65.2)]
2

B.(¥,2)(t) = IOT G, (t, S)[-ay,(s)2(s) + F(¥(s), Z(s))]ds = O, | (9, 2)]| >
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B,(7,2)(1) = [, G (t,5)[-2,(5)y(5) + F, (9(5), 2(s)]ds > 6mm, (3, 2)] > AL Z)"

So we have |B(Y,2)||>|(¥.2)|, for any (¥,2) € oK.
Therefore, from Lemma 1.1, it follows that the operator B has at least one fixed point (¥,2Z) in K \K,, for

O<A<A.
(1) Since h, =0, then from Lemma 2.1, it follows that lim RE:.D _ =0. Define a function F :R" > R"
' y+Z—)+oo y+ Z
F,(s) -
as F,(s)= max F.(¥,Z). By Lemma 2.5 in [2], it is easy to see that lim —“=——==0. Thus by the definition,
S—>+0 S

thereisan R >2r suchthat F,(R)<gR, where ¢ satisfying T max{M,,M,}< %
Then, for each (¥,7) € oK, we have
T s
max B, (¥, 2)(t) = ”?%J.o G, (t,s)[-ay, (s)z(s) + F.(¥(s), Z(s))]ds,

te[0,T]
a ,Z
s Ml" 2||L1 '"()7, 7)||+8M1T ||( )" <Al "(y )”

5.2)]
2

In the similar way, for any (¥,2) € oK, we also have ngg%(] B,(¥,2)(t) < . Furthermore, from The
te[O0,

above inequalities, we get |B(¥,2)| <|(¥,2)], for any (¥,2) € oK.
Therefore, from Lemma 1.1, it follows that B has one fixed point (¥,Z) in Kﬁ \K, forany A1>0.

(111) Since h, , =+oo, then from Lemma 2.2, it follows that Izim M
, yrioio G4 7

=+o0, By the definition, there
exists R'>0, suchthat F(¥,Z)>9(y+7Z), where ¢ ischosen such that 36T min{ml,mz}>%.
Choosing R = max{R +1,%}, and forany (¥,2) edK,,wehave §+2>6|(y,2)|>R" and

59,200 = [ & (92,9269 + (3(6), 26)les 2 09mT 5, 2] > L2

2 2')II

B, (¥, 2)(t) = IOT G, (1, S)[~,,(5)2(5) + F,(9(5), Z(s))1ds = 0Im,T||(9. 2)| >

Thus from the above inequalities, we can get [B(¥,2)|>[(7.2)], for any (¥,2) aKﬁ.
Therefore, from Lemma 1.1, it follows that the operator B has at least two fixed points (¥,,Z) in Kﬁ \K,

and (¥,,Z,) in KR \ Ky . Namely, system (1) has two solutions for sufficiently small 1 > 0.
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